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1. Introduction

Many years ago Professor Jerzy Rayski was deeply engaged in Yukawa’s
so called “bilocal theory” [1]. It was another one of many preceding attempts
(cf. e.g. [2-4]) to introduce internal structure of particles in order to avoid
all the trouble connected with the pointlike idealization.

The basic assumption of Yukawa’s theory (5] is that the particle is de-
scribed by two four-vectors z and y, one of them (z) representing the space-
time coordinates of the “centre” of the particle, the other (y) being the
distance from the centre. To make this distance space-like and bounded in
a covariant way it was necessary to introduce ad hoc a mysterious time-like
unit vector r pointing towards the future

rurt =l b rs el ) = -1, g >0 (1.1)
and to restrict y by means of the two relativistic conditions

b= >0, yurt=cy. (1.2)
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In a particular frame of reference in which r; =0, i=1,2,3; ro = 1,
equation (1.2) takes the form

v+ +tyi=a+d. (1.3)

For ¢; +c2 > 0 this equation represents a sphere S? and the internal degrees
of freedom of the particle are restricted to this sphere.

The next step was to consider fields depending on the two four-vectors
z and y, the second restricted by the two conditions (1.2). The second order
covariant differential operator consisted of the two d’Alembert operators [,
and [Jy, the second restricted by means of equations (1.2) to essentially its
spherical part. On the basis of this equation a field theory was developed.

This theory, which was very popular in the early fifties, was later aban-
doned. One of the reasons was of technical character. The constant vector
r distinguished a direction in space-time and thus spoiled the invariance of
the theory. Another reason was of general character. The introduction of
bilocality had no justification in basic physical principles.

In this paper we shall show that the ad hoc assumptions of the bilocal
theory can be derived as unique consequences of simple postulates if one
takes into account internal symmetries. This is a rather curious fact because
the original version of bilocal theory is based on Poincaré symmetry only.
Let us state the postulates:

A. The physical symmetry is the direct product of external conformal or
Poincaré and internal unitary symmetry Py x SU(m) C SU(2,2) x
SU(m).

B. The configuration space of the particle is that orbit in C*™ of the
physical symmetry Py x SU(m) or SU(2,2) x SU(m) which contains
Minkowski space.

The second postulate is a consequence of two independent ideas. The

first is a generalization to both kinds of syminetries of an old idea (cf. e.g.

[6], [7]) to consider the other homogeneous spaces

Ps/H = P;/SO(3.1) x SO(3.1)/H,  H C SO(3.1)

as possible candidates for the configuration space of particles in analogy to
the conventional case My = P4/SO (3.1). The second is the idea to describe
physical laws in the domain of elementary particle physics in a complex
space, providing in this way a natural geometrical basis for both kinds of
symmetries, external and internal [8].

These two ideas combined in postulate B select, as we shall see, one
particular out of the many homogeneous spaces of the direct product P4 X
SU(m). This particular space is a Py X SU (m)-invariant generalization of
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the bilocal model in which the mysterious vector » is an integral part of the
theory.

The essential results concerning bilocal theory do not depend on the
integer m in SU (m). We keep, therefore, m arbitrary in order to cover such
particular cases as U(1)xSU(2), SU(3)xSU(2)xU(1), ete.

The first postulate does not need justification. It is just a statement of
experimental facts.

2. Homogeneous spaces of GL(4,C)xGL(m),C)

In order to find the homogeneous spaces of the direct products Py x
SU (m) C SU(2,2) x SU(m), we need, according to postulate B, a com-
mon geometrical basis for internal as well as external symmetries. Such
a common basis is provided by the space of all complex 4 x m matrices
€ = {faa}, a=1,...,4 a =1,...,m; £ € C*™. This space is the
smallest linear irreducible representation space of GL (4, C) x GL (m, C)
on which this direct product acts effectively according to

E— € =gth™!, geCGL(4,C), heGL(m,C). (2.1)

(The first factor acts on the columns, the second on the rows of £.)

The physical symmetries Py X SU(m) C SU(2,2) x SU(m) C GL(4,C)
X GL (m, C) appear in this picture as subgroups of GL (4,C) x GL (m, C)
and, in particular, the external Poincaré symmetry appears as a subgroup
P4 C SU(2,2) C GL (4, C) of the conformal group SU(2,2).

With respect to GL (4, C) x GL (m, C) the space €*™ decomposes into
submanifolds consisting of matrices of equal rank

cim= U of*™, no*™Mo*™ =g 0™, (22)

where
O"™ = (€€ C*™: rank £ =k}, k=0,1,2,3,4. (2.3)

These submanifolds are homogeneous spaces of GL(4, C) x GL (m, C)

0%4,1%) = GL (4$ C) ()Z G:-’(m’ C) , (2.4)
H, i
where H,(f‘m) is the isotropy group of an arbitrary point in Og:’m) e.g. the

point

(lﬂk g) . (2.5)
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Another description of the manifolds O§c4’m) is as (non-trivial) fibre
bundles with G',‘c X GT%_, as base and fibres homeomorphic to GL (k, C),
where G7"_, and G‘,‘c are Grassmann manifolds (G7* is the set of all k-
dimensional hypersurfaces in C™, GI"_, ~ G7*). This description arises if
one considers C*™ as the set of homomorphisms Hom(C™ — €*) of C™
into C* and is very covenient if we search for those homogeneous spaces
of GL (4, C) x GL (m, C) which admit a projection onto Minkowski space
(for details cf. [9]). Indeed, it is well known that the complex Grassmann
manifold G3 is homeomorphic with the complex compactified Minkowski
space Mf. Thus we have shown that the only submanifold of C*™ which
is a homogeneous manifold of GL (4, C) x GL (m, C) and, at the same time,

admits a projection onto the complex compactified Minkowski space M, 4(’ is

the submanifold 0§4‘m).

To express these facts in local coordinates, we remind that on any £ €
0g4’m) there exists a 2 X 2 matrix k with non-vanishing determinant det K #
0 and that all 3 x 3 submatrices have vanishing determinants. Without loss

of generality we consider a neighbourhood in which K stands in the upper
left corner of
K B
£E= ( A Y) . (2.6)

If€e Og“‘m) t.e. if £ is of rank 2 we have, according to elementary
formulas from linear algebra, A = aK,Y =aB, B = Kb, Y = Ab (two
last rows are linear combinations of the first two and m — 2 last columns are
linear combinations of the first two). From these relations it follows that

Y =aKb=aB = Ab= AK"'B. (2.7)

Here the elements of the 2 x 2 matrix a and of the 2 x (m — 2) matrix b are
local coordinates of the Grassmann manifolds G3 and G7_, of the base and
the elements of K are coordinates of the fibre. Two alternative descriptions
of the fibre bundle are possible if we consider G4 as base and B as fibre or
GT'_, as base and A as fibre. The three possibilities are illustrated on the
following diagram

O(‘,m)
T i T2

Glzo (ld,O) G;XG::_Z (0,|d ) Gm-z (2.8)
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The homeomorphism of Gg and M, f can now be expressed as

. i\
Zy =2y +iy, = ?Traa#
1

a= z\-z“&“ , (2.9)
where 0, i = 1,2,3 are Pauli matrices, oy = 13 is the 2 X 2 unit matrix,
69 = —09, 0; = 0;. The parameter A with dimension of length must be

introduced from dimensional reasons because a = AK ~! is dimensionless.
An important fact may be noted here that the Grassmann coordinates
a do not depend on the columns (i.e. on the Greek index a) and the Grass-
mann coordinates b do not depend on the rows of £ = {{4o} (i.e. on the
Latin index a). This is obvious if we rewrite relations (2.7) explicitly

' '
Ea"a = aZ'lEa’a 3 Eaa” = Eaa’bg" . (2'10)

Here a' and o' are indices of the rows and columns of the 2 x 2 matrix
K with determinant det X’ # 0 (the choice of this matrix determines the
coordinate neighbourhood). The remaining indices are denoted by a' and
a'. In the particular neighbourhood illustrated by the matrix (2.6) we have
d,a'" =1,2, a" =3,4, " =3,4,...,m.

3. Restriction of symmetry to SU(2,2)xSU(m) and P4xSU(m)

If we restrict the general GL(4, C)x GL(m, C) symmetry to the physical
SU(2,2) x SU(m) and P4 x SU (m) symimnetries there appear invariant and
the homogeneous manifold ng,m) of GL(4, C) x GL(m, C) decomposes into
subdomains being homogeneous spaces of the restricted groups.

There are two independent SU(2,2) X SU (m) invariants namely Tr »
and Tr r?, where

rap = Ena 1 Ebas (3.1)
and
0 o

is the metric tensor of SU (2,2) (the metric tensor od SU (m) is 1,,,). If we
express in (3.1) the dependent elements Y of the matrix £ by the indepen-
dent elements z, K, B we obtain

2
Trr = Xy#r",

4
Tr r? = Xz—{—-%y#y"rur” + (y,,,r")z}, (3.3)
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where )
ru = =€ (3.)P Ehe s a, b =1,2. (3.4)

From (3.3) it is clear that instead of Tr r and Tr r? we can, equivalently,
consider the two independent invariants y,7* and y,y#r,r” and decompose

the manifold O§4’m) into a two parameter family of homogeneous manifolds
of SU(2,2) x SU(m) described by the equations

yur? = const, y,y*r,r¥ = const. (3.5)

If we further restrict the symmetry to P4 X SU (m) another invariant

appears (cf. (4.5)) namely y,y* and the manifold Og4’m) decomposes into
a three parameter family of homogeneous spaces of Py x SU (m)

y“y”' + ¢33 = y”'l'”' + c12 = 'I',LT'“ +c22 =0. (36)

It is seen that the complex variables £,/,,a' = 1,2; a = 1,...,m, enter
equations (3.5) and (3.6) only by the intermediary of the vector 7, defined
by equation (3.4). This vector is time-like and points towards the future.
Indeed, from (3.4) we have (¢ = —12)

2 m
To = E Z |£a'a |2 (37)

rurt = — i i Idet (gia giﬁ) ’2 . (3.8)

It follows
rurt <0, ro > 0. (3.9)

The equality signs in (3.9) are excluded on 054,771).

It is seen that conditions (1.2) of the bilocal theory follow from the
two postulates A and B described in Section 1. Moreover, the “mysterious”
vector 7 of this theory finds his natural interpretation in equation (3.4) and
is an integral part of the scheme based on postulates A and B. This vector is
normalized according to (1.1) on the homogeneous spaces corresponding to
the constant c22 = 1. One easily checks that the three constants appearing
in (3.6) must satisfy the condition

det ¢ = det (2; 23) =cj1622 — €35, < 0 (3.10)

P
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in order that the three equations (3.6) are compatible. Due to c22 > 0, this
is always the case if ¢;7 < 0 t.e. if y is a space-like vector.

It is a curious fact that relations (1.2) of the bilocal theory which in-
volve only the external Poincaré symmetry follow from postulates involv-
ing internal symimetries. The internal symmetries manifest themselves in
the dependence of the Minkowski four-vector r on the complex variables
oy @ = 1,2, a=1,..., m.

4. The transformation properties

It remains to consider the transformation character of the quantities
z, y and r which follows from the assumed transformation character of £.
It is clear that all three quantities are SU (m)-scalars. Let us consider their
transformation character with respect to SU (2, 2). It is sufficient to consider
infinitesimal transformations. The generators of SU (2,2) in C* are

d=-37", pp=iA"y_7u, ku=-idryv

My = 5[V Wl (4.1)
where d, p,, k, and m,, denote dilatations, translations, special confor-
mal transformations and rotations. The v,, 1 = 0,1,2,3 are Dirac matrices
satisfying 77 = 7i, 7§ = —70 and v+ = (¥ £ ¥s5), 75 = i7172 7370 Ac-
cording to the relation A = aK, the elements of a = AK ~! are represented
in the neighbourhood det K # 0 as ratios of determinants

aly = (det K)7' det (Egz”a i‘:”ﬂﬁ) ,

2,,:dtI(_ldt(Ela Elﬁ)’
%a ( ¢ ) ¢ 50"0 Ea"ﬁ

Ela flﬁ)
K = R 4.2
(b & (+2)
where a and 8 are indices of two arbitrary columns of . It may be noted

that, on Og4’m), the ratios (4.2) do not depend upon the choice of these
columns (cf. e.g. the remark after formula (2.9)).

One can easily convince oneself that transformations (4.1), acting, ac-
cording to (2.1), on the first, Latin, index of {,4, induce the following
infinitesimal transformations of the local complex coordinates of z

dz, = —iz,,
PuZr = —igux,
kuzy =iguaz,z¥ — 2iz,zy,
My Z) = —igur2y + 19,224 - (4.3)



1142 J. R2ZEWUSKI

Similarly we obtain for r, which is a bilinear hermitean form in the
atay @' = 1,2, a=1,...,m,

dr, =ir,,
PuTr = 0,
. A
kury = 2i(guaz,r” + 2ury — ZATu — € ¥ 7)),
My,T) = _igu/\rv + igu)\rp s (4'4)

For interpretation and comparison with bilocal theory it is convenient
to split (4.3) into the real and imaginary parts. Due to the fact that the
infinitesimal generators act in the same way on z, = z, + iy, as on the
complex conjugate z, = z, — iy,, we obtain

dz, = —iz,,
PuZ) = _ig,u./\ ’
k“:c)‘ = igu,\(z‘,:c" - yuyu) - 21'(:8“2:/\ - 'ypy)\) >
MyuyZy = _igp)\mu + igV/\zp s (4'5)
and
dyp = “'iyu P
puyr =0,
kuyn = 2ig,azy” — 2i(zuyn + Tava),
MuYn = —iguaYo + 19uAYu - (4.6)

From (4.5) and (4.6) it is seen that the real part z of z transforms like a
vector with respect to dilatations and Poincaré transformations whereas the
complex part y of z transforms like a vector difference — is translationally
invariant (p,yx = 0). From (4.4) it is seen that also r is translationally
invariant (p,r) = 0). Thus we obtain all the assumptions of the bilocal
theory as consequences of the assumptions A and B.

Moreover it is seen that with respect to special conformal transforma-
tions k, the real and imaginary parts of z are mixed. Also the special
conformal transformations of r depend on z and y. The bilocal theory must
be reformulated from the point of view of transformation properties if we
wish to enlarge the symmetry from P4 to SU(2,2).

We note, finally, that all coordinates of the upper strip £,/4, @' =
1,2, a = 1,...,m are translationally invariant. Indeed, we can write these
coordinates as £,rq, = (746)qa7o and we obtain, according to (4.1),

Pubara = Pu(14+8)ata = (Y+PuE)ata = A (147-71€)ara = 0.
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5. Coordinate independent formulation

For practical calculations, description by means of local coordinates is
necessary. In more complicated systems like (3.5) and (3.6) this is not
so easy. It is not at all clear how to introduce convenient coordinates
(in analogy to hyperbolic coordinates on the three-dimensional hyperboloid
Y.y* = const) on the six- and five-dimensional manifolds described by equa-
tions (3.5) and (3.6). It is also not clear how to introduce convenient coordi-
nates on the submanifold of 2™ described by the four relations (3.4) with
fixed ». In such cases a coordinate free formulation may be of some use.
Therefore, we shall now describe the manifolds (3.4)—(3.6) as homogeneous
spaces of the corresponding symmetry groups.

Let us first consider the Py x SU (m) invariant case. With respect
to this symmetry the local coordinates z and y do not mix (cf. (4.5)).
The coordinate ¢ does not appear in the conditions (3.5) and (3.6). The
configuration space is, therefore, the direct product of Minkowski space My
with the global coordinate system z,, u = 0,1,2,3 and an internal space
M™t with local coordinates Yus €atar £ =0,1,2,3;a' =1,2; a=1,...,m;
subject to conditions (3.6) with r given by equation (3.4). This space is a
homogeneous space of the group SO(3,1) x SU (m). Indeed, consider the
point

[+]
Mig=0, a=23,...,m,
[+]
Mo =0, a=3,4...,m,
o [+]
Yy =Y,=0,
o O‘ bO
ri=— maa( 1)a My =0,
° °-n ab °
To=—"Mg.(50)" Mpa = Vegy,s
o, o, o o
y3—-y0=—611,yo’l‘o—clz,detc<0. (5.1)

It is easily seen that this point satisfies conditions (3.6) and that its isotropy
group is SO(2) x SU(m — 2) ~U(1)xSU(m — 2). Moreover, every point
satisfying (3.6) can be reached from the point (5.1) by a transformation of
SO(3,1) x SU(m). We can write, therefore, globally,

P 50(3,1) x SU(m)

int __ 4

M= Msx M = 55(,1) X 50(2) x SU(m - 2)
Py x SU(m)

= T xSU(m =2 (5-2)

where P;/SO(3,1) represents the Minkowski space M.
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In a similar way one proceeds in the SU(2,2) x SU(m) invariant case.
The configuration space has now one real dimension more and can be rep-
resented globally as the homogeneous space

_ 8U(2,2) x SU(m)
T KgxU(1)xSU(m~-2)’

(5.3)

where K4 stands for the special conformal group considered as a subgroup
of SU(2,2).

It may be noted that, due to the fact that conformal transformations
mix the real and imaginary parts of z, the homogeneous space (5.3) cannot
be considered as a direct product of Minkowski an internal space. Such a
splitting is possible only locally.

Equation (1.3) shows that one can consider, locally, the space

SO(3.1) 10c SO(3,1)  SO(3)
S0(2) ~ SO(3)  S0(2)

= H3 x §2
as the direct product of a three-dimensional hyperboloid and a two-dimen-
sional sphere. Similarly

SU(m) 10c SU(m) N SU(m - 1)
SUm-2) SU(m-1)" SU(m-2)

— S'Zm—l X SZm—3

can be considered as the product of two spheres of dimensions 2m — 1 and
2m — 3. Such a local description, although not SO(3,1) X SU(m) invariant,
might help in visualizing the local properties of the geometric structures
considered in this paper.

6. Outlook

We have shown that the bilocal theory is not just another attempt to
introduce ad hoc internal structure of the particles but that it uniquely fol-
lows from two first principles. One principle (Postulate A) states that the
physical symmetry is the direct product of external and internal symme-
tries (SU(2,2) x SU(m) for massless, Py x SU(m) for massive particles) in
conformity with experimental evidence. The other principle (Postulate B)
is of purely esthetical origin and expresses the desire to have a common
geometrical hasis for all physical symmetries.

The structure of the configuration space, in particular the structure
of the space of internal parameters of the particle, follows uniquely from
these principles. In the case of Py x SU(m) symmetry this structure goes
over into the two-point configuration space of bilocal theory if one neglects
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the dependence of the vector r (cf. (3.4)) on the internal parameters
oy @ = 1,2, a = 1,...,m. Such an approximation spoils relativistic
invariance because, in this case, the vector r distinguishes a direction in
spacetime. However, the full structure with » given by Eq. (3.4) is not
only relativistically invariant but also invariant with respect to the group
of internal symmetries SU(m). One can say that the internal structure
of an Py x SU(m) invariant particle model manifests itself on two levels.

The first level is the homogeneous space SO(3,1)/SO(2)1'C\’:c H3 x §% and
corresponds to bilocal theory. The second level is the homogeneous space
SU(m)/SU(m — 2). It provides the full relativistic and SU(m) invariance of
the model.

It might be interesting to continue and follow Yukawa’s and Rayski’s
ideas and to develop a field theory on the basis of the general model. Due
to the rather complicated character of the geometric structures this seems
to be a quite difficult task but we hope to come back to it in future.
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