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BUNCHING PARAMETER AND INTERMITTENCY
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We introduce the parameter of bunching for analysis of intermittent
structure of multihadron production at high-energy collisions following
analogy with photon counting in quantum optics. It is shown the exis-
tence of a power-law singularity for second-order bunching parameter in
small phase-space intervals for monofractal structure of multiplicity distri-
bution and the similar form of high-order parameters for multifractality.
The approximation of the high-order bunching parameters by the second-
order provides good description of anomalous fractal dimensions for some
experimental data with multifractal behaviour.

PACS numbers: 13.85. Hd, 45.50. Dv

1. Introduction

The idea of applying stochastic methods developed for study photon
counting statistics of quantum optics to particle production processes was
used for a long time [1, 2]. At present, a systematic and careful investiga-
tion of multihadron production with the application of methods of quantum
optics is very useful because there is a large analogy between these fields
of physics. For instance, the interpretation of multiplicity distributions in
terms of hadronic field states by analogy to photon counting (3, 4] and
squeezed gluon states study [5] seem to be important directions for theoret-
ical research. The problem of damping of the statistical noise and concept
of factorial moment analysis to study multihadron production [6] were well-
known in quantum optics [7]. Correlators in terms of the moments [8] have
analogous form in quantum optics [9].

The purpose of the present paper is to extend some methods of con-
tinuous quantum measurement in quantum optics to high-energy physics.
We introduce the bunching parameter for analysis of fractal structure of
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multihadron production. A nontrivial behaviour of it for small phase-space
interval for intermittent structure of multiplicity distribution is obtained.

2. The bunching parameter

The bunching parameter ), (6t) of order n in theory of continuous quan-
tum measurement can be expressed for one-mode photon field in terms of
the probability P,(6t) to have n photons in time interval §¢ [10] in the form

n Po(6t)Pn_s(6t)
n=1" (Pu_s(80))°

in(0t) = , n>1. (1)

This parameter determines how does the probability to detect n photons in
0t change relatively to the probability to detect n — 1 photons in the same
time interval. If source of light is completely coherent then ,(6t) = 1.
The corresponding multiplicity distribution is the Poisson one. A radiation
field is said to be statistical antibunched in order n if %,(6t) < 1 and when
fn(8t) > 1, then it is said to be bunched of photons in §t. For a wide class
of states the bunching parameter is independent of time interval [10].

By analogy with (1), let us consider the bunching parameters (BPs)
Nn(A) for the multiplicity distributions of secondary particles produced in
high-energy interaction

n Po(A)Pn_a(A)
n=1 (Pooy(A))?

ﬂn(A) = s n>1, (2)

where Pp(A) is the probability to have n particles in Lorentz invariant
phase-space interval A, for example in rapidity, azimuthal angle and trans-
verse momentum or in just one of these alone.

There is a large class of distributions which has the BPs independent
of A. Let us find this class. By applying formula (2), any multiplicity
distribution can be expressed as

P.(A)= Py (A)’\ (A) H AT a1, (3)

where we define A(A) = P1(A)/Po(A). If ns(A) is independent of A, one
gets the general form of the generation function for such distribution

G(z,8) = Y 2"Pa(A) = G(2=0,A)Q (2A(4)), (4)
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where G(z = 0,A) = Py(A), the Q(zA(A)) is some analytic function of
auxiliary variable z multiplied by function A(A) under condition Q(A(A)) =
1/G(z = 0,A). It is easy to see that the condition (4) is fulfilled for such
well-known distributions as Poisson, binomial, and geometric ones. The
case of negative binomial distribution will be discussed later.

Remind that the observed behaviour of the normalized factorial mo-
ments (NFM)

(%]
Fi(A) = (—';—l x ATHE-D A L0 E>2, (5)

is a straightforward manifestation of the nonstatistical intermittent fluctu-
ations in the distributions of secondary particles produced in high-energy
interactions [6, 11-12]. In (5) n denotes the number of particles in A,
nlfl = n(n—1)...(n—k+1), (...) is average over all events. The right side
of (5) represents by definition the intermittent behaviour characterized by
a anomalous fractal dimensions (AFD) d; depending on rank k of NFM for
multifractal behaviour and dj = const. for monofractality.

Now we shall prove the following statement: a inverse power dependence
of the second order BP in phase-space interval A and A-independence of
high-order BPs are necessary and sufficient conditions for monofractal be-
haviour of AFD. A inverse power A-dependence of all BPs is necessary and
sufficient for multifractality.

Sketch of proof. By applying (3), for obtaining NFM in terms of BPs,
we have

nl¥l
m(a)=28) Y > ) VT @™, (®)

m=2

— An( A) - n+l—-m

(n) = Po(A)A(A) + Po(A) Z 1)1 I (2] - (D
n—~2 " m=2

Assuming the approximate proportionality of (n) and A at small A and con-
dition Ps(A) — 1, if A — 0, we have the following approximate expression

for small A
Fi(A) = H [rm(A)*H ™, (8)

m=2

In the case of power-law dependence of NFM (5) with the monofractal be-
haviour of AFD d;, = d; = const. we must demand the following properties
of BPs

n(A)x AT 0<dy<1, (9)
ns(A) =~ const., 5> 2. (10)
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From expression (8) one can conclude that for multifractality a power-law
singularity of the BPs of order s > 2 is necessary. Using (8) it is easy to
show the sufficient conditions of a inverse power-law behaviour of BPs for
both monofractal and multifractal cases.

Now we have possibility to write down the general form of generation
function G™°?(z, A) for the multiplicity distribution with monofractal be-
haviour of AFD

G™R(2,4) = GOz = 0,A) (1471 (8)Q™" (MA)m(4)2)) . (11)

where 12(A) is defined by (9), Q™°™ is some analytxc function with variable
A(A)n2(A)z with the next conditions

Q™" (AM(A)n2(B)2=0) =0, (12)

Qe (MA)m(A)z = MA)m(8)) = m(8) ((gmmprgy = 1) - (1)

General formal form of generating function for multifractal behaviour one
can obtain from (3).

3. The BPs for negative binomial distribution

Since a few years, many high energy multiparticle data at various en-
ergies have been successfully fitted by the negative binomial distribution
(NBD) [13-16] with generation function

n —k(8y)
™(sy,5) = (14 Gla-0) (14)

where (n(dy)) is average multiplicity of final hadrons in restricted rapidity
(or pseudorapidity) intervals §y and k(8y) is a positive parameter. If the
k(8y) does not depend on &y, we have no any fractal type of behaviour for
NFM of this distribution. Really in this case one can rewrite the generation
function in the form (4).

In general case the BPs of NBD are given by the expressions

k(by)+n—-1

NBD —
nn (Jy)_k(6y)+n~2’

n=2... (15)

Let us assume that k(§y) o« §y42. In this case 7YBP(§y) o §y~92 and
7VBD(§y) ~ const., s > 2 for small §y. According to Section 2, one gets
the monofractal type of behaviour for AFD, i.e. d,, = d; = const.. Such
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monofractal behaviour has already been discussed in Ref. {17, 18]. This
analysis only illustrate the simplicity of our approach to intermittency in
terms of BPs.

4. The Levy-law approximation

In this section we show the possible behaviour of the bunching param-
eters in rapidity bin for different high-energy collisions.

At the beginning, let us note that for an investigation of intermittency
in rapidity bin dy usually [6] one average the factorial moments over all bins

of equal width éy normalizing to the overall average number per bin (n) =
EM (nm)/M, where (n,,) is average multiplicity in mth bin, M = Y/§y,

m=1

Y is full rapidity interval

. 1 - —
Fu(by) = 55 3 T = Cu(fy) ™70, (16)

where C} are some constants. Similarly, one can introduce the BPs by
averaging the probability PJ*(8y) for mth bin over all M bins

n  P,(8y)Pn—2(8y)
n-1 (P -1(5y))2

in(8y) = n>1, (17)

where P, (8y) = 3¢ zle P™(8y).

Following the same procedure as in Section 2, we can see that the ap-
proximate expression for NFM (16) in terms of the BPs (17) has the same
form for 6y — 0 as that of Eq. (8), if we substitute F;(§y) instead of Fi(A)
and 7j,(8y) instead of n,(A). Then we have

~ F:(éy)Fs—Z(‘sy)
(Fo-1(8y))”

where Fy(6y) = 1, s > 2. Using (16), (18), we obtain the following expres-
sion for BPs

M2(8y) = Fy(6y),  7.(6y) (18)

Cacs—-:’

(c,_l)zﬁy—ﬁ’ , (19)

fi2(8y) ~ Ca6y~ P2, a(8y) ~

where C; =1 and

ﬁ2 = d21 (20)
By =dy(s—1)+ds_s(s—3)—2ds_1(s—=2), s>2. (21)
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Note that we can obtain Eq. (21) using the approximation (n[,ﬁ]) ~ k'P(6y)
for (n) < 1 (the similar analysis of factorial moments in terms of the prob-
abilities for one bin one can find in Ref. [19]).

For analysis of the parameters 3, we shall use the Levy-law approxi-
mation for AFD [20] which was introduced to describe random cascading

models d M
n* —-n
dp = —2 22
"Tw-2n-1" (22)
with the Levy index u. The Levy index is known as the degree of multi-
fractality and allows a natural interpolation between the monofractal case
(p = 0) and multifractality (4 > 0). The case p = 2 (d, = nd,/2) corre-
sponds to the log-normal approximation. Substituting (22) into (21), one
gets the following expression

n* + (n-2)¥ - 2(n-1)*

Brn=dE., En o

(23)

In case of monofractal behaviour of AFD (u = 0) we have 8, = 0 for
s > 2, i.e. the high-order BPs are independent of §y. Then the values
are completely determined by the coefficients C,. Note that in the case of
multifractality the values of E,, are positive for all n and the BPs increase
indefinitely for éy — 0. Thus, in the case of multifractal behaviour one
can say about strong bunching of particles in §y. Note that for log-normal
approximation (¢ = 2): E, = 1, B, = d; and all bunching parameters have
the same power-law behaviour 7, « §y %2,

Thus, there are two important cases which correspond to the monofrac-
tality and log-normal approximation for multifractality

p=0, 72dy)x 6y, #, =const.,, forall s>3, (24)

p=2, fin(by)x by 92, forall n>2. (25)

In real physical situation the Levy index p is different for different reactions
[12, 20, 21] and, strictly speaking, it is not equal to integer value:

(i) Nucleus-nucleus reaction § — AgBr. Levy index is 0 < p < 0.55 (in fact
it is almost a monofractal system) [20]. The value of E, is almost zero
and the BPs approximately are independent of éy. This behaviour is
typical for intermittency at second-order phase transition and thus has
been advocated [22] in favour of the formation of a quark-gluon plasma.

(#1) ete~,pA, AA, hhreactions with yu ~ 1.3 — 1.6 [21] corresponding to the
parameter 0 < E, < 0.7. In case of up deep inelastic scattering the
Levy index is largest, p ~ 3.2 — 3.5 [20] and 1 < E, < 5. In these cases
we have power-law singularity in behaviour of the BPs.
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5. Simple approximation of the high-order BPs

The Levy law approximation allows a simple description of multifractal
properties of random cascading models using only one free parameter u.
However, using the interpretation of intermittency via the BPs we can make
some approximation of high-order BPs in order to obtain more simple linear
expression for AFD maintaining the number of free parameters.

Let us make the assumption that high-order BPs can be expressed in
terms of second-order BP and a constant » > 0 as

s(8y) = (72(8y))",  s>2 (26)

with
72(8y) o by~ . (27)

For the given case, the multiplicity distribution with multifractal behaviour
has the following form (n > 1)

A™(6y)

2 (i (sy)P TR0 (o)

P, (8y) = Po(6y)

where A(8y) = P1(8y)/Po(6y) and 22 = 1, 62, = 0 for n # 2. Using (18),
(26)-(27), the AFD of such distribution is given by the expression

dn = da(1 =) + dgrg—. (29)
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Fig. 1. Some experimental data for AFD. Continuous lines show best fits using
the (29). (a) ¢ — Z° decay, DELPHI (23], » = 1.6(8), @ — p-Ag/Br, KLM [24],
r = 1.1(5), — S-Ar/Br, KLM [24], » = 0.0(2); (b) ¢ — O + Ag/Br, KLM [24],
r = 0.7(2), ® — pp, UA1 [25], r = 0.5(3).
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The linear approximation of AFD is, in our opinion, very interesting because
it allows interpolation between the monofractal case {r = 0) and log-normal
approximation (r = 1) as the Levy-law approximation (22). The results
of fits of some experimental data by the expression (29) are reported in
Fig. 1(a), (b). This analysis gives good agreement to the experimental
data. Thus the approximation of high-order BPs by the second-order is
valid for such reactions.

6. Conclusion

We introduced the bunching parameters for analysis of multiparticle
production in high-energy physics by analogy with the theory of continu-
ous quantum measurement for one-mode photon fields. It is shown that an
inverse power-law singularity of second-order BP leads to monofractal be-
haviour of AFD at small rapidity interval if high-order BPs are independent
of phase-space intervals. We found general form of generation function with
monofractality using such dependence of second-order BPs on phase-space
intervals. For multifractality an inverse power-law singularity for all order
BPs is necessary and sufficient. Using the experimental data, we can con-
clude that the majority of reactions possess strong bunching of particles in
all order for y — 0.

We have shown that some experimental behaviour of AFD can be un-
derstood as the simple approximation of high-order BPs in terms of second-
order. We believe this to be an important conclusion as it leads to a de-
scription of the multifractal multiplicity distribution for the reactions with
minimum number of free parameters.

The use of BPs is interesting because it gives a general answer to the
problem of finding multiplicity distribution leading to intermittency. This
method is also interesting since it may provide a link between theory of con-
tinuous quantum measurement and the investigations of multifractal struc-
ture of multiplicity distributions in particle collisions at high-energies. It
gives also possibility to analyse the intermittency phenomenon in quantum
optics.
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