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Following the idea that very short range correlations in momentum
space characteristic for intermittency reflect the power law distribution of
space-time region of hadron emission we investigate the origin of the power
law dependence. We use the current ensemble model of pion production to
describe the boson sources and show the relation between the space-time
distribution of the boson sources and intermittency exponents obtained
from multiplicities in momentum space.

PACS numbers: 13.85. Ni

1. Introduction

Recently, several experiments [1-3] found that the phenomenon of in-
termittency [4, 5] is dominated by very short range correlations between
momenta of identical hadrons. As it is well known, the HBT correlations
[6] reflect the size and shape of the space-time region from which the ob-
served identical particles are emitted [7]. Remembering that intermittency
is equivalent to a power law dependence of the hadronic correlation functions
(multiplicity distributions), one may conclude that a power law dependence
must also be present in the distribution of space-time shapes and sizes of the
region of hadron emission [8]. The first analysis of this problem was done in
Ref. [9] using the HBT formalism for the purely incoherent hadron source.
The considered description of hadron emission was simplified: totally in-
coherent production from the space region was assumed and therefore the
single particle distribution could not be adequately described. Nevertheless,
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this model could explain observed intermittency exponents increasing with
rank of the multiparticle distributions.

In the present paper we investigate the relation between space-time
structure of the source and multiplicity distributions in a more sophisticated
model which allows to correct description of single particle distribution.
We assume that pions are produced from a collection of coherent sources.
This model was described in detail by Gyulassy, Kauffmann and Wilson
in Ref. [10] and we will follow closely their treatment which is summarized
in Section 2. The general current ensemble formalism, which was used in
Ref. [10] is presented in this section. In the Section 3 we explain briefly
how to measure intermittency parameters. In the Section 4 we incorporate
the scaling dependence of the production region to the model. At first we
discuss the simple power law source distribution following [9] and prove that
it does give observable intermittent result in this model. Later we show how
to generalize obtained results for any source distribution showing the scaling
behaviour.

Our discussion is to prove that in a well working physical model of boson
production like the current ensemble model, multiparticle distributions in
momentum space can be strongly influenced by the scaling behaviour of
space-time structure of the bosonic source.

2. Classical current formalism
2.1. Pion fields

In this section we would like to recall the main ideas of the current
ensemble model formulated in [10 ]. To obtain final pion state produced by
a classical current source we should solve field equation for the scalar pion
field #(z) with the source current operator J(z):

(8,0* + m2)¥(z) = J(z). (1)

In principle, source current J(z) is an operator coupled to the pion fields
and treating it as a complex space-time function is only an approximation.
Because we will not specify the conditions of production process it could
be difficult to define when this approximation could be used. We assume
simply that we are allowed in our model to replace the pion current operator
J(z) by its expectation value [10].

Solution of (1) gives the coherent final multipion state :

|#) = e™™/2 exp (i/dskJ(k)aT(k)) [0), ($|$) =1, (2)
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where a(k), at(k) are creation and annihilation operators, n is the average
pion multiplicity and J(R) is the on-mass-shell Fourier transform of J(z)
(7, 10]. Pion density matrix p, constructed from (2) is:

p=|8)(%|. (3)

Multipion-inclusive distributions P,,,(k1,k2...,k,,) are defined by the for-
mula:

1 d&mo(rr...7)
or d3k1d3ky ... d3,

= Tr [p,,af(kl)...af(km)a(km)...a(kl)] . (4)

Pm(kl,kz ...,km) -

2.2. Pion source as a current ensemble

Now we are ready to consider the following description of pion emission:
pions are produced in some space-time centres zy,..., 2y, distributed with
probability density p(z). These centres can be for example the effect of N
separate collisions “producing” pions [10]. In this picture, the total pion
source J(z) would thus be a sum of N different currents J;(2):

N
J(z) =) Ji(z). (5)
i=1

We shall consider the situation when the J;(z) depend only on distance
from the individual collision site z;. It means that if the collision centered
in ¢ = 0 is parametrized by j;(z) we get:

N
J(@) =D jnle - =) (6)

and on-mass-shell Fourier transform is given by:

N
J(k) = jn(k) Y exp (iwgt; — ikz;), wp = /k*+m2. (7)

i=1
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2.8. Multipion distributions for current ensemble

The density matrix p, averaged over the number of sources N and
positions z; of the pion sources is :

pr= S PW) [ dar. dtenp@m) . pen)lBNE,(8)
N

where P(N) denotes the probability to find exactly N pion sources and p(z)
is the probability density to find the source placed at point z. Density p(z)
is normalized to 1. Using the formulae (2), (4) and (8) one can obtain the
inclusive multipion distribution Pp,(k1,...,k,,) in the form:

Po(k1,y....kn) =
S P(N) / diay...d%np(21) - p(2n)IT (R - [T (k) . (9)
N

Substituting J(k) in (9) by (7) one obtains:
P (ky,y.... k)

= [jn (kD)2 ljn (k)2 S P(N) /d“:cl . diznp(z1). . .p(en)
N

N N
X z ... Z exp (ilcl(:cil —z;,)...exp (ikm(illizm_l - ﬂfim) . (10)
i1=]

tzm=1
One should remember that in the scalar product of 4- dimensional vec-
tors k; and z; the first component of k; is equal to wg; as a result of

on-mass-shell Fourier transform in (7). The evaluation of (10) is compli-
cated by the combinatorial problem of how many of the N?™ terms in (10)
have a given number of the indices (73, 72,...,%2m ) equal to one another.
The formulae for single- and double pion distribution are:

Pi(ka) = (k)P (V) + (VY = D)oo b)), (11)
Py(k1, k2) = {jn(Fer)? |in(R2)I?
x (<N2> £ (NN = 1)) [[o(ks — k)P + [p(ks + k2)]?]

+ (NN = 1)) [lp(k2)|* + |p(k2)|?]
+ (N(N = 1)(N = 2)(N = 3))|p(k1)[*|p(k2)|?

V(N - 1)V - 2)) [p(fcl ~ ka)p (k1 )o(k2)

(ks + ka)p (k) (k) + .| ) (12)
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One should notice that for N = 1 we recover the coherent field results.
Produced particles are then uncorrelated. Hence we exclude the case ¥V =1
from our further investigation.

3. Intermittency exponents
3.1. General definition

Intermittency is equivalent to the power law dependence of the hadronic
multiparticle distributions in momentum space. This dependence is de-
scribed by the intermittency exponents. We would like to discuss exact
results for intermittency exponents we can get in the usual way by inte-
grating pion multiplicities Pp,(k1,..., k) in the finite region of size §. We
obtain a kind of series in é:

é

Kn(8) = /PM(k,,...,km)d”kl__,d%(m = a;(L8)™%, (13)
0 j

where a; are intermittency exponents, a; weights and the length L is in-
troduced for dimensional reasons. Experimentally we do not observe such
a kind of series in (L§). We observe only the term dominating in (13). So,
for our purposes we define the intermittency exponent fn, to be equal to a;
taken from the term dominating in (13). We should notice it need not to be
the term with max/min(a;) because of weights a;.The existing data show
intermittency exponents increasing with rank of the multiparticle distribu-
tions.

3.2. Leading terms for current ensemble multiplicities

Now we will discuss leading terms in (13) for pion multiplicities in cur-
rent ensemble formalism (10). At first we consider cases (11) and (12).
After integrating (11) and (12) in the region (0, §) we get respectively:

K1(8) = (N)ena(8) + (N(N — 1))er2(6), (14)
K2(8 = (N?)ca1(8) + (N (N = 1))ez2(8) + (NN = 1))eza(6)
+ (N(N = 1)(N = 2)(N - 3))c24(8) + (N(N — 1}(N - 2))c2s(8),
(15)
where c;; are results of integrating (11) and (12): they depend on ¢ but

they are independent of N. One can notice that for large N term with ¢;2
in (14) and term with c24 in (15) will dominate. For small N one should
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take into account also the contributions of other c;; i.e. relations among c¢;;
and then carefully investigate which term is leading. “Large” and “small”
N mean here that averages we consider in (14), (15) are respectively large
and small. It can be observed i.e. for “spike” number distribution P(V)
with large/small (V).

It could be difficult to write down explicitly all terms in Eq. (13). For-
tunately, for our purposes it is enough to calculate only the ranks of weights
from evaluated formula (10). Some weights are presented below:

term  (|p(k1)|%|p(R2)]? - - . [p(km)I?)

with weight (N(N - 1)(N -2)...(N —-2m+1)), (16)
where N > 2m — 1

term (|p(k;)|?) with weight (N(N — 1)N™7!), where m > 1 ete. (17)

4. Scaling behaviour of the distribution p(z)

In this section we show that the scaling of distribution of collision sites
p(z) (introduced in (8)) can produce scaling of momentum distribution P,,.
Let us assume that distribution p(z) of pion production centres can be
factorized into the space part ps and the time part p¢:

p(z) = pe(t)ps(|=|) . (18)
We further assume that the space part follows a power law:
ps(x) = L™2|*%, a <3, (19)

where the length L was introduced for dimensional reasons. The time part
p¢ describes the typical time evolution of the production process (it can be
for example Gaussian function of time in the form: exp(—t2/T?) and has
no singularity for any t. We assume also that py is normalized to unity.

The exact power law behaviour in (19) implies that the p(z) in (18)
cannot be normalized. Following [9] we can introduce a kind of cut-off to
get rid of this problem:

po(2) = 2|* " L™O(L ~ |e|)aldr) . (20)

In this case L can be interpreted as a size of pion production region. Using
the relations for 4-dimensional Fourier transform:

o) = [ dtaep(a), (21)
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p(k=0)= [ atep(a), (22)
one obtains the distribution in momentum space:

L|k|
k)~ / duu®*?sinu. (23)
0

p(k) = api(ko)(L

One can observe the power law behaviour in (23) only for L|k|{ > 1. For
L|k| < 1 the singularity will be cut off and p(k) in (23) tends smoothly to 1
for Lik| — 0. We notice also that p(k) < 1 for any k.

Now we will analyse the multipion distribution Pp,(ki1,...,k,.) to get
the dominating term there. This term will produce intermittency exponents
in (13). Let us consider at first distribution P;(k;) obtained from (11) and
(14). If N is large enough the term with ¢12(8) will be dominating and from
(13) we obtain intermittency exponent in the form:

fi =2a. (24)

From the distribution P,(ky, k;) we will get term c4(8) dominating in (15)
for large N. Hence intermittency exponent is:

fg =4a. (25)

Now we are ready to consider leading terms in P, (ki, ..., Ky ) for any
m > 1. As it was already mentioned in Section 2.2 we will not exactly
calculate the weights in (13). We assume N to be large and then weights in
(13) fulfill the following relation:

terms with (L§)2** behave like N™TF where k=1,...,m, (26)
terms with (L&)(zk_l)" behave like N™t*=1 wherek=2,...,m,
(27)

Hence we get the intermittency exponent in the form :

fm = 2ma, (28)
because the term (26) with £ = m will be dominating in (13). The result
we have got above is different from the intermittency exponents obhtained

in [9]. In [9] the intermittency exponents fulfilled the relation:

' = ma. (29)
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Nevertheless, because f,, and f,,' fulfill the relation:

fm =2fm', (30)
the relative relations among f,,, and f,,’ are the same:

B Je (31)

i fu

All calculations we have made to get f,,, request the assumption N to be
large. For small N the formulae are very complicated and it is difficult to
see how they could provide the simple power law behaviour as observed in
experiment.

The results [28] can be actually derived under much less restrictive
conditions. To see this, let us first formulate general conditions function
p(z) must fulfill to be considered as the probability distribution and to
show the scaling behaviour:

rs(z) 20, (32)
/ps(:c)dsz =1, (33)

ps(k) ~ const - (L|k|)™ in some interval L|k| € (a,b) when a,b exist.
(34)

One can notice that conditions (32), (33) give the following inequality for
3-dimensional Fourier transform:

ps(k) < ps(k=0)=1 forany k. (35)

Now we can easily generalize the results obtained for collision sites dis-
tribution p(z) defined in (18), (19). For any function p(z) which fulfill
conditions (32), (33), (34) we get the intermittency exponents behave like
(28) increasing with the rank of pion multiplicity for large N. The inequal-
ity (35) allows to expect that factors ¢,,;(6) in K,,(8) are not very large. It
means that weights contributions are rather small and hence N do not need
to be very large to give intermittency behaviour (28).

5. Conclusions

We have investigated the relation between intermittency and scaling be-
haviour of space-time collision sites distribution in current ensemble model.
Our conclusions can be summarized as follows:
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— there is a possibility of intermittency in current ensemble model pro-
vided that
(a) one assumes power law singularity in distribution of collision sites
(b) the number of coherent sources N is large enough. Then inter-

mittency exponents grow with the increasing rank of multiplicities
following the Eq. (28).

— for small number of sources N intermittency is generally not observed.
There are no well defined leading terms which can give intermittency
exponents growing with the rank of moments/ multiplicities as we ob-
serve in experiment.

However, we have proved that in a well working physical model of boson
production like the current ensemble model, multiparticle distributions in
momentum space can be influenced by the scaling space-time structure of
the bosonic source and give observed intermittent results. The problem is if
the assumption N to be large is realized in nature. If not, we are forced to
conclude that the current ensemble model of intermittent boson production
cannot describe intermittency.
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sions and a continuous interest in this work. I appreciate also to Professor
K. Fialkowski for his reading the manuscript and helpful comments.
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