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The rate of barrier crossing in a cusped potential serves as a model
for electron transfer processes in the presence of dissipation. The spatial
diffusion limit for the rate constant is known for this case in the strong
damping limit when the Smoluchowski equation is valid. The paper dis-
cusses comparison of different approximation schemes in derivation of a
one dimensional Smoluchowski equation for a linear kinetic model de-
rived by a non-Markovian dynamics. Differences in calculated short- and
longtime limit properties of the systems resulting from various method of
elimination of fast variables question validity of use of a Smoluchowski
equation in the kinetic rate approach. To calculate the rate, the standard
definition in the integrated form of the correlation function is used and
the results are shown to be consistent with the predictions of numerical
analysis presented in literature.

PACS numbers: 05.20. Dd, 05.40. +j

Dynamics of a Brownian particle subject to a non-Markovian time-
dependent friction serves frequently as a basic model to study viscoelastic
effects in condensed matter, [1, 2]. Such effects are known to play a role in
understanding kinetic rates in condensed phases [3, 4]. One of the most ex-
plored example [5~8] is the solvent effect on the prefactor of activated chem-
ical processes usually described in terms of a generalized Langevin equation
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(GLE). A considerable effort has been made to understand kinetic rate for
the processes in non-Debye solvents whose relaxation behavior can be mim-
icked by a multiple-time exponential decay [9, 10] which, in turn, leads to
a complex memory kernel at the level of GLE approach. A complementary
method, especially practical for mathematical analysis is based on deriva-
tion of a Fokker-Planck equation (FPE) associated with a non-Markovian
Langevin equation. The method is applicable mostly to the situations where
the system dynamics can be characterized by harmonic potentials and Gaus-
sian random forces (the only case where the closed-form FPE can be derived
from the starting GLE [5, 11, 12]). In the latter case, it is also possible to
relate dynamics of the system with only one coordinate in projected phase
space [13, 14] whose time evolution can be recast in terms of “generalized
Smoluchowski equation” (SE).

In this paper we address some comments concerning a limited use of SE,
even as applied to perfectly linear dynamics. As a particular example, we
are dealing with the system whose relaxation properties can be characterized
by time-correlation function

Aft) = %%)(’%t)ﬁ (1)

associated with the reaction coordinate dynamics governed by GLE
t
#(t) = —wiz(t) - /drn(t —7)2(7)dr + F(t), (2)
0

where the Gaussian random force F(t) satisfies the fluctuation-dissipation
theorem

(F()F(t + 7)) = 2kpTn(7) (3)
together with the relations
(F(t)z) =0,
(F(t)) =0. (4)

In the case of a strongly overdamped motion, relaxation of the spatial cor-
relation function A(t) is assumed to be represented by two different time
relaxation scales:

A(t) = frexp(—Ast) + faexp(—Aat). (5)

This particular form of A(t) can be associated with a memory kernel 7(t)
modeling time-dependent friction coefficient which is then given by

n(t) = 78(t) + aexp(-At). (6)
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In this version, Eq. (2) has been used {6, 9] to study solvent-controlled
electron-transfer reactions in alcohols. In the presence of a nonequilibrium
polarization, the free energy of the reaction-polar solvent system changes af-
ter instantaneous change in the reactant /product charge distribution. A usu-
al assumption is that these fluctuations in the solvent polarization are gov-
erned by a harmonic free energy function (¢f. Eq. (2)). Non-interacting
reactant and product wells are represented as diabatic surfaces of the free
energy. When a sufficient interaction occurs between the diabatic surfaces
(in the adiabatic or weakly adiabatic regimes of the electron transfer pro-
cess), the solvent dynamics can have a significant effect on motion across
the barrier at the point of intersection of the energy curves [2, 4, 6, 9].
The overall electron-transfer rate is then determined by the interplay of two
factors: the strength of electronic coupling between the states and relax-
ation dynamics of the solvent (which represents “nuclear degrees of free-
dom”). The time-dependent reaction coordinate z(t) for such a system is
commonly identified with a portion of nonequilibrium, orientational polar-
ization for the time-dependent effective charge distribution in the solvent
[6, 8, 9] which satisfies Eq. (2) with a time-nonlocal friction term. Solvent
adjustments to external perturbations in the system can be interpreted in
terms of the response time. A natural choices for this characteristic time
scale are then (cf. Appendix A)

roo = [ = Alt)emo] (7)

which is the time scale on which the system initially reacts to any pertur-

bations or
o0

7o = / A(t)dt (8)
0

which is the time it takes the system to completely relax after a perturba-
tion. A non-Markovian character of GLE can be understood as an outcome
of the projection scheme performed at the level of a fully deterministic
(and hence a Markovian) Liouville equation (3, 7, 15, 16]. The method
suggested by Ferrario and Grigolini (1, 17] allows to invert the problem:
non-Markovian dynamics can be embedded into a multidimensional space
of auxiliary variables which can mimic memory kernel properties of n(t)!.

1 Such a frequency-dependent friction can be directly related to the spatial cor-
relation function, A(t). From Laplace transform of Eq. (2), one gets A(s) =
(s + A(s))(s* + w? + s7)(s))~! which in the limit of a strongly overdamped
motion leads to A(s) & (s + w?/#)~!, where further the ratio 7j(s)/w? is iden-
tified with an effective longitudinal relaxation time in the medium [4-7] (cf.
Eq. (8)).
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A non-Markovian prticess (2) is then substituted by a Markovian multivari-
able process:

z(t) = v(t)
o(t) = —w?z(t) — yv(t) + w(t) + fu(t)
w(t) = —av(t) — Aw(t) + fu(t) (9)
with independent Gaussian white noises f,(t), f,(t):
(fu@))=0,  (fu(t)) =0 (10)

and

(£H()fu(t + 7)) = 27kBT6(7)
(fuw(t) fu(t + 7)) = 227k T4(7). (11)

The system of equations (9) can be directly related to a three-variable FPE
governing time-evolution of the probability density function p(z, v, w; t).
One can adiabatically eliminate velocity from the set (9), so that the dy-
namics of the system becomes expressed in terms of z(t) and w(t) variables
only. Further elimination of the auxiliary variable w(t) leads to the expres-
sion for the trajectory z(t)

t
2(t) =C1azo + ,1,2 / Gealt — T)f(7)dr
0

+ /tGw(t - T)(fw('r) - :r.%.z.fy(f)) ir, (12)
0

where G2z(t), Gzw(t) are the elements of the fundamental matrix for the
system (9) after elimination of ¥(t) (cf. Appendix B). For the simplicity, it
has been assumed that w(t = 0) = 0. The integral terms on the right-hand
side of (12) are linear operand over Gaussian noises and as such can be
viewed as random forces. By extending the transformation introduced by
Adelman [13], time derivative of z(t) can be now expressed as

gy = Gze(t) 1 f Gaalt - up
ét) =G ot el )dt Gold)

fu(r)dr

d f Gzt —T1 a
+ Gzz(t)gt' / _G;(_;—(a—)<fw('r) - :;i']}'fu(T)) dr
0

_ Gaat)
T Gez(t)

ze + Fi(t) + F2(t). (13)
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From this point on one can follow a standard derivation of a nonstationary
SE based on use of a stochastic Liouville equation [18, 19] together with van
Kampen lemma and Novikov formula [20] for the mean

(8(2(2) — 2)Fi(t)) = ~5‘9— /t drCr(t, 'r)<{6(:c(t) _2) 6‘5;((‘))}>. (14)
0

In the last expression, Cp;(t, T) represents characteristic correlation function
of the noise F;(t). A resultmg one-dimensional Smoluchowski equation has
the form

z 2
0628 _ _ 2 52, 00(e,1) + o5 (Di(20) + Dale,)olet), (19)

where p(z,t) is the probability distribution of z at time t and J(z,t), D(z,t)
stand for the drift and diffusion coefficients, respectively:

)= -G

d [GE (t—rT)dr
— 2 zZ
0

¢
G2, (t—T7)dr

Dafet) = (ad + aTCL(0 G [ 28 (16)
0

A non-stationary Eq. (15) has a particular simple form in the longtime
limit? which is characterized by:

lim J(z,t) = A3z,
t—o0

(A + a)? + Aw?
v2A1(A1 + 42)
Aa + a?
v24:(41 + 42)

lim Dy(z,t) = kgT
t— 00

lim Dj(z,) = kaT (17)

2 Stochastic diffusion process, as defined by Eq. (15) is time-inhomogeneous.
By “longtime limit” we mean here the limit in which tlim P(z,1) exists and
s 0O
is the solution of the corresponding homogeneous process characterized by the
limiting values (17) of the drift J(z, ) and the diffusion D = Dy (z,t}+Dz(=,1)
coefficients (cf. [21]).
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with Ay, A3 being eigenvalues of a linear deterministic matrix (¢f. Appendix
A):

2 A2
Ai,z—Al'z(,\+f‘-+“’—) 20, A< 4. (18)
77 7

Starting from Eq. (2) Okuyama and Oxtoby [14] derived generalized SE
based on the assumption of the initial Maxwellian distribution of velocities
and gaussianity of a stochastic force F(t). Their equation, presented as
an extension of a non-stationary SE for a free Brownian motion treated by
Adelman and Fox [11, 13}, differs from Eqs (15, 16) in the expression for
the time- dependent diffusion coefficient3:

Do(t) = —kprEz=(t) (19)
Gazz(t)’
which may be obtained from the above discussed scheme provided the effects
of w(t) variable were neglected (cf. Eq. (12)).

Still different approach to derivation of a SE associated with a non-
Markovian LE was proposed by Grigolini et al. {17, 18] who started from a
mathematical model of a reacting system described by a nonlinear stochas-
tic oscillator with a given coordinate and velocity, coupled via interaction
to the bath represented by another stochastic oscillator. With the ansatz
of “local linearization” the author obtained a SE with renormalized drift
coefficient (which is typical for the situation where the noise is coupled to
a state variable in a stochastic dynamic system, [21]). In a particular case,
when the coupling between the system and an auxiliary oscillator repre-
senting noise effects is linear and by assuming the auxiliary oscillator to be
strongly overdamped, Grigolini’s model coincides with the system (9), the
only variation being the form of a deriving force which in his case requires
renormalization of a characteristic frequency w to vVw? — a. In the longtime
limit4, Grigolini’s approach yields a SE of the form:

6 a N2z
é,tp(z t)= G[a + 7 T]P(z t),

22 = (W2 - a), 20

It can be easily proven that in the case of 7(t) represented solely by a short
memory kernel n(t) = vy6(t), Do(t), (19) and D;(t), (15) coincide (see deriva-
tion of Do(t) presented in [14] whereas D,(t) becomes trivially zero.
“Longtime limit” is defined now as a low frequency limit of the velocity cor-
relation function, ¢f. Eq. (20).
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where diffusion coefficient D¢ is determined by the low-frequency limit of
the Laplace transform of a normalized velocity correlation function. If in
the set of Eqs (9), z(t) and w(t) are assumed to be slow variables compared
to v(t), i.e. by considering that z(t) and w(t) do not vary in the time scale
of variation of ¥(t) (determined by 1/v), direct integration of v(t) leads to
the velocity correlation function

(e (0)) = e~ TH(2(0)) - w2<z(0)v(0)>1—?”-
+ (w0
+ [ dt'e= (1, ()0(0)) (21)
/

If all but (¥2(0)) correlations are assumed to vanish, the system (9) has its
SE analog® with a characteristic diffusion constant scaled with the velocity
relaxation time 1/y (¢f. Eq. (21)) which coincides with 7! defined in
Eq. (7):

D= kBT(““"Jz""eﬂ‘)”.l = (zz)eq"'e—ﬁl = (ﬂ')’)“l . (22)

From this point on our attention will be focused on derivation of expres-
sion for the kinetic rate based on various approaches to the SE described
above.

A general chemical-reaction system can be described as a two-level sys-
tem coupled to a reaction coordinate. It is convenient to introduce a function
of the dynamical variable z which describes the progress of the transition
from one state (reactants, R) to the other (products, P):

+ o0
Nap(t)= [ ole00(Fe - )de. (23)

b = ¢

Npg,p stands here for the population number of a given state, f(z) is the
Heaviside step function,

_J1, forz>0
0(2:)_-{0’ forz <0 (24)

5 Note that Grigolini’s procedure produces, in the limit specified above, a ho-
mogeneous (time independent) SE, similar (apart from the drift coefficient) to
the original Smoluchowski equation derived in the strongly overdamped limit
of the Kramers [22] problem.
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p(z,t) is a coarse-grained distribution function for the reaction coordinate
value at time t and § is a half-width of the transition (barrier) region®. By
use of a definition of a steady-state population number:

-6

N = / p(z,t — oo)dz (25)

— o0

it is possible to introduce (c¢f. Mori, Kapral [15]) a projection operator P
which projects the desired population number out of the probability density:

-5
Pp(z,t) = p(z,t — 0)0(—z — 6)_17_1 / plz,t)dz

+c0
+ p(z,t — 0)8(z — 5)7_1 / p(z,t)de. (26)
6

Evolution equation for Ng p can be derived by use of standard projection-
operator techniques, provided a form of time evolution equation for p(z,t)
is known’. A general form of the rate law for N R,p can be then written as:

Na(t) = - [ kra(t - )Na)dt + [ krp(t- )N, (21)
0 0

where forms of the rate kernels kgr(t), krp(t) depend on the action of the
projection operator on the evolution equation satisfied by p(z,t).

The time-dependence of the rate kernel can be omitted if the decay
time of the population number is long compared with some characteristic
times in the system such as interval (vibrational, rotational) or translational
relaxation times. A memory less rate equation obtained in this way has the

6 This schematic analysis of the rate definition assumes symmetric form of a
potential in z-variable. The same calculations can be easily generalized to the
case of asymmetric potential barrier.

7 Common approach to the problem as applied to electron-transfer reactions is
to start with e.g. a quantum version of Liouville equation for p(z,t) which
incorporates electronic coupling between diabatic surfaces and classical dy-
namics for motion in the reactants and products wells, respectively (see e.g.
Zusman (2]).
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same form as the phenomenological rate law of an equilibrium chemical
reaction:

d5NR’p(t) _

dt "kr::nsNR,P(t) 3 krzn = kforward + kbackward ’ (28)

where
§Ng,p(t) = Nr,p(t) — (NR,P(t))eq (29)

describes fluctuations in the population number for a given state.
In particular, if p(z,t) satisfies a standard SE,

ap(aﬂ;, t) _ D% [_aa_z + %ﬂ[](z)] p(z,t) (30)

derivation of the rate as defined in (28) follows analysis of the decay of the
survival probability within the reactants well [22-26]:

oo -6
ki;:wud =/dt / dzp(z,t). (31)
—oo

0

The definition of the rate constant coincides then with the formal deriva-
tion of the mean first passage time (MFPT) for the system described by a
Markovian form of SE, [6, 24, 26]5.

In a strongly overdamped limit, for high barriers and with a frequency-
independent friction, the rate constant evaluated by this method yields the
Kramers rate [22]
wwp e—-ﬁ aur

= : (32)

kKramers =

where AU* stands for the height of the barrier and w; is a characteristic
frequency at the top of the barrier. For a cusp shaped barrier, Smoluchowski
dynamics leads in this case to the rate® [22, 26, 6]:

w? (AU x
— — [ 2= _)PAU
= 27( - )e . (33)

Calculation of the mean first passage time requires imposing some boundary
conditions on Eq. (20). A typical choice (stemming from the definition of
reactants population) is to use a reflecting boundary condition at £ = —oo
and an absorbing boundary at the top of the barrier.

As it stands, formula (33) is an approximation to the rate defined in (31). The
result is exact within the 10% for the barrier height 3AU* > 5, [24, 26]. For
lower barriers the expression has to be corrected with a multiplying factor.
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The same result may be inferred from the “longtime limit” SE derived by
the Grigolini’s method (c¢f. (20), (21)).

To sum up, we conclude that the system of Langevin Eqgs (9) can be
associated with a generalized SE, after projection of a dynamic flow to one
dimensional space of the coordinate z which is chosen as the only relevant
coordinate (all other components of the vectorial flow (9) are regarded as
irrelevant variables). However, depending on the method of projection, one
gets various forms of a SE. Each approximation scheme leads to a Gaussian
stochastic process {z(t)} (that is an obvious result for the problem of linear
dynamics flow perturbed by Gaussian noises, [11-13, 19-21]). A resulting
SE is a non-stationary diffusion equation with explicitly time-dependent
drift and diffusion coefficients (the mean and variance of the process {z(t)}
are time-dependent properties).

In this context, we would like to discuss applicability of various schemes
in evaluating the kinetic rate of the process (9).

The escape kinetics in cusp-like potentials has been broadly applied in
the non-adiabatic rate theory of electron-transfer reactions where diabatic
free-energy curves cross each other forming a cusp-shape barrier [23]. Sys-
tem (9) is one of particular exemplifications of the theory used, when the
overall kinetic process is limited by the solvent polarization relaxation within
the well. Just by inspection of the kinetic equations (9) it is hard to de-
cide a priori which one of the characteristic times (7), (8) is an appropriate
time-scale governing the reaction kinetics.

Numerical studies of Fonseca [9] together with analysis of Hynes [6]
concluded that the decay of reactants’ population in non-Debye solvents
(because of the multi-exponential or non-exponential decay of the reaction
coordinate time correlation function (6), the underlying dynamics governing
evolution of z(t) in this cases becomes non-Markovian) can be described by
using a Debye representation of the solvent with an effective relaxation
time T.g which, with the increasing height of the barrier tends to 7., the
shorter time scale in the system. Effective diffusion coefficient!® can be
then approximated by D g = (zz)r:ﬁl giving rise to an effective kinetic
rate described by an analog of the Kramers formula [6, 9]:

ﬂAU*)I/:_ﬂAw

7('

~ =1
keﬂ' = Teﬂ‘ ( (34)

In general, projection of a vectorial Markov process to a lower dimen-
sional space would require special concern about boundary condition which
has to accompany a backward (adjoin) SE equation in deriving formula for
the mean first passage time. The latter are by no means obvious neither in

10 Note that this analysis of a dynamic system (9) yields w?teg = w270 = 7.
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the projected non-Markovian system nor in its higher-dimensional Marko-
vian analog with the extra set of auxiliary variables mimicking the effects
of the memory (for the discussion see [24]). In fact, application of the mean
first passage-time approach [21, 25, 26] when starting from the SE (15)
would require evaluation of the integral

Tyep = / dzpo(2) / dsoi’() [ do [ aup 222 (g

8\@
e +
\8

where, as in a Markovian case, a reflecting and an absorbing boundaries
have been specified at z = —o0o0 and z = 0, respectively. By assuming that
monotonically-decreasing D(t) relaxes to D(oo) with some decay time, one
can estimate from (23) the effects of short-time dynamics of D(t) on the rate
k(t) = Tyrp, [26]. In contrast to the above mentioned results [6, 9] this
analysis rules out the short dynamics effects on the calculated mean first-
passage time (35), the discrepancy questioning validity of the mean first
passage time approach in the kinetic description of systems with a complex
memory dynamics?!.

The problem of surmounting the parabolic barrier in the system de-
scribed by a set of Langevin equations has been solved positively by Dygas,
Matkowsky and Schuss [25] who used the singular perturbation method to
compute expressions for the mean exit time of the Brownian particle from
the potential well in which it is confined.

The friction memory effects which are known to play a role in the vicin-
ity of a barrier, cease to be observable in a particular case of cusp barriers
[27] (but only, if the system does not reach the strong overdamped limit,
for a discussion see {10]). Every particle that approaches the barrier from,
say, left-hand side with the positive velocity will almost surely leave the
potential well, so that the rate is determined by the mean passage time to
cross the line of a cusp with the velocity v > 0. That results, to a lead-
ing order in the barrier height measured in kT, in the transition state theory

11 The short-time dynamics effects are also wiped out in the analysis of the
rate constant defined by a “flux over population method” {24]. The constant
nonequilibrium current builds up a total integrated probability po propor-

tional to the escape time T, joT = f po(z)dz, whose inverse defines the
rate. Solving equation (15) for the nonequlhbnum probability po, by setting

j(z,00) = jo one can evaluate the rate which gives then the Kramers result
(34) with a characteristic g ~ A7".
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limit for the kinetic rate!?:;

w AU
krsT = 25 SXP (— kBT) . (36)

The procedure leading to evaluation of (36) is based on the common
assumption of equilibrium distribution in velocities whereas strong damping
limit requires an “adiabatic elimination” of velocities which effectively yields
Smoluchowski-type dynamics in the system with a cusp-rate for escape given
by Eq. (34).

Keeping this argument in mind, we have rederived the rate constant
for the process (9) following directly definition of Yamamoto [28] in the
integrated form proposed by Chandler [29]:

K(t) = ~ = (SNR(1)SNR(0)),
N = Ng(t)+ Np(t). (37)

An averaging is performed over probability density p(z, w, t; zg, wo, t = 0)
whose conditional form is [22]

p(z, v, w,t/z0, v, w0, 0) = (27) " (det o) /2 exp (- %yTU_ly) (38)

with

y1 =z —(z(t)),

Y2 =v - <V(t))’

ys = w — (w(t)),

aij = (9i(t)y;(2)) (39a)
and (z(t)), (v(t)), (w(t)) given by (c¢f. Appendix B):

(y(1)) = G(t)y(0). (39b)

The validity of this approach holds independently of the nature of the
underlying dynamics determining the strength of the friction coefficient and
requires only well defined velocity of the reaction coordinate at time t = 0.
The approach, known in literature as the reactive flux method, works for

13 This result requires that the characteristic barrier frequency ws tends to infinity
with a fixed value of friction. The proper limit for the overdamped motion is
the Kramers rate (22) derived from the Smoluchowski equation in the limit of
7 > w, where w stands for a characteristic well frequency [10].
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times much longer than the molecular time which relates to the relaxation
dynamics within the well and much shorter than the escape time related to
the reactive transfer of the trajectories surmounting the barrier. Obviously,
this requirement of the perfect time-scale separation is met if the barrier
is high. The method reduces the knowledge of the longtime relaxation be-
haviour of the correlation function to the knowledge of short time dynamics
in the transition region and in the limit of ¢ — 0% equals the result of the
transition-state theory [24, 29-31].
We assume that the potential U(z) of the system is given by

U(z) = 1%(|z] - 2,)?. (40)
The molecular flux correlation function (37) can be represented as

k(t) = — 4 (6NR(t)Nr(0)) (41)

which together with (38), (39) leads to

+ oo
k(t) —e~AAU" -1 / da:/ / /dzoduodwop(:c,t/:co,uo,wo,O)HR(a:)

X v90R(20)peq(z0, wo,0), (42)
where I stands for a partition function

+oco + 00 400 5 5
I= / d:c/ /dudwe_ﬁU(”)_ﬁyT"ﬁ% = I;2rkgTa’/? (42a)

—00 —00 —00

and p(z,t/zo, vo, wo, 0) is (integrated over v, w) conditional probability den-
sity that the reaction coordinate takes value z at time t provided the process
has started with the values z4, vg and wy at time zero:

p(z,t/zo, v, wp,0) = (27ro’;,:,:)"l/2 exp{—%} . (43)

The equilibrium probability distribution p(zg, vg, wo, 0) is a relaxed form
of the probability density (43) in each of the products and reactants wells
and can be evaluated as a stationary (longtime limit) solution to a diffusion
equation associated with the system (9):

S S (01 W

peq(zo,Vo""oao)NexP(_2kBT 2kpTa  2kpT



1174 Ewa Gupowska—-Nowak

With the definition (44), k(t) reads in this case

+o0

k(t) =(2xkpT) e PAV [[1q71/2 / dz / dwg / dvy
w2 v
x p(z,t/0,vg, wo)vg exp(—2kB;,a - 2k;T) , (45)

Substitution of (43) leads to

+ o0
k(t) =(2rkpT) e PAU [T1o~1/2 / dvo / dwo[ / dy

-0 =Gz~ Gruwwo
2
exp —¥— 2 2
X bl T77Y voexp| — o Yo ) (46)
270 5 2kgT 2kgTa

The validity of Eqs (41)-(46) holds independently of the nature of the
underlying dynamics (no specification of a strong or a weak friction limit has
been assumed so far). In the limit of ¢ — 0% the rate (41) can be expressed
as an equilibrium average of a one-way flux at the transition state z = 0,
[29]:

lim, &(6) = (OR(4(0))2(0)0h(2(0))) = ks (47)

An alternative general formula for the rate (41) involves autocorrelation
function of the reactive flux:

k() = / (Ve )p(a(t obp(eal)at = [i(e)ar'. 49)
0

Note that Eq. (48) is equivalent to the definition of rate used by Grote
and Hynes [6]. In the limit of ¢ — oo and by assuming a parabolic shape
of the barrier, Eqs (41)—(48) reproduces the “Grote-Hynes” result [6, 7, 10,
25, 31, 33

31‘

k(o) = kysT — o (49)

where s, is a positive root of the equation
(s + 7(s)) = Wi, (50)

and wy stands for the barrier frequency. The cusp-barrier limit can be now
easily achieved by assuming wy/w — oo0. With Eq. (6), Eq. (50) yields s, =
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wy, so that the rate (48), (49) yields a trivial TST result. But the limit, we
are interested in, is the overdamped dynamics in the cusp-shaped potential,
which results in ignoring the inertia at the level of the GLE formulation.
Elimination of inertia is possible, if v = w?7o (c¢f. Appendix A) whose
inverse constitutes the decay times of variables z(t) and w(t). Effectively,
that means: 1 ¢

Too > (wz'r')— or ';O—O-T]_Tzu)z >1. (51)

0

The high friction limit is thus realized when 7o, — o0, which is consis-
tent with the assumption that »(t) will decay very rapidly to some equilib-
rium value v.q. Evaluation of the rate (41), (47) along the lines presented
in Appendix B yields then Eq. (34) with 7.g = 7/w? = 7. In other words,
formula (34) is an asymptotic result whose validity becomes apparent in
the limit of 4 > 1. It states that the kinetic rate for the overdamped non-
Markovian dynamics (9) in the cusp potential is dominated by the high
frequency value of the memory kernel 7(t). In the context of the electron-
transfer reaction in a model non-DEbye solvent (cf. Appendix B and Ref. [6,
8, 9]) it shows, that the effective longitudinal relaxation time entering for-
mula (34) is dominated by the fastest solvent relaxation time.

A similar conclusion can be drawn from the analysis of Calef and
Wolynes [14] who presented an interpolation formula for the transmission
coefficient for the cusped double well potential which derived on an analogy
to the parabolic barrier case. Apparent differences between the forms of
k(t) for a cusped barrier, as defined through formulae (33), (34) and (36)
have been also discussed by Pollak [10] who by use of variational TST has
shown the convergence of the formulae in the strong damping limit.

Importance of solvent dynamics effects on mediating the kinetics of
electron transfer processes depends on the ratio of the relative time scales
governing process of medium relaxation (expressed by nuclear modes which
couple to the relevant electronic states) and the electronic electron-transfer
rate (usually assumed to be a slow, rate determining process). The ratio
determines adiabaticity factor [4, 6, 23] which controls the overall kinetic
rate in the system. This simple rate description breaks down if the per-
fect time scale separation for the nuclear and electronic processes becomes
questionable.

Conclusions

Markov embedding of a non-Markovian process (formally described as
a procedure of “dressing” a non-Markovian process into auxiliary degrees of
freedom, so that eventually, the higher-dimensional process becomes mem-
ory less) yields substantial problems of posing appropriate boundary con-
ditions in the presence of auxiliary variables (for the discussion, see e.g.
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[27] and references therein). Obviously, the problem cannot be avoided in
a reduced description of the process, after applying a projection technique
leading to a contracted evolution (our Eq. (15)). In fact, as it is discussed
in the paper, the concept of the MFTP may lead then to totally misleading
results. In the discussion of this issue, we have shown that also, depend-
ing on the method of elimination of auxiliary variables leading to a 1-dim
Smoluchowski equation, various forms of diffusion and drift coefficients for
the diffusion equation can be derived, which, in turn, lead to different long-
time predictions of the system dynamics. Utility of the MFPT approach is
thus highly reduced in such situations. The kinetic rate for such systems
can be estimated by transforming the original non-Markov problem to its
multidimensional Markov analog and by further use of a singular pertur-
bation technique (24, 25] which allows evaluation of the mean exit time by
assuming a harmonic approximation of the potential at the top of the bar-
rier. More recently, the variational TST [10] for dissipative system governed
by GLE has been derived, based on the two degree of freedom Hamiltonian
whose parameters depend on the system potential and the time-dependent
friction kernel. The method essentially weakens the condition of potential
harmonicity used in previous derivations of the rate. To get informative
bounds to the rate one has to scale the barrier frequency in terms of the
barrier height by defining a variational parameter

0= (ﬂAU‘)“%’E- (52)

which is then used in variational minimization of the reactive flux [10)].
In particular, variational evaluation of the transmission coefficient in the
high damping limit leads to the result identical to the Kramers expression
Eq. (33).

In this article we have rederived the kinetic rate for non-Markovian pro-
cess by use of the one-dimensional time-derivative of the correlation func-
tion. The method has been shown elsewhere [30] to account both for the high
and low-friction limits in the studies of the kinetic rate. The procedure re-
quires information of equilibrium (stationary properties) of the system and,
similarly to a traditional TST presents an upper bound for the rate. This
approach, used for a cusped barrier potential leads to the result consistent
with the Kramers limit [22] which has been postulated in a formal analysis
of Hynes [6] and derived in numerical studies of Fonseca [9).

The author acknowledges many stimulating discussions with Marshall
D. Newton.
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Appendix A

The GLE for the reaction coordinate fluctuations in reactant and prod-
uct wells has been discussed in the context of non-Debye solvent dynamics
by Hynes (1986) [6]. It has been shown that the dielectric response function

E(t) = %‘,):"—;f (A1)

can be related to the reaction coordinate time correlation function A(t)
whose Laplace transform has the form

A0 = cooll — B(s)){s(ewo + (0 — ) E(s)}*.  (A2)
By defining a function
TL(t) = w™(2) (A3)

and by assuming the overdamped limit of GLE, the following relation be-
tween the frequency-dependent memory kernel n(t) and the dielectric re-
sponse function E(t) has been established:

_ v af €)1 - E(s)
q(s)_wz(eos) o (A4)

The solvent model which leads to 7(t) given by Eq. (6) assumes a two
relaxation time description of the dielectric response:

E(s)= > pi(l+sm)7t, (A5)
i=1,2

where p; is the fractional contribution associated with the relaxation time
7;. The coefficients a, A, v are then expressed as

-1
‘7_‘02523[&%—&] =wlre

€0 LTt T2
1 1
A oy -—' T e ——
T pim2 +p2my
a= w2n——1,1°—°-, (A6)

where c
To = e—?(pm + p272). (A7)
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Appendix B

A fundamental matrix (Green function) for the system (9) can be easily
calculated by use of a complete biorthogonal set for the characteristic matrix
of linear coefficients (Risken, {23]):

0 1 0
A= (—w2 y 1 ) . (B1)
0 —a =X

Let Ay, A2 and A3 are all different eigenvalues of A. The fundamental
matrix for the system (9) is

Gij = Ze_"“tusa)uga) , (B2)
[+
with the eigenvectors u;, v; which fulfill the conditions

leiau;’ = &i;
Lo
a B _
u; Vi = 6aﬁ . (B3)
Diffusion matrix for the process is
D:; Dzy Dgy 0 0 0
D=\|D,, D, D,,w) = (0 2vkpT 0 ) . (B4)

The elements of correlation function o;; can be evaluated from the formula

1~ exp (- (4a + 4g)t) (af). o B
Uij=2§ Aa+Aﬁ D¢ u?uj,

D(aﬁ) = V,‘:Dkll/lﬁ . (B5)

Appendix C

In the limit of large friction, ¥ > 1, system (9) can be shown to be
asymptotically equivalent to a Langevin equation characteristic for a Smolu-
chowski (nonmemory) dynamics. To analyze this limit, let us change the
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time scale to s = t/y (cf. [23, 25]) which gives a result valid for short
periods of time. Eq. (9) can be rewritten in the form:

2(s) = yv(s),

5(s) = —wPyz(s) = 77w(s) + yw(s) + 1'% fu(s),

(s) = —ayu(s) = Nyu(s) + 1/ fuls). (c1)

By using the method of Appendix B we can also solve the system (C1) by
solving first equations for v(s), w(s) as functions of z and s and substituting
the result to equation for z(s):

v= GVVVG + Guwwo - 7w2/dTGVV(3 - T)z(‘r)
0

3 3

472 [arGuu(s = n)fu(r) 4472 [ arGuu(s=Dfulr)  (C2)
4 0
where
G, = e—Alt Az — 72 _ '—Aztu

A — A Az - Ay’
5 (e—Alt _ e-—Agt)
Ay — Ay ’
A2+ AP M) ey + a3 =0, (C3)

Guw =

The random forces f,(t), fw(t)enter Eq. (9) with relative “noise intensities”
V27kgT, /2a)\kgT, respectively (cf. Eq. (11)). In the limit of v — oo,
one gets:

711’120 Guu(s) = 7li>nolo Guu(s)=0
lim v2G,,(s - §') = §(s — §'),
y—oo

lim 7%/2G,,(s - s') = 0. (C4)

y—oo

So that the limiting equation for the process z(s) becomes

2(s) = —w?z(s) + V2kpTf.(s),
V2kBTf,(s) = fu(s), (Cs)
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which is the Langevih equation for the nonmemory Smoluchowski problem.
With the assumption of a cusp-barrier, (B5) leads to the Kramers rate
Eq. (33).
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