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This is second of the two invited lectures presented at the “XVII
International School of Theoretical Physics: Standard Model and Beyond’
93.” The text is essentially based on a recent publication by the present
authors [Mod. Phys. Lett. A (in press)]. Here, after briefly reviewing the
(7,0) @ (0, j) Dirac-like construct in the front form, we present a detailed
construction of the (7, 0) @ (0, j) Majorana-like fields.

PACS numbers: 11.10. Qr

To facilitate the study of the massless limit, we work in the front-form
[1] Weinberg-Soper formalism [2, 3] recently developed in Ref. [4]. The
first lecture in this two-part series presented the instant form Dirac-like
construction in the (7,0) @ (0, j) representation space and is not ideally
suited to study the massless limit. The formalism that we develop is valid
for massive as well as massless particles.

1. Review of Dirac-like (7,0) ® (0, ) spinors in the front form

The front-form Dirac-like (3, 0)® (0, 7) covariant spinors [4] in the Wein-
berg-Soper formalism (in the chiral representation) are defined as:

ny — | ¢r(P*)
vy = 0. (1)

* Presented at the XVII International School of Theoretical Physics “Standard
Model & Beyond ’93”, Szczyrk, Poland, September 19-27, 1993.

** This work was done under the auspices of the U. S. Department of Energy.
The lecture was delivered by D. V. Ahluwalia
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The argument p* of chiral-representation spinors will be enclosed in curly
brackets {}. The Lorentz transformation of the front-form (7, 0) spinors is
given [4] by

Sr(p") = AR(P*)PR(P ) = exp (B T) (P ), 2)

and the front-form (0, j) spinors transform as

du(p*) = A (p*)oL(P ) = exp (-B" - ) (P ). (3)

[ [z
The1°> represents the front-form four momentum for a particle at rest: P =
(pT = m,p! = 0,p? = 0,p~ = m). The J are the standard (2j+1) x(25+1)
spin matrices, and 3 is the boost parameter introduced in Ref. [4]

B=n(av”, —iav", 1), 4

where a = [1 — exp(—7)] ", v" = v, + ivy (and v¢ = v, — ivy). In terms of
the front-form variable p* = E + p,, one can show that

cosh(n/2) = 2 (pT +m), sinh(n/2)= 2 (pt -m), (5)

with 2 = [1/(2m)] /m/pT. The norm ¥ {p*}¥{p*}, with
P} = H{pr}r, = [2 3} ’ 6)

is so chosen that in the massless limit :
a. The Dirac-like (7, 0) ® (0, 7) rest spinors identically vanish (there can be
no massless particles at rest); and
b. Only the Dirac-like (7,0) @ (0, j) spinors associated with h = +j front-
form helicity [4] degrees of freedom survive. (1 is the (254 1) x (25 +1)
identity matrix.)

These requirements uniquely determine (up to a constant factor, which we

oM oM
choose to be 1/1/2) the (25 + 1)-element-column form of ¢g (P ) and ¢,(P )
to be

1 0 o
mi |0 rR oF mi |1 R °oF mJ |0
— v =} |,y P = — | .
\/§ : ’ ¢] l(p ) \/i : ¢ ]( ) \/i : ’
0 0 1

SR ) =

(7)
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oM
[with similar expressions for ¢, (P )] in a representation in which J, is di-

agonal. The subscripts h = j,5—-1,---,—~jon ¢f(;p) in Eq. (7) refer to the
front-form helicity [4] degree of freedom. The reader should refer to Sec. 2.5
of Ref. [5] for an alternate discussion of the nontrivial nature (even though
it appears as a “normalization factor”) of the factor m’ in Eq. (7).

2. Majorana-like (7,0) @ (0, 7) spinors in the front form

Following Ramond’s work [6] on spin-1/;, we define the front-form
(7,0) ® (0, 7) 6-conjugate spinor

(¢013) 91.%) ] | )

* *
(¢o1) on(p*)
where ¢ is a c-number, and O;) is the Wigner’s time-reversal operator (see

Refs: p. 61 of [7], Eqs (6.7) and (6.8) of the first reference in [2], and Ch. 26
of [8}),

o {p*} = [

Q[J]J@[;]l = -J*, (9)

and * denotes the operation of algebraic complex conjugation. The param-
eter £ is fixed by imposing the constraint:

[voi)] = i) (10)

The time-reversal operator @(;] is defined as: O[; = (—-1)-7"""60/'_0. It has

the properties: @f‘j]@[ﬂ = (-1)%, 0{"].] = O[;]. In the definition of O(;, o
and o' represent eigenvalues of J. For j = 1/ and j = 1, the ©[;) have the
explicit forms:

o 1 0 o0 1
1 0 0

The properties of Wigner’s O@;; operator allow the parameter § involved
in the definition of #-conjugation to be fixed as %7 for fermions and +1
for bosons. However, without loss of generality, we can ignore the minus
sign [which contributes an overall phase factor to the #-conjugated spinors
$°{p*}] and fix £ as

€= (12)

i, for fermions
1, for bosons
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The existence of the Majorana spinors for the (1/2,0) & (0, }/2) represen-
tation space is usually (see, e.g., p.16 of Ref. [6]) associated with the “magic
of Pauli matrices,” o. The reader may have already noticed that @[y /s is
identically equal to oy; and it is precisely this matrix that enters into the
C P-conjugation of the (1/2,0) ® (0, }2) spinors.

The reason that the Majorana-like (7, 0)®(0, ) representation spaces, as
opposed to the (j,0)®(0, 7) spaces spanned by Dirac-like spinors defined by
Eq. (1), can be constructed for arbitrary spins hinges upon two observations:

1. Independent of spin, the front-form boosts for the (7,0) and (0, j)
spinors have the property that
[Ar(p*)) ™ = [AL(@")]', [Ae®)] ™ = [4r(e*)';
and

2. Existence of the Wigner’s time-reversal matrix @[;) for any spin.

These two observations, when coupled with the transformation properties of
the right- and left-handed spinors, Egs (2), (3), imply that if ¢g(p*) trans-
forms as (7, 0), then (¢ GIj])*éa(p“) transforms as (0, 7) spinor. Similarly, if
#L(p*) transforms as (0, 7), then ((@;;)* 4] (p*) transforms as (j, 0) spinor.
Here, ( = exp(i¥) is an arbitrary phase factor. As such, we introduce
(7,0) ® (0, 7) Majorana-like spinors

¢

(7,0)~ p{p*} = [( R)(* o ,,p)]

(0,5) > Mp*} = [(c,\@ ) 9 pﬂ)] (13)
oéL(p*)

For formal reasons, the operator multiplying ¢f (p#), in the definition of
A{p*}, is written as (O rather than (C'AG)*. What we have done, in fact,
is to exploit the property @* = © and choose () = (;‘*. Since (), is yet to
be determined, this introduces no loss of generality. The advantage of all
this is that p{p#} and A{p#} can now be seen as nothing but Weyl spinors
(in the 2(2j + 1)-element form)

mtoty= [E)) wor = 0] 09

added to their respective f-conjugates. We now fix {, and () by demanding
(the defining property of the Majorana-like spinors):

p’{p*} = £p{p*} and N°{p*} = A {p"}, (15)
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and find:

Cp==%€ and () = x¢. (16)
The choice (, = (x = +¢ yields self-6-conjugate spinors p>¢{p#} and
ASe{p#}; while Cp = (x» = —& corresponds to antiself-6-conjugate spinors

pA8{p#} and A48 {p#}. The condition (10) is satisfied not only by Majorana-
like self-8-conjugate spinors but also by antiself-6-conjugate spinors.

It may be noted that the Dirac-like spinors, Eq. (1), and the Majorana-
like spinors, Eqs (13), are two of the simplest choices of spinors that can be
introduced in any P-covariant theory! in the (j,0) @ (0, j) representation
space. The former describe particles with a definite charge (which may be
zero), while the latter are inherently for the description of neutral particles.

Before we proceed further, we make a few observations on the defini-
tion of f-conjugation. For the (/2,0) @ (0,/2) case, the definition (8) of
f-conjugation can be verified to coincide with C P-conjugation. The reader
may wish to note that what Ramond (see Ref. [6], p. 20) calls a “charge con-
jugate spinor,” in the context of spin~%, is actually a C P-conjugate spinor.
This, we suspect, remains true for fermions of higher spins also. Surpris-
ingly, for the (1,0) @ (0,1) spinors (and presumably for bosons of higher
spins also) f-conjugation equals I'C within a phase factor 2 of —(—1)!*l.
The mathematical origin of this fact may be traced to the constraint (10)
and the property Orjl@m = (—1)% of Wigner’s time-reversal operator ©.

One may ask if the constraint (10) is changed to read [¢¢{p*}] - —9{p*}
for bosons, whether one can obtain an alternate definition of 6-conjugation
(so that 6-conjugation equals C P for bosons also) to construct self/antiself-
f-conjugate objects. A simple exercise reveals that no such construction
yields self/antiself-6-conjugate objects. The reader may wish to note par-
enthetically that when the result (12) is coupled with the definition of 6-
conjugation, Eq. (8), we discover that the operation of #-conjugation treats
the right-handed and left-handed spinors in a fundamentally asymmetric
fashion for fermions. This is readily inferred by studying the relative phases

with which (E@m) 42 (p*) and (g@m)' 6% (p*) enter in Eq. (8).

1 A theory that is covariant under the operation of parity is not necessarily a
parity non-violating theory. See Sec. 7 for a brief discussion of this point.

2 The charge conjugation operator C, along with P and T, for the (1,0) & (0, 1)
spinors and fields was recently obtained in Ref. [9].
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3. Explicit construction of Majorana-like (1,0) & (0,1) spinors
in the front form

We now cast these formal considerations into more concrete form by
studying the (1, 0)®(0, 1) Majorana-like representation space as an example.
As in Ref. [4], we introduce® the generalized canonical representation in the

front form:

== v an

The argument p* of canonical-representation spinors will be enclosed in

oH
square brackets []. The boost M(p*), which connects the rest-spinors ¥[p ]
with the spinors associated with front-form four momentum p#*, ¥[p#], is
determined from Egs (2), (3), and (17):

up) = ML Mot = |5 G

with A = Agr(p*) + AL(p*), B = 4Ar(p*) — AL(p*)-

Using the identities (needed to evaluate M(p*) explicitly) given in
Ref. [4], we first obtain the spin-1 p56[p#] spinors. These are tabulated in
Table I. The pS¢[p#] spinors satisfy the following orthonormality relations:

—_ S ]
pho [Pﬂ]/)h? [Pu] = m2@hh’, where

b=l T () Y] (19)

TABLE I

(18)

Spin-1 self-6-conjugate Majorana-like p°¢ [p*] spinors. Here pt=Exp,p =
Pe + ipy, and p* = p, — ipy. The subscript h = 0,+1 on p;f’ [p*] refers to the
front-form helicity [4] degree of freedom. The remaining spinors A% [p#], p4e [p*],
and A4*[p#] are related to p°* [p*] via Eqgs (21a) to (21c).

pi(p*] po’ [P*] p2e [p*]
Pt + (/") /ot 1/p*
V2(p" - p) 0 0
1| P+ (P2 /pY) m | P/pt m? | 1/p*
et -ty | VRt T -1
V(P +7") V2 0
-pt + (p"*/p*) P /p* 1/p*

3 The generalized canonical representation is introduced here for no other reason
than to be able to compare the results of the present work with our earlier
work of Ref. [4].
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The front-form (1,0) & (0, 1) Majorana-like spinors, Table I, should be
compared with the front-form (1,0) & (0,1) Dirac-like spinors obtained in
our recent work [4]. For instance, in the massless limit for the Dirac-like
spinors, the h = +1 degrees of freedom are non-vanishing and the h = 0
degree of freedom identically vanishes. On the other hand, in the massless
limit, for the spin-1 Majorana-like spinors pS8[p#], it is only the h = +1
degree of freedom that is non-vanishing, while the h = 0 and h = —1 degrees
of freedom identically vanish.

The origin of the above observation lies in the fact* that the (1,0)
and (0, 1) boosts, Ag(p*) and Ar(p*), essentially become projectors of the
¢£1(p“) and ¢L,(p*) as m — 0. To see this, introduce

1 0
m Vi  m
QR(m)z(;;-) =] 7. F Y|, (09

! (»t) (»%)
xt, (3t
m () ) P
Qr(m E(——)A HY = " - 20b
wm = () me = |70 T | (o)
L 0 0 1

The quasi-projector nature of Qr(m — 0) and Qp(m — 0) is immediately
observed by verifying that: Q%(m — 0) = Qr(m — 0) and Qf(m —
0) = Qp(m — 0) ; but in general Qr(m — 0) + Qr(m — 0) /4 1 and
0l 1 (m = 0) # Q1 (m — 0).

To incorporate the h = —1 degree of freedom in the massless limit, and
to be able to treat the massive particles without introducing manifest parity
violation, we now repeat the above procedure for the AS¢[p#] (and p#A¢[p#]
and A\4¢[p#] for the sake of completeness) spinors. We find:

2% [p#] = —(=1)1M 53¢ [p#], (21a)
0 13
pfe[p”] - 1”5pfe[p#], s = {] 0] , (21b)
A9 p#] = (1M 8 p#) = (~1) Mg [p*]; (21c)
with 1 = 3 x 3 identity matrix and
PPN [p] = m2 8 = PRl PN (], (22a)
529 [pH1p0 [p"] = 0 = 5,? [p* 1o [P*] - (22b)

4 Even though we make these observations for spin-1, results similar to those
that follow are true for all spins (including spin-%).
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As we will see in Sec. 6, the bi-orthogonal [16] nature of the p[p*] and A[p#]
spinors results in a rather unusual quantum field theoretic structure for the
(1,0) ® (0,1) Majorana-like field. Similar results hold true for other spins
(including spin 1). The bi-orthogonal nature of the Majorana-like spinors
is forced upon us by self/antiself-8-conjugacy condition (15) and cannot be
changed as long as we require that the basis spinors correspond to definite
spin projections (front form helicity-basis in our case).

It should now be recalled that for the Dirac-like (1,0) & (0,1) spinors
uo{p*} and v,{p*}, we know [9] from the associated wave equation that
the us{p*} spinors are associated with the forward-in-time propagating so-
lutions (the “positive energy solutions”) uq{p*}exp[—i(Et — p-z)], and
vo{p*} spinors are associated with the backward-in-time propagating® so-
lutions (the “negative energy solutions”) v,{p#}exp[+i(Et — p-z)]. Can
one infer similar results by studying the wave equation associated with the
front-form (1,0) @ (0, 1) Majorana-like spinors?

4. Wave equation for Majorana-like (1,0) ® (0, 1) spinors
in the front form

Combining the Lorentz transformation properties for the ¢r(p*) and
é1(p"), given by Eqs (2) and (3), with the definitions (13) of Majorana-
like spinors, we obtain the wave equations satisfied by the (1,0) & (0,1)
Majorana-like spinors. For the p{p*} spinors, the wave equation we obtain
reads (in chiral representation, where it takes its simplest form):

—(em*Opy 1 by
O, _Cpm2@[1] P{P }“ 0, (23)

where in the front form the operators (J; and O, are defined as:

O1 = guwp*p’ exp (-8 - J")exp (B - J)
and

O2 = guup*p’ exp (B* - T )exp (-8B J).

The nonzero elements of the front-form (the flat space-time) metric g, are:
g+— = Y2 = g_4 and g11 = —1 = g22. The wave equation for the A{p*}
spinors is the same as Eq. (23) with ( being replaced by (,. The dispersion
relations associated with the solutions of Eq. (23) are obtained by setting

5 Recall that the usual interpretation of the “negative energy” states as antipar-
ticles fails (see p. 66 of Ref. [10]) for bosons. On the other hand, the Stickel-
berg-Feynman framework [11] applies equally to fermions and bosons.
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the determinant of the square bracket in Eq. (23) equal to zero. A simple,
though somewhat lengthy, algebra transforms the resulting equation into
(true for all spin-1 Majorana-like spinors, hence all reference to a specific
spinor is dropped below):

3 3
- (p‘p’ -ptp™ - sz) (p‘p’ ~ptp™ + (mz) = 0.

As a result, the associated dispersion relations read:

4 ptpr + sz 4 ptpr _ Cm2
b =——— P T T ——
p p
each with a multiplicity 3 (for a given (). Again, as seen in Refs [12-14],
as in the case for the Dirac-like (1,0) @ (0, 1) spinors, the wave equation for
the Majorana-like (1, 0) @ (0, 1) spinors contains tachyonic degeneracy. For
the Dirac-like (1,0) @ (0, 1) spinors, we find that the tachyonic solutions can
be reinterpreted as physical solutions within the context of a quartic self
interaction and spontaneous symmetry breaking [14]. Here, we concentrate
on the physically acceptable dispersion relations pt = (p®p”™ + m?)/p~; or
equivalently E? = p? 4+ m2.
The wave equation satisfied by the plane-wave solutions

(24)

p{z} = p{p*} exp(—iep*z,) and A{z} = A{p"} exp(—icp¥z,)

is obtained by first expanding the exponentials in Eq. (23), in accordance
with the identities given in Appendix A of Ref. [4], and then letting p* —
i0*. Next, to determine ¢, we study the resulting equation for the plane-
wave solutions associated with the rest spinors. It is easily verified that for
p{p*} as well as A{p#}, it is not ¢ (directly) but €* that is constrained by
the relation: €2 = 1, giving ¢ = 1. This is consistent with the intuitive
understanding in that we cannot distinguish between the forward-in-time
propagating (“particles”) and the backward-in-time propagating (“antipar-
ticles”) Majorana-like objects. The above arguments are independent of
which representation we choose within the (1,0)&(0, 1) representation space.

5. Majorana-like (1,0) & (0,1) field operator
in the front form

We now exploit the above considerations on the Majorana-like spinors
to construct the associated field operator. Generalizing the spin-1/; defini-
tion for a Majorana particle of Ref. [15], we define a general (7,0) & (0, j)
Majorana-like field operator =(z)

U(Co)E(2)U~1(Cy) = +5(z). (25)
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In Eq. (25), the “+” sign defines the self-6-conjugate and the “—” sign
defines the antiself-6-conjugate field operator. The explicit chiral-represen-
tation expression for -conjugation operator Cjy as contained in Eq. (8) is

Co = CoK = ° 0 K
9 =CoK = (59[1']) 0 , (26)

where, K complex conjugates (on the right) the objects in the Majorana-
like (4,0) & (0, 7) representation space. For the example case of spin-1,
when Eqs (25) are coupled with the additional physical requirement that all
helicity degrees of freedom be treated symmetrically for manifest rotational-
and P-covariance, the field operator Z(z) is determined to be

E%(z)= /d" (”) (p*)p3° [p*] exp(—ipz)

h=0,%1
+ WGKSf,’\)t(P“)’\fg[Pﬂ] exp(-{-ip:c)] , (27a)

@)= Y [ dp[AP ) exp(-ipe)

h=0,%1
+ 1 A (p#)X10[p] exp(+ipe), (27b)

where 7, is the generalized® Goldhaber-Kayser phase factor; and

[S120"), 1™ = ~(~1) M @r) 2B ()8, -w8° (5 - 7)» (282)

[sV), sOM@™)] = —(-1)M(2m)*2E ()64, 18> (7 - ), (28b)

with similar expressions for the creation and annihilation operators of the
= Aa(:c) field. Several unusual features of expressions for the field operators
Z(z), Eqs (27a) and (27b), and commutators, (28a) and (28b), should be
explicitly noted:

I. The factor —(- 1)|h|6h _nt, Tather than the usual 655/, in the rhs of
Eqs (28a) and (28b) arises from the bi-orthogonal {16] nature of p[p*]
and A[p*] spinors.

II. The creation operator Sfl)\)t(p“) for the plane wave /\f" [p*] exp(ipz) is
identical (within a phase factor) to the creation operator for the plane

wave p%, [p#] exp(~ipz)

8 See footnote 19 of Ref. [15].
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M (pH) = —(~1)M s (), (29)

with similar comments applicable to A%A)t(p“) and A(hp )t(p").

In addition, in view of our results of Sec. 4, the association of the p{p#]
spinors with the forward-in-time propagating solutions and A[p*] spinors
with backward-in-time propagating solutions in the explicit expressions of
Z(z) above is purely a convention.

Finally, we wish to emphasize that the field operators we arrive at
differ from similar expressions found in literature for the (1/,0) @ (0, 1)
Majorana field. Unlike the field operators =(z), these expressions’ [even
though they satisfy Eq. (25)] do not exploit the Majorana-construction in
the (7,0) @ (0, 7) representation space and as a result cannot be expected to
contain the full physical content of a truly neutral particle.

6. Concluding remarks

We have succeeded in extending the Majorana-construction for the
(}/2,0)®(0, 12 ) representation space to all (7, 0)®(0, j) representation spaces
despite the general impression that Majorana’s original construction was
due to a certain “magic of Pauli matrices.” We studied the (1,0) & (0,1)
Majorana-like representation space in some detail and presented an asso-
ciated wave equation. Since nature has a host of neutral “fundamental
particles” of spin-1 and -2 and composite hadronic structures of even higher
spins, the existence of the Majorana-like (7, 0) @ (0, j) representation spaces
introduced in this work may have some physical relevance for the unifica-
tion beyond the electroweak theory and hadronic phenomenologies. In the
massless limit, (7,0) @ (0, j) fields, independent of spin and independent
of whether they are Dirac-like or Majorana-like, contain only two helicity
degrees of freedom. This observation allows the construction of higher-spin
field theories without introducing or imposing any auxiliary fields, negative-
norm states, or constraints. This fact may have some significance for the-
ories involving supersymmetric transformations, which transform between
fermions and bosons, and which are normally rife with nonphysical, addi-
tional fields. It should be explicitly noted that even though the construction
of the (7,0) ®(0, ) Majorana-like fields is manifestly covariant under parity,
in general, massive Majorana-like particles carry imaginary intrinsic parity
[18] and hence these particles in interactions with Dirac-like/Dirac parti-
cles (like charged leptons and quarks) naturally lead to non-conservation of
parity.

7 See, for example, Eq. (3.25) of Ref. [15]; and Eq. (2.5) of Gluza and Zralek’s
paper in Ref. [17].
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