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FERMIONIUM IN AN EXTERNAL POTENTIAL*
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The set of 16 first-order relativistic equations derived from the two-
body Dirac equation is discussed for a system of two spin-1/2 particles
moving in an external potential. Scalar and vector wave-function compo-
nents are used in place of double-bispinor components. In general, the case
of different masses is considered. In the case of equal masses, this set is
explicitly reduced to four second-order equations involving ”large-large”
components, if terms quartic in momenta are neglected.

PACS numbers: 11.10. Qr

Consider a system of two spin-!/; particles moving in an external po-
tential, V**(r1, 73), and use to describe such a system the two-hody Dirac
equation (called also the Breit equation [1]):

(E-V —a;-p1—fimy — ay-pa — Bama)P(ri,72) =0, (1)

where V(r1,73) = Vi“(r'i — 73) + V*(#1,72) is a total potential. Here,
& = 7?6; and B; = 7) (¢ = 1,2) are the usual Dirac matrices of two
particles. In particular, the system may be a fermionium i.e., a fermion-
antifermion pair (e.g. the positronium), affected by an external force (e.g.
the Coulomb force from a heavy ion).

In order to split Eq. (1) into a set of equations for 16 spinorial (double-
bispinor) wave-function components it is convenient to apply the represen-
tation

Y= (¢§Z:;§)) , where (3182) = £1 and (715725) = +1
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are eigenvalues of (commuting) direct products of the corresponding Dirac
matrices. Such a representation is connected with the double Dirac repre-
sentation ¢ = (¢ﬁ1ﬁ2), where §; = +1 and B2 = +1, through the relations

Vi = 05 (Wrr £ ¥-2), 95 = (et v-y). (2)

Then, Eq. (1) takes the form

(E—V)¢f—(m1+m2)¢f=i(ff'f)' Hztff'ff'ﬁz) v,
+ 35

(B = V)$Z - (m1 = ma)y¥ = £ (o - 71

where, &; = diag(¢¥,dF) with @F (i = 1,2) denoting the Pauli matrices of
two particles.

Making use of the spin projection operators P, onto states with the
total spin s = 0,1,

Po=3(1-37-07),P=5(3+57-57), (4)

one may calculate the respective wave-function components 1/}2& s = Pszpi,

and then introduce the corresponding spatial scalars ¢i and vectors (Zi
through the connections:

x + 7+ _ 1 (=P =P +
‘5a1a2¢:t = (’l’:izo)al‘12 ? 50102¢:i: -2 (Ualbl‘sazbz - 6“151 ‘Tazbz) (1r/’il)b1b2
(5)
(a; =1,2, b; =1, 2). In terms of these 16 scalar and vector wave—function
components, the set of equations for @bi s (s =0,1) (as following from Egs.
(3)) can be rewritten in the form:

(E - V)¢t — (mq + m2)oT = £ (51 F72) - 6=,

(E - V)¢% — (mq — ma)pT = £ (51 F ﬂz)'$+,

(E — V)$T — (m1 + m2)¢T = £ (F1 F 52) ¢F £ i (52 £ 2) x 6%,

(B - V)§E - (m1 - m2)dT = £ (51 T 52) 9T £ i (51 £ 52) x 6E. (6)

Here, the wave-function components depend on #; and 72, while pj =
—~10/07, and pp = —10/072. In the above derivation, the identities

Py(3] +57)=0, Py(G7 - 37) = (3] - 77 )P

P +35)= (3 +33)P1, Pi(Ff)-3)) = (6] -7 )P
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were used. The second of these four identities shows in which way the second
connection (5) is true.

In the particular case when external forces are absent, V*(ry,r3) =
the set of 16 equations (6) takes in the centre-of-mass frame (there P
P1 + P2 assumes its eigenvalue 0) the previously discussed form [2]:

0,

. . N . —~ 7'+in
(B™ —VIMgE™ — (m1 + mp)¢ ™ = {2p'¢- :

0
. . . . - 7+in
(B = V)2 (my = ma)g¥n = { 2662
. s . 2pp Tin
Ein _yin +in _ m Mo ";mz o
( )¢+ ( 1 + ~)¢+ {_221-).)( ¢:xn
in in\ 7+ in “Fin 256"
(B = V™2™ — (my — my)¢T ™" = i (8)
—2ip X ¢
where V(r3,73) = Vi“(i') with 7 = 7] — 73 (and p = p} = —p3, if acting on

the vave function). Here, the wave— function components depend only on 7,
while p’ = —i0/07. The Reader may consult Ref. [3] for the radial equations
following from Eqgs. (8) when internal forces are central, Vi*(7) = Vin(s)
with r =| 7| (there, the case m; = m; was considered).

In the case of equal masses, m; = my(= m), the centre-of-mass and
relative canonical variables are

R=3(f1+7), P=p+ph (9)
and
F=7 -7, P=3(-70), (10)
respectively. Then, in general, the set of 16 equations (6) assumes the form
25- ¢*
E-V)¢E - o2meT ={ 7.
( )65 % { ~P.¢7"°
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where V(R _') Vi) + Ve"(R 7). Here, the wave-function components
depend on R and 7, while P = -za/aR and p'= —id/0r.

Due to Eqgs. (2) and (5) the wave-function components qﬁ and $_j+f
are “large-large” + “small-small” while ¢% and ¢% are “large—small” +
“small-large”. Eliminating from Eqs. (11) the components ¢:_t and $f, one
can obtain the following involved set of eight second-order equations for qbf

and qﬁ

=2 (15+ J[EP’_VV) x poT + 2zE2_ % (13'+ E“’_V‘]/) x Po7
(B vy —am?] g3 - (}3+ [:’_VJ (P-d7)+4(5+ ELV‘],) (5x 43)

o BV g om0 [PV
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Further, eliminating from Eqs. (12) the components ¢ and ‘;-—i- by
means of Eqs. (11), we can get the following set of four second—order equa-
tions for qSi and ¢I if we neglect terms of the order of Pp3, P?p? and

)-ﬁ~ﬁ-(}5— Pf_‘jﬂqﬁi

[(E—V)2—4m2—4(13'+E_

Vv
=2 (L xP-Fx B gt o) o,
[P

&

E-V v
[(B=v)* - am?| 4( +E’V‘]/) ~$i)+(ﬁ+[;'_v‘l)x(ﬁx$j)
#|(r- 59 ] ol £29) 1
P

=2 -[-P—V]xﬁ P x [V] ¢ + O(Pp®) + O(P*p*) + O(P? 13
i\ 5= — | ¢% P p°) + O(P7p), (13)

where the second equation can be rewritten also as
PV
S W T L AW
[(E V)" —4m* - 4p (p T V) (P+E-V Pl o7
[P, V]

(22 FV]_ plA V]

E-vhtir ey Py v )d’“

—2'([P V] X p— [ ])¢++0(Pp3)+0(P2p2)+0(P3) (14)
“\E-v *E- + P

with (;-S'i = (q&i Z)' Here, the omitted term of the order of Pp® on the rhs.
of the second equation (13) or Eq. (14) is

1. , . |PV )
—8i P,(—E"j“;)‘;(l’-kép I]/) (P+£3_‘l) x ol .

We assumed that the contribution from this term can be neglected in com-
parison with the contribution from the term

e gy

o1

2



1130 W. KROLIKOWSKI

which is of the order of Pp. Note that the coupling between two equations
(13) is caused by the acceleration of the system’s centre of mass under the
influence of external forces.

In the particular case of no external forces, Ve*(R, ) = 0, one can use
the centre-of-mass frame (where P assumes its eigenvalue 0), and then the
set of equations (13) (with the use of Eq. (14)) splits into two independent
equations: the scalar equation

o 5, Vi -
[(mmove) —am (5 g2 275) et <o oo

and the vector equation

> y7in .
[(Ein - Vin)z ~ 4m’” — 45" (5_ E[ii’fv]in)}ﬁm

[, V"]
Ein - Vin

Notice that these equations follow in a simpler way as an exact consequence
of the nonapproximate equations (8) (with m; = ma(= m)), where the
centre-of-mass frame is also used.

When the nonrelativistic approximation is applicable both to the ex-
ternal and internal motion, we may put

[—” Vin] +in
“H g oypmp P ¢ =0. (16)

(E-V)  ~4m® + 4m(E - 2m - V), an

where (E — 2m — V)? is neglected. Then, in the denominators in Egs.
(12)—-(14) we may write E — V ~ 2m (if not under differentiation).
In this way, Eq. (16), for instance, takes approximately the form

(E*“ - 2m) gHin = Guo i, (18)

where

1 . F,Vin 1 g, Vin 2 in
sz=[;i>" (P———*—“[p ]>—~—(————-[p ]> +V ]m

2m m 2m
1 [Pk, Vin} [pkavin] [Pk’ Vin] {pl, Vin]
+ E( 2m PLt Pl 2m + 4m? ) - (19)

Here, the reduced mass is g = m/2. We can see that for the wave-function

component ¢i"‘ = ( _t‘{'

(Hpp) is given by the Hermitian part of G = (Gyy):

) the nonrelativistic sector-energy operator H =

Hg =13 (sz + le’) , (20)
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while the respective energy-width operator ' = (rkl) for transitions into
all other wave-function components qSim, prin, ¢"“ and ¢Ti® is defined by
the anti-Hermitian part of G = (G kl)

-l = % (le - G”cf) . (21)

Thus, in consequence of the above approximate linearization of Eq. (16)
with respect to the energy eigenvalue E™ — 2m, this eigenvalue gets an
imaginary part (of course, in the initial equation (1) as well as in the equiv-
alent set of equations (6) E is real, so such is also E'™ in Egs. (8)). If T is
small, the real part of EI™ appears in the approximate eigenvalue equation

(Re Eim _ 2m) $rin = Hy gin (22)

involving the Hermitian sector-energy operator H, whilst the imaginary part
of E'™ is given perturbatively as

IInEin = / d3—'¢+1n * T, ¢+1n (23)

in the case of state ¢+"‘ = (¢+"‘) normalized to 1.

When the nonrelativistic approximation is applicable to the external
motion (though the internal motion still may be relativistic), then writing
E-V=FE"_-V* 4 F— E™—V* we may put

(E V)Z (Em Vin)Z + 2(Ein _ Vin)(E _ Ein _ ch) , (24)

where (E — Ei® — V**)2 is neglected. Hence, in the denominators in Egs.
(12)-(14) we may insert E — V ~ E'™ — Vi® (if not under differentiation).

In such a case, Egs. (13) (with the use of Eq. (14)) take approximately
the form

. 1 . ) R {1'5 V] -
_ Em _yex _ _ . _ in _ yin 4 2 R ) ; .
{E E 2(Em —_ Vm) [ (E ) +4m” + 4( + Emn Vm) p
I i AP N0 ) B Lk A R
Ein __ Vin Ein _ yin Ein — Yin +

SN W4 0 b R I B
_(Ein_Vin)z [P, ]X - +Ein_Viu X[p, ] '¢+’

1 . .
sty - (B V) e a5

{E_Ein_vex_ (P!V] )ﬁ

Ein — Vin
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AR R N P i AW P
Em — Vin Ein _ Vin Ein _ yin + 2(Ein - Vin)2

X [4[5,V]p, +4(p1+-Ei[f’—-’_V‘li—n-)[ﬁV]—[H,V“1ﬁ— (ﬁ+ E[—ﬁ‘——_‘i;]—n) [P,,V"‘]]d;i,
=(—Eaii‘ﬂ5‘z'[[ﬁ"’°‘]xf' (P*%) [P V"]]¢+ (29)

Here, V(R,7) = V®(7) + V*<(R,7) all the time. In this way, the ap-
proximate linearization of Eqs. (13) with respect to the external energy
eigenvalue E — Ei® is carried out (while the internal energy eigenvalue E'®
is given as in Egs. (15) and (16)).

Consider now an effective approximation, where the factorized ansatz

$1(E,7) = xo(R)$L™(7) » 61(B7) =~ xa (D)L  (26)
is enforced (with qSI"' and ¢i"‘ satisfying Eqs. (15) and (16)), and where

VeX(R,7) ~ Vi (R) or Vi (R) is assumed when commuted with momenta.
Then, after projecting onto the states ¢+’“ and ¢+m Egs. (25) tell us that

1 = = €0 [g vrex ‘Mo [ g rex 5
— ln — —— — . — —
.E E Vo 2M0P (P M, [P, Vo ]) + IM3 [P Vo ] ]XO(R)

_ fkm T7EX e
= Ekim (2€kmpx + T [thl ] x1(R),

:E — B VT 21:41 <ﬁ+1l£417 [ﬁ,T/’j‘]) ]
+ 23;‘4'12 (P [P 7] + [P 7] B4) + 2’}"43 [P 77 [2 7 Hxl (R)

_ Gkm =Fex a .
= €kim NN [Pl, V) ] xo(R), (27)

where we put Vg (B) = (V*)g0 and Vi (R) = (V*)ix , and define the
constants

_A—;?=<'E'%17"> <(Em_v.,, )kk>o,
—degm = ((Epk» V;:u)2> —:fkm Eik‘v‘::n):;)

—igkm _ 2 {Pm, V"‘]
Mo M; <(E|n Vm)?pm + (E'm Vm) >
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Here, —1 [ﬁ’ V;T]] = “avte)fx /OR and —i [7, Vir] = —8Vin/97 give exter-
nal and internal forces, whereas

(FYpp = / a3 +"“F(R 7, p‘)¢+"‘ (29)

is the internal matrix element with the states ¢ii;‘ = qﬁi“ and (¢+m) =
q?ii“ normalized to 1 (the case of internal bound states).

The system of two coupled effective Schrodinger equations (27) allows
to estimate the external-motion factors xp and x; of the wave-function
components ¢i and JS‘::_' in the case of external nonrelativistic approximation
(although the internal motion may be relativistic).

When the nonrelativistic approximation is applicable also to the internal
motion, we may write

E-E®_V*~E_-2m-V. (30)
Then, E'® — Vin ~ 2/ everywhere in Egs. (25) and, therefore, also within

the constants (28) in Eqs. (27). In this case My >~ 2m ~ M;,§ ~ 1 ~
€1,M0 = 1, €1 = 3841 = 7y and

. 1 - )
—legn m([pk, V™ ]on = —ifkn,

, 1 1 o
—i0kn = 5;(2171; + E‘n‘; [Pn: v ])kO . (31)
Here, the reduced mass is p = m/2, so ¥ = 2f/m = v} — ¥, gives the relative
velocity of two particles.

Thus, in this fully nonrelativistic approximation, Eqs. (27) take the
form

e 1 1
[E —-E" V5 + :i—f_r—zAR ~ oz (gradR‘_/;x) -gradg,

1 —ex 1 w—ex\ 2 -
B WA”V" T 16m3 (gtadRVo ) ]XO(R)
: 8 1 9V, =
= —1€kin fin (25"}?1' + Im BX, )XI(R) )

_e 1 1 TreX
[E Em x ZI;’L—AR + m (gradRVX ) . gradR

e X

1 1 ex\ 2 =
= TSRV~ g (670 (A

Gkn 3Vo D

= - 32
1€kin 2m 0X, —+—Xo(R), (32)
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— -+ 2 —
where gradp = §/0R, AR = (B/GR) and R = (X;). Since the potentials
73?1 and V" must be comparatively weak in the case of fully relativistic

approximation, four terms of the order of V;ff and V;Tl Vin in Egs. (32)
can be consistently neglected (here, Vin is involved in fi,, and g, through
Egs. (31)).

Eventually, when the nonrelativistic approximation is applicable to the
internal motion (though the external motion may be relativistic), then writ-
ing E-V = E®* —V** 4 E — E** — V™ we may approximate

(E _ V)Z ~ (Eex . Vex)2 + Z(Ecx - VeX)(E - EX _ Vin) , (33)

where (E — E®* — Vi")? is neglected. In this case, in the denominators
in Egs. (12)-(14) we may substitute E — V ~ E* — V** (if not under
differentiation).

I am indebted to Slawomir Wycech for interesting discussions on the
problem of positronium in external Coulomb fields of heavy ions.
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