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Microscopic static calculations of the mean-square charge radii of even
nuclei are presented. It is shown that the quadrupole pairing forces influ-
ence the magnitude of the isotopic shift of (r?). The experimental data
are better reproduced with quadrupole pairing interaction then with the
monopole pairing only.

PACS numbers: 21.10. -k

1. Introduction

The use of laser techniques for the measurement of nuclear mean-square
charge radii (msr) has resulted in a wealth of new information concerning
this fundamental property of nuclei {1-4]. In recent years a number of
theoretical papers have been devoted to estimate of isotopic shifts of the (r?)
of nuclei. In papers [5, 6], the ground-state static electric quadrupole and
hexadecapole moments and mean-square radii of even nuclei were calculated
microscopically.

The later papers [7-9] on the mean-square radii of nuclei have been
based on the microscopic collective dynamical model and Nilsson single
particle potential with the new universal set of parameters [10]. In [11] it
is shown that isotopic shifts of mean square radii are well reproduced when

omitting the isotopic factor in the oscillator frequency hwg in the Nilsson
potential.

The aim of the present investigation is the analysis of the influence
of the quadrupole pairing forces on the value of the mean-square radii of
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nuclei. As it was reported twenty years ago [12] the quadrupole pairing
interaction plays an essential role in explaining the observed large change in
(r?) for neutron deficient Hg-isotopes. The model used in the present paper
is similar to that described in Ref. [11]. Our calculations differ from those
in [11] in the following points:

¢ we use the quadrupole pairing interaction;

o we use for simplicity the microscopic static model only.

The microscopic static calculation of the mean-square radii of nuclei fol-
lows in two steps. The first is the calculation of the equilibrium deformation
of a nucleus and the other is the calculation of the msr for this given defor-
mation. The first step involves finding the minimum of the potential energy
treated as a function of the deformation. The second one aims at finding
the wave function of a nucleus at the equilibrium point to calculate the
average value of the corresponding multipole moment operator. We believe
that including the quadrupole pairing interaction explains the discrepancy
between experiment and theory.

2. Theoretical model

The calculations were performed for even-even isotopes in the range
38< Z<78and Z < N < 120, z.e. Sr—Pt nuclei. The quadrupole ¢; and
hexadecapole ¢4 deformations were taken into account. In our model the
many body Hamiltonian H consists of the mean-field Hy and the monopole
and quadrupole pairing forces:

H=Hy-GoPPy—G, P} P;. (1)

The deformed single particle Nilsson potential with the universal set of
parameters proposed by Seo [10] was used as the mean-field single particle
Hamiltonian. The second and the third terms describe the monopole and
quadrupole pairing residual interaction, respectively. Operators Py in (1)
are defined as follows:

PJ:Zala‘g, (2)
sz - ZQVV al az;, (3)

where g, are the single particle quadrupole moments. The strengths of the

monopole Gy and quadrupole G pairing forces are taken from Ref. [12].
The ground state energy of a nucleus was evaluated [13] within the

Strutinsky prescription. The energy of a nucleus consists of the macroscopic
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liquid droplet Eyp. [14] part and the shell correction A E,y,.1; describing the
shell and pairing effects.

(BCS| H|BCS) = Erpt + AEgpen - (4)

The minimum of the energy (4) gives the equilibrium deformation parame-
ters (22,24).

The formulae for electric microscopic multipole moments @ 5, calculated
as the mean values of the @, operators in the ground-state BCS wave

function are:
Q)\:anu2v3’ (5)
v

where ¢, is the diagonal matrix element of the @, operator and v, denotes
the particle occupation factor in the single particle state |v). The summation
goes over proton states. The mean square radii of nuclei (r?)4 are related
to the electric monopole moments Qg:

2na _ Qo
r = —=. 6
()4 = < (6)
They usually are not given in experiment straight, we deal rather with the
isotopic shifts of (r?) between various mass numbers:

§(r2) A = (1) A (1) (7)

To present the growth of nuclear square radii with neutron number we
choose an average number A’ for every element and give the relative value

6(1‘2)‘4"4', because the absolute values are model dependent.

3. Results

At first we have studied the influence of the quadrupole pairing in-
teraction on the potential energy surface. It is interesting to look at the
behaviour of the energy around the equilibrium deformation. In Figs 1 and
2 the potential energy surfaces for two nuclei from the investigated region
are shown in the (€2, €4) plane. One can see that the energy surface is very
flat and hence finding of the equilibrium deformation of the nucleus is very
difficult.

In Table I we show the equilibrium deformations of Sr isotopes calcu-
lated for monopole pairing interaction and with both kinds of pairing forces
(in the Table signed as monopole + quadrupole pairing). By Eyo, we denote
the Strutinsky energy at equilibrium deformation.
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TABLE I
Equilibrium deformations of Sr isotopes.
monopole pairing monopole+quadrupole pairing
A N €2 €4 Eiot €2 €4 Eiot
- | - - - MeV - - MeV
38 138 0.381 0.034 —0.62666 0.410 0.070 —0.80850
38 |40 0.378 0.054 0.06674 0.350 0.050 —-0.62001
38 |42 | —-0.250 0.040 0.53533 | —0.250 0.010 —-1.57588
38 {44 | —-0.250 0.040 0.00151 | -—-0.225 0.020 —2.81227
38 |46 0.050 0.000 | —1.17164 | —0.100 0.020 —4.09453
38 |48 0.000 0.000 | —3.68367 | —0.050 0.010 —5.44648
38 |50 0.025 0.000 [ -—7.51131 0.000 0.000 —8.63073
38 | 52 0.000 0.000 | —4.07740 | -0.030 0.010 —5.25056
38 |54 0.050 0.000 | —1.70948 0.050 0.010 —2.83149
38 | 56 0.175 0.000 0.16746 0.150 0.010 —0.71126
38 | 58 0.300 0.000 0.61351 0.270 0.020 0.32051
38 | 60 0.313 —0.003 0.17349 0.317 0.047 —1.23982
38 |62 0.325 0.010 0.24106 0.313 0.052 —0.44848
38 | 64 0.330 0.026 0.33581 0.321 0.010 0.13393
38 |66 0.375 0.020 0.02300 0.400 0.060 —0.13032
38 |68 0.375 0.030 | —0.56592 0.400 0.060 —0.49309
38 |70 0.382 0.052 | —-1.77134 0.400 0.050 —1.82441
38 |72 0.375 0.075 | —1.15501 0.400 0.070 —3.04713
38 |74 0.300 0.040 —0.03279 0.400 0.070 —0.35608
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Fig. 1. Contour map of the potential energy V, plotted as a function of the quadru-
pole €; (on figure denoted as EPS2) and hexadecapole €4 (EPS4) deformation
parameters for 8°Sr.
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Fig. 2. The same as in Fig. 1 for ®4Sr.

In general, for all the investigated nuclei the quadrupole pairing inter-
action does not change equilibrium deformations significantly but the total
energy becomes 1-2 MeV smaller.” Only for a few nuclei the differences
in equilibrium deformations between the two kinds of calculations are large
(for example the prolate equilibrium shapes for monopole pairing forces and
oblate for quadrupole pairing in 82Sr).
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Fig. 3. Charge mean square radius isotope shifts 6(1’2)‘4"“ of Xe isotopes in fin?
related to the A’ mass number corresponding to the magic neutron number N = 82
(A’ = N + Z). Solid diamonds denote theory with the monopole and quadrupole
pairing forces, empty boxes — with the monopole pairing interaction and crosses
— the experimental data.
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In Figs 3-8 the isotopic shifts of the mean square radii §(r2) for a few
nuclei of the considered region are shown. They were calculated in two
cases: with the monopole and quadrupole pairing forces (solid diamonds on
figures) and with monopole pairing interactions only (empty boxes). The
crosses denote the experimental values. It is seen that the isotopic shifts
§(r?) calculated with the quadrupole pairing forces lie closer to the exper-
imental data than those obtained with the monopole pairing interaction
only. The kink effect in the experimental data (starting at N = 82) is
better reproduced too, when including the quadrupole pairing interaction.

Presented in Fig. 9 the isotopic shift of the mean square radius for Sr
isotopes calculated in the two dimensional deformation space {€,} = €2, ¢4,
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Fig. 4. The same as in Fig. 3 for Ba isotopes.
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Fig. 5. The same as in Fig. 3 for Nd isotopes.
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Fig. 6. The same as in Fig. 3 for Dy isotopes.
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Fig. 7. The same as in Fig. 3 for Yb isotopes.

with quadrupole pairing forces (diamonds) and without it (hoxes) does not
reproduce well the experimental data. In order to improve the results
we analysed their dependence on higher order deformations. The poten-
tial energy was analysed in the five-dimensional deformation space {¢,},
A =2, 3, 4,5, 6. The equilibrium of deformation of a nucleus was found by
minimizing its ground-state potential energy in the five deformation param-
eters simultaneously: €3, €3, €4, €5, €6, all treated as independent variables.
To minimize the energy in the full space {€)}, the numerical procedure
ZXMIN of the IMSL library was used.

Fig. 10 shows the isotopic shifts of the msr for Sr isotopes calculated
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Fig. 8. The same as in Fig. 3 for Pt isotopes.
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Fig. 9. Charge mean square radius isotope shifts 6(1‘2)‘4'“’ of Sr isotopes in fin?
related to the A’ = 88, (r?)4 analysed in two-dimensional deformation space. The
symbols are the same as in previous figures.

in five-dimensional deformation space {€,} = €2, €3, €4, €5, €. It is seen that
these results calculations in five dimensional deformation space reproduce a
little bit better experimental points than those obtained in the two dimen-
sional only (Fig. 9).

It is well known that the results of calculations depend on the strengths
of pairing interactions, especially on the strength of the quadrupole pairing
forces which was chosen rather arbitrarily [12]. For the purpose of inves-
tigation of the dependence of the msr on the pairing strengths we made
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Fig. 10. The same as in Fig. 9 analysed in five-dimensional deformation space.
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Fig. 11. Mean square radii (r?), plotted as a function of the strength of the
monopole G, and quadrupole GG pairing forces (on the figure have been given
the relative value G/Go and GG/G;, where Go and G, are their standard values).

calculations for various values of Gy and G,. The pairing strengths were
changed in the ranges:
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0.85% Gy < G < 1.15% Gy,
0<GG<15x%xG,. (8)

Here G and GG are the strengths of the monopole and quadrupole pairing
forces, whereas Gy and G are their standard values. The results of calcula-
tions of 89Sr isotope are shown in Fig. 11. The points of the equal (r2) are
joined by solid lines and signed by values in fin%. It is seen that the increase
of the value of the quadrupole pairing strength from zero (that means ex-
cluding of the quadrupole pairing forces) to 1.5 G2 (the quadrupole pairing
50% stronger) gives the difference in (r?) only ~ 0.12 fm?. This value is too
small in order to explain the discrepancy between results of our calculations
and experimental data (~ 0.25 fm? for this nucleus) for any G value. A
similar situation is obtained for other nuclei. The remaining discrepancy
in §(r?) between our model and experiment is probably due to some shell
effects not properly described by our single particle potential e.g. the neg-
ligence of the nonaxial deformation.

4. Conclusions

The following conclusions can be drawn from our investigation:

(i) For many nuclei the difference in energy between the oblate and pro-
late minimum is small and the energy surface around the equilibrium
deformation is very flat.

(i1) Generally the isotopic shifts 5(1‘2)‘4"4’, calculated with the quadrupole
pairing forces, lie closer to the experimental data than those obtained
with the monopole pairing interaction only.

(#ii) The mean square radii of nuclei depend on the dimension of deformation
space.

(iv) The quadrupole pairing forces explain only partly the discrepancy be-
tween theory and experiment.
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