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In the unified temperature dependent nuclear model with Woods-
Saxon single particle potential the adiabatic mass parameters and po-
tential energies are calculated and discussed. Both liquid drop and shell
correction are temperature dependent. Shell structure of mass parameter
and fission barriers vanish for hot nuclear systems at T = 1.5 MeV. The
mass parameter is shown to have irrotational behaviour at high temper-
ature.

PACS numbers: 24.75. +i, 25.85. Ca

1. Introduction

The fundamental quantity which enters the fission dynamics and fission
half-lives is the mass tensor (mass parameter) By;(8). It is a function of
deformations (8).

In considering heavy ion reactions or pre/post collision fission, one is
dealt with a sort of intrinsic excitations and it is highly desirable to inves-
tigate the collective motion of the nucleus-like system at this specific finite
excitation energy, t.e. finite temperature.

The first papers on temperature dependence of fission barriers were
done in seventies by Jensen and Damgaard [1].

Diebel, Albrecht and Hasse [2] presented the extended temperature de-
pendent calculations of energy and the moment of inertia. In that paper the
temperature dependence of the liquid drop model was used and discussed
in the case of heavy nuclei.

The review of nuclear fission barriers is given in the paper by Lojewski,
Pashkevich and Cwiok [3] for various temperatures. The authors have used
the cold liquid drop model and temperature dependent shell correction.

* This research is partly supported by the KBN grant No 2 0312 91 01.
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One of the first papers on temperature dependence of mass parameters
were published by Iwamoto and Greiner [4] and Iwamoto and Maruhn [5].
The authors show the qualitative estimates of mass parameters in the har-
monic oscillator potential and with the Fermi gas model. According to these
papers, the mass parameter increases with temperature.

In a paper by Schneider, Maruhn and Greiner [6] it is shown the singular
behaviour of the mass parameter at the critical temperatures. They pointed
out that the mass decreases in the case of more realistic nuclear model.

The purpose of this paper is to investigate the behaviour of mass pa-
rameter and fission barriers on temperature as well as deformation. The
present paper unifies the temperature dependence of the nuclear collective
hamiltonian and shows the calculations of both potential energy barriers
and the mass parameters as a functions of deformation and temperature
using the realistic Woods—Saxon single particle potential with the “univer-
sal” set of parameters [7]. We improve the irrational behaviour of the mass
parameter in the vicinity of the critical temperature by means of smoothing
the level densities at the level crossings.

It is shown that the mass parameter decreases to its irrotational value
with increasing temperature. Fission barriers at low temperatures show the
known shell structure which washes out at temperatures T > 1 MeV.

In the following two sections we show the basic BCS equations and mass
parameters derived in the adiabatic cranking approximation. The next two
sections are devoted to temperature dependent calculations of hot nuclear
liquid drop and fission barriers. The results of the calculations are presented
in Section 6.

2. Temperature dependent BCS model

In order to introduce thermal excitations, we employ the grand canoni-
cal formalism. The grand potential function §2 for the one type of nucleons
may be expressed as follows [1]

E; AZ
2=-ThhZ= k};(ek——/\—Ek)—2T,§)1n [1 + exp (—?)] + - (1)

Here Z is the grand partition function and the quasiparticle energy Ej
is By = [(ex — A)? + A?]1/2, In the whole paper the temperature T is
expressed in MeV and is defined according to Bohr and Mottelson [8]. The
gap parameter A(T') and the chemical potential A(T) are determined by the
coupled gap— and particle number equations:
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-A E;
N=>" (1-— L ta.nhzT) (3)
k>0
The usual BCS equations can be obtained from the above formulae in the
limit of zero temperature, T — 0.
At finite G, the gap A(T) is an decreasing function of the temperature.
It decreases monotonically until the pairing correlations completely vanish.
It happens at critical temperature 7T, which for typical situations is shown
to be close to 0.5 MeV.

3. Mass parameter

We start with the classical microscopic Hamiltonian of the form
H=Hs+ Hpair ’ (4)

Hy=) (ep — /\)(a}:a,‘ + a:‘-lap) and Hp,ir = -G Z alalt-‘a;,a,, , (58)
b ny

and al, a, are particle creation and anihilation operators in the state p.
The state i denotes the time reversed state to that of u.

In calculations we use pairing strength constants as follows. For protons
GzA = 13.3+0.217(N — Z) and for neutrons Gy 4 = 19.3-0.084(N - Z) [9].
N, Z and A are proton, neutron and mass number A = N + Z respectively.
The number of levels in the pairing window equals to the number of particles
(Z or N) and is counted from the bottom of the energy spectrum.

In the adiabatic cranking model the collective mass Bj;(8) reads [10]
9N 8K
(m|z5,10){0| 55;Im)

m 50)3

Bri(B) =2k ) , (6)

m#0 (6

where |m) and |0) denote the wave function of the excited and ground state
of the nucleus respectively, £,, and €g are the corresponding single particle
energies and 3 is a set of deformation variables.

After transforming to the quasi-particle representation, the derivative
of the Hamiltonian over the deformation, takes the following form

H 0H,
=) (p o5
uFEv

X {(u“u,, - vuvu)(ala,, + af—‘ap) + (upvy + vﬂuu)(azal - aﬂay)}
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here |u) and |v) are the single particle (Woods—-Saxon potential) eigenstates
and v, u, are the pairing probability factors. The H; is the single particle
Hamiltonian.

After some algebra, the final results can be brought into the form

Bu(B) = B (B) + B () + B (B). 8)

The selected parts are the following

8ﬂ 3[3
() ). o

BP(5) = rzzgmg‘;"n Sl
<o (o (i) o (7))
o209 =1 3 g oo () { 28 00 | 5+ -0

o oA oA gA
+|A—+ A |A—+ (e - A= ] ;- 11
( 3B (ex )aﬁk) ( 3B (en )3ﬁ1>} (1)
This formula coincides with the usual expression in the limit of zero tem-
perature.
As we shall show in Section 4 such a division of mass parameter into
three components is convenient in analysis of its temperature dependence.

We shall analyze the behaviour of mass in the wide range of the nuclear
temperatures and the broad class of nuclei.

4. Heated liquid drop model

For the macroscopic part of energy we employ the T-dependent liquid
drop model based on the results of the Thomas—Fermi description of the
excited nucleus [10].

The following expression for the nuclear density n(T') and the nuclear
surface tension o(T') were adapted from Ref. 2]

n(T) = n(0)[1 — aT?], a = 0.0032MeV, (12)
o(T) = o(0)[1 —~T?], 7 =0.0114MeV. (13)
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The free deformation energy, normalized to zero for spherical shape can be
written as

FYP(B,T) =Egur(B, T = 0) [1 ~ (7 - 20/3)T?]
+ Ecou(8,T = 0) [1 - aT?/3]. (14)

The entropy S and energy E may be obtained from the following thermo-
dynamical relations

oF
S=-35 (15)
E=F+TS. (16)

Finally, the macroscopic part of energy is given by

EYP(3,T) = (Bs — 1)Egquye(sphere, cold) [1 + (7 - 2%) T2]
aT?
+(Be — 1) E.ou(sphere, cold) l:l + T] , (17)

where the usual surface and Coulomb energies are denoted by E;,¢(sphere,
cold) and E ,y,i(sphere, cold) respectively and B and B, are the ratios of
the corresponding nuclear energies at finite deformations to this values, e.g.,

B; = surf(ﬁ, T)/Esurf(o» 0)'

5. Pission barriers

We use an extended version of the Strutinsky macro-microscopic method
to calculate an effective potential barriers for internally excited (T > 0) nu-
clei. The internal energy of the hot nucleus is written as

E(3,T)= E'PM(,T) + §E(B,T). (18)

The first term is the average energy of a heated liquid drop. Strutinsky
shell correction, including temperature dependent pairing is a second term.

Following Ref. {2] we define the shell-plus-pairing corrections to the
energy for T > 0 and for the one type of nucleons as

SE(,T) = EB®S(3,T) - EBCS(3,T), (19)

where EBCS is the energy of the hot nucleus calculated in the temperature
dependent BCS picture. The second term gives the smooth energy evaluated
in Strutinsky procedure. Some details of the method are described in [2].
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The free energy is obtained from the thermodynamic relation
F=FE-TS, (20)

in which § is the entropy of the nucleus.
The way of statistical description of excited nuclei depends on the pro-
cess one considers;

— The nuclear fission may be treated as an isothermal thermodynamical
process. In this case the free energy F(3,T) is the associated effective
potential rather than the internal energy [8] E(3,T), which has often
been used in the literature.

- In the adiabatic limit, however, the isentropic processes at § =const
are to be more realistic. In this case the E(3,T(S)) is the associated
effective thermodynamical potential.

Since usually only the deformation dependent parts of the potentials
are of interest, we note that both F and E are equivalent with this respect
only if S does not depend on deformation [3]. In general this condition is
not fulfilled. However, at large temperature, the entropy changes only a
little with deformation.

6. Results

We begin the discussion of results starting from Eqgs (9), (10), (11) for
the components Bill), Bg‘;) and Bﬁ) of mass parameter Bj;. This parts
of mass were naturally selected to show their specific behaviour under the
change of temperature and deformation.

The very important consequences on the behaviour of nucleus come
from the existence in the system the critical temperature 7. at which pair-
ing correlations disappear. In fact there are two critical temperatures one
for each isospin component. For the nucleus 2°°Fm which was chosen for
illustration this corresponds approximately to 0.4 MeV and 0.6 MeV for
protons and neutrons respectively. The vanishing of the pairing gap A at
the temperature T = T, is the outcome of the adapted simple standard
pairing model. This is not the case in a more sophisticated models of resid-
ual interactions which include the particle number projection, e.g., Esebbag
and Egido [12].

In the following we shall consider the nucleus 2°Fm. The subscripts &
and [ refer to deformation parameter 32. All other deformation parameters
are set equal to zero. The discussion of the mass parameter behaviour as
a function of the temperature is done for deformation #3 = 0.2 which cor-
responds approximately to the equilibrium of the nucleus at all considered
temperatures.
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The singularities shown by the nuclear mass parameters are due to the
single particle level crossings [13, 14]. We have done the careful analysis
of each of three parts separately in order to find the term in formula (8)
responsible for the singularity.

Fig. 1 represents the part Bg) Eq. (9) of mass parameter vs temperature
separately for protons (thin line) and neutrons (thick line) as well as the

total Bg) part of mass (very thick line). At the critical temperature T
one sees characteristic increase of each isospin component of the mass with
temperature. After reaching T, both neutron and proton components of

BS) decrease asymptotically.

B
MeV

100

S0

oLl | ] | | |
0 04 08 12 16 20

kT

Fig. 1. The part BS) of mass parameter vs temperature. Protons are represented
by thin line, neutrons by thick line and the total BS) part of mass by very thick

line.

The most regular is the second part of mass parameter denoted by Bg)
Eq. (10). It is displayed in Fig. 2. The same convention is used as before.
It is interesting to note the smallness of this part of the mass tensor under
the critical temperature. It is absent practically up to temperatures from
the vicinity of T.. Then we can observe very regular increase of the proton

and as well as the total part of Bg). It saturates for temperatures T > 2
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Fig. 2. The same as Fig. 1 but for B,(j) part of mass parameter.

MeV. Here we have used the smoothing procedure for level densities which
will be described.

An important feature of the mass parameter can be studied in Figs 3
and 4 together. Fig. 3 shows the third “singular” component of the mass
BS) Eq. (11). The singularity as expected appears at critical temperatures:
for protons at T = 0.4 MeV and neutrons at T = 0.6 MeV. This singular
behaviour at critical temperatures can be seen also in Fig. 4 where the whole
mass parameter Eq. (8) is drawn. In the temperature range between both
T. points, the mass parameter is not well defined. It is rapidly changing
function of T. At (T —T.) — 0, parameter By; — oo. For temperature
T > T, this term of mass parameter disappears. This is the result of zero
pairing gap parameter (see Eq. (11)) in this range of temperature.

The mechanism of such behaviour is the following. At the critical tem-
perature T, the pairing gap vanishes. Taking this into account one expects
intensive energy level crossings at each deformation. It leads to decreasing
the energy denominators in Eqs (9)—(11) which are not compensated by
the similar nominators. As the consequence this part of mass parameters
unphysically explodes. This behaviour was already observed in the case of
the simple harmonic oscillator model [4, 5]. At the same time the second
part of the mass parameter is finite after elimination of the level crossings.

The same is to be said about BS), which has no singularities at all.

There is no real physical reason for singular behaviour of nuclear mass
parameter with temperature. Therefore, in the calculations we applied the
solution to this problem based on the assumption of nondegenerate energy
spectrum of nuclear system. Taking it as a rule we assume that the en-
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Fig. 3. The same as Fig. 1 but for B,(c?) part of mass parameter. The vertical
dashed lines mark protons and neutrons critical temperatures.
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Fig. 4. Total mass parameter By; and its three parts as functions of temperature.
Deformation B, = 0.2.

ergy levels are nondegenerate at any deformation. Calculating the energy
level density p(8,T) (from the quasi-particle spectrum, which is equal to
the particle-hole excitation density at the critical temperature) one has the
average local distance of levels § = 1/p(8, T). This distance may be used in
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calculations of “singular” parts of mass parameter.

We applied this procedure and have overcome all difficulties with un-
physical singularities which are the consequences of the poor model for the
mass parameter. We want to stress here that the same mode] behaves well
and gives good results in other situations of interest (see spontaneous fission
half lives calculated with it [15]).

After the loss of pairing correlations the nuclear mass tends to its irro-
tational value [15]. In the spherical case the latter is given by the formula

2

Birr = 15

AMR}, (21)

where A, M and Ry are mass number, nucleon mass and average nuclear
radius respectively. In the case of 25Fm it is approximately 50AMeV ~1.
We interpret this fact as the loss of collectivity of the nucleus at high tem-
perature.

The above conclusion contradicts the results of paper [5] where the
mass parameter was estimated to increase with the temperature up to its
adiabatic value.

Mass Parameter
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Fig. 5. Total mass parameter as a function of deformation for diverse temperatures.
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The whole mass parameter of 25°Fm as a function of deformation at
various temperatures is shown in Fig. 5. The temperature changes from
0 MeV (the most upper curve) to 2.5 MeV (the lowest curve). The upper
limit (lowest curve) corresponds to E* =~ 40 MeV excitation energy. One
sees that the shell effects are completely washed out at temperatures T > 1.5

FREE ENERGY
Z=104 N=154
4.2 A L M 1 T
30 :
1.8 + /‘\ b
ol \/\ ‘
L~ )
-0.6 E \ /\ ]
~ A 1
‘18 f _ Voo
i ? \/ / \ / \\'\ - j
3.0 F g . / » \‘\‘/{ . \\
a2 / ]
54 \/ . T=0.0 MeV
i ‘ « T=0.5 MeV
66 L p 0.5 Me ]
2 |
-7.8 b= - L —
0.0 0.2 04 0.6 0.8 1.0 1.2

Fig. 6a. Free energy vs deformation for T = 0 MeV (upper curve) and T = 0.5
MeV of 258104.
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Fig. 6b. Free energy vs deformation for T = 1 MeV (upper curve), T = 1.5 MeV
and T = 2 MeV of 2%8104.
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MeV. The mass parameter of the hot nucleus does not depend on deforma-
tion and as it was already said it reaches its irrotational limit Eq. (21). It
means that the long range nuclear correlations are also lost. The nucleus
behaves like irrotational liquid. At lower temperatures the shell structure is
present. In Figs 6a and 6b we show the whole fission barriers (free energy)
for the nucleus 2°8104. The shell structure present at low temperatures
disappears at temperatures higher then 1.5 MeV (lower curve in Fig. 6b).
This result has been observed before [3] .

ENTROPY
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Fig. 7. Entropy of the nucleus 2°4104 at different temperatures.

It is interesting to see other characteristics of the nucleus as a function
of temperature. Let us look at the entropy of the 258104. It is shown in
Fig. 7. As one expects the entropy increases with the temperature and
shows the similar shell effects as the free energy and mass parameter.

The effect of the critical temperature is not seen in free energy and the
entropy behaviour.

The only quantity with consequences coming from the existence of crit-
ical temperatures is the mass parameter.

At the end of this presentation we show two other figures in which
average behaviour (liquid drop model) of the free energy (Fig. 8) and energy
(Fig. 9) is shown. The temperature lowers the liquid drop fission barriers
for both free energy and the energy.

The above analysis shows that the mass parameter and the free energy
barriers are very sensitive functions of the temperature. It is important
to know its dependence and the mechanisins behind in all situations in
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Fig. 8. Free energy F of the liquid drop nucleus #*%104.
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Fig. 9. Internal energy E of the liquid drop nucleus 2*°104,

which one studies the hot nuclear systems. This are typically the heavy ion
collision processes and the fragmentation of the excited nuclei.

We are thankful to Professor Krzysztof Pomorski for very valuable com-
ments and critical reading of the manuscript.
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