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We investigate longitudinal and transverse beam polarization in
ete™ — W+W- including electroweak radiative corrections and hard
bremsstrahlung. Also final state polarizations are discussed. We show
that the transverse beam polarization allows to study the most interest-
ing longitudinal-longitudinal final state polarization without locking at
the polarization of the final state particles. However, to detect possible
small deviations from the standard model a high luminosity e*e™-collider,
with energy scan from the peak of the cross-section up to about 300 GeV,
is necessary.

PACS numbers: 12.15. Ji

1. Introduction

The main process to be measured at LEP 200 is ete™ — WIW~-
(see Fig. 1). It should provide the first direct experimental test of the
triple gauge coupling of the SU(2)1, xU(1)y non-abelian gauge group of the
electroweak standard model (SM) [1]. Up to now this coupling has been
tested only indirectly, through loop effects, at LEP 100. The loop effects
induced by possible deviations from the Yang-Mills structure are not easy
to distinguish from other possible non standard effects. However, since the
precision measurements at the Z-threshold agree excellently with theory,
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Fig. 1. The lowest order Feynman diagrams for the process ete™ — WHW—,

there is no much room left for deviations from the SM when going to LEP
200 [2].

In the limit of vanishing electron mass, m. = 0, where there is no
Higgs contribution to the lowest order cross section, given the experimen-
tally well established Wewr-coupling of the t-channel diagram, renormal-
izability uniquely fixes the triple gauge couplings WtW =y and WtW 2
present in the s-channel diagrams. However, in order to perform a model in-
dependent analysis, at least at tree level, the triple gauge couplings should
be parametrized in a most general way [23]. Any deviations from renor-
malizability, e.g. from the Yang-Mills form of the couplings, would usually
result in dramatic increase of the cross section at high energies, which would
violate unitarity [3]. This effect can be diminished if different ‘anomalous’
couplings conspire with each other. The cross section may increase also due
to other effects, e.g. presence of the extra heavy fermion family without
large mass splitting within a doublet, which is excluded by limits on the p
parameter. In this case the unitarity is restored only at energies above the
heavy particle threshold [4].

In order to disentangle the triple gauge couplings one has to face the fol-
lowing problems. First of all, the notion of form factors is meaningful only in
the ‘classical’ limit e.g. at zero momentum transfer or at the Z pole, where
the experiment can be set up in such a way that mainly the effect of a single
particle exchange is detected. For ete™ — WTW ™ we are far above the
Z threshold, electroweak unification is at work and v and Z contributions
conspire, which make it very difficult to separate them. Secondly, inves-
tigation of the most interesting ete™ — Wi'W[™ and etef — WTW-
modes in LEP 200 will be limited because of very low statistics. Moreover,
the s-channel contributions which contain the triple gauge couplings are
suppressed at the W-pair threshold and grow fast with energy. Therefore
to study them it is desirable to go to as high energies as possible. Since
transverse polarization is natural polarization in eTe™ storage rings, where
electrons and positrons tend to align in opposite directions with an external
magnetic field, it can provide an extra tool for studying the triple gauge
boson couplings. To achieve a 1% sensitivity to deviations from the SM one
needs high precision experiments which might require higher luminosities as
well as theoretical predictions at the same or even better level of accuracy.
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The latter implies that the radiative corrections has to be included in the
analysis of future data [5].

Since W-bosons are unstable particles, observed is actually the process
ete™ — 4f(y). Sufficiently above the threshold, ete™ — WHTW ™= — 4f(y)
with both W’s at resonance dominates and for the sake of the following
discussion we assume both W’s to be on mass shell particles. However, we
realize that this assumption is valid only at the level of a few per cent and
in the actual analysis of the data also the decays of W-bosons have to be
taken into account [6, 7].

In Sec. 2 of this talk we discuss polarized W-pair production cross sec-
tions together with virtual radiative corrections. In Sec. 3 transverse and
longitudinal asymmetries are defined. Bremsstrahlung and mass effects are
included in Sec. 4. Finally, in Sec. 5 we present SM results for various
polarized cross sections and asymmetries.

2. Polarized W-pair production cross sections and O(a)
radiative corrections

SM electroweak virtual corrections to the process
e+(p+,c"r)+e‘(p_,6)—> W+(q+75\)+W—(9—7A)’ (1)

where in parenthesis we indicated particles momenta and helicities, have
been calculated in [8-10]. The results of the two last papers agree in general
up to 10~ 4. The largest discrepancy of 0.3% appears at 500 GeV and 179°,
where the cross section is small anyway and one does not expect statistics to
be high enough for experimental accuracy to match this level of precision.

The polarized differential cross section for producing the W™ -boson

at angle # with respect to the electron and velocity Sw = 4/1 - 4M§V/s,
s = (p— + p+)?, in the ete™ centre of mass system (CMS) is given by

do(he; A, A) _ Bw
d(cosf) ~ 32ms

6
| S X3 Mi(he; 2,3 2, (2)
t=1

where X{*) = §(he)  glhe) plhe) x(he) and Mi(he; A N), 6= 1,2,...6,
he = 20 = +1, are Lorentz invariant and helicity amplitudes, respectively.
In the limit m. = 0, the nonvanishing helicity matrix elements are obtained
only for opposite electron and positron helicities, & = —o,

Mi(he; A 5‘) = 5(?-}-, —a')Oi“’Phe u(p-, U)EZ(Q«}-, ;\)53(9—’ ’\) . (3)
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In Eq. (3) Py, = '/2(1 + he7vs) are chiral projectors and Of”, i =1,2,...6,
are 4 X 4-matrix valued second rank tensors given by

O[].LV - [Tozg;w + 2(gp.aPu . g”aP“)]‘ya = Oi“’a')'a ,

0[241’ = (g[l.aPV . gVC!P;L)’Ya = Ogl/a’ya ,

PHPY
O} = —45=1%%a = 0§14,
oy’ = ie“""ﬁrma = 04" a, €o123 =1,
OF" = y*(p- —4-1",
QrQ”
e (4)

where we have used the combinations of particle momenta: P = p4 + p_,
Q = p+ —p- and r = g_ — ¢4+. We have eliminated the other two tensors
which were originally used in [10], so that the tensors listed in Eq. (4)
make up a complete base for representing the SM one-loop corrections to
ete” - WtW—.

In the Born approximation, which obviously determines main features
of the process under consideration, only the amplitudes Sii) and Tl(-) are
non zero. In the high energy limit, s - o0 (8w — 1, yw — o0), they have
the following form

2 1

s = Z [1- - 0

1(0 2 ’

(0) s 1 Nf,z

2 2

(=) _o+)_9° 1 g

51(0) - 51(0) 2 1 Niz - 25’
2 1 2 1

7<) _ 9 -9 _ - (5)

1(0 2 _ ]

(0) s H—flﬂ5 — By cos s 1—cosf

where the limits are understood as a leading behaviour in s. Moreover, for
the final polarization states with | AX |=| A — A |< 2, we find (see Ref. [10])

Ms(he; A, A) o 1— cosf

- , fi — —1). 6
M (hes A 3) 5 or y — o0 (8 — 1) (6)

If we insert the asymptotic forms of Eqs (5) and (6) to the sum on the right
hand side of Eq. (2) which, dependent on the initial electron polarization,
takes the form

— Y - 3 + 3
S Ma(=i A0 + Ty  Ms(—5 A, 3) or SiyMi(+i 0,
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we will see how gauge cancellations work already at the level of helicity am-
plitudes. For AX = %2 the s-channel helicity amplitudes vanish and there
is no gauge cancellations between the s- and t-channel contributions. This
is the main reason why the transverse-transverse (TT), A = +1, A = %1, fi-
nal state polarization is the dominant contribution to the unpolarized cross
section. In the high energy limit only this and the longitudinal-longitudinal
(LL), X = X = 0, mode survive. In the m, = 0 limit, the helicity amplitude
of the right-handed initial state polarization (ke = +1) does not contain
the dominant t-channel contribution since the evW-coupling contains only
the left-handed chiral projector and the gauge cancellations take place only
between the v and Z s-channel contributions. Thus, given the W W~y
coupling which is fixed by electromagnetic gauge invariance, by measuring
the right-handed cross section, we could fix the unknown WTW =2 cou-
pling. However, the mode e+e£ — WTW ™ is suppressed by two orders of
magnitude with respect to the unpolarized cross section, which would make
it very difficult to measure the cross section for this polarization.

In the one-loop order the s-channel amplitudes Sgi), veey S‘Ei) receive
contributions from - and Z-self energies, ete -, ete~Z-, WHW ~7- and
W+ W ~—Z-vertices as well as from ‘boxes’. The t-channel amplitude Tl(—)
gets contributions from the neutrino self energy, evW-vertices and ‘boxes’,

whereas T1(+) and Xé:t) are pure ‘box’ amplitudes. Only the amplitudes

Sgi) and Tl(") which are present at tree level contain ultraviolet and in-
frared divergences in the one-loop order. Renormalization is performed in
the G ,-scheme [10], where physical particle masses and the Fermi coupling
G, determined from muon decay are used as input parameters.

The triple gauge boson vertices W+ W ~y and W+ W = Z at the one-loop
level of the SM can be parametrized in the following way [11]:

ML = icy[AY O + A 04" + A{ 04" + 4 05%°],  (7)

where V = 7,7, ¢, = e and ¢z = e(cos Oy /sinfy ), Oy being the weak
mixing angle. Because of the box contributions, form factors AY depend
both on s and ¢t = (p— — ¢—)%. The one-loop induced SM vertices of Eq. (7)
conserve the combined Landau parity CP. If one admitted the CP vio-
lation there would be three W+W —«v and three Wt W~ Z form factors in
addition [12]. With parametrization (7) and definitions (4) each s-channel
amplitude picks up exactly one form factor. The form factors contribute to
helicity amplitudes, squares of which are measurable, in different combina-
tions, dependent on polarization state [17].
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(") . . I) — he 2 EY
> xOm-ia% = obs ) { & (1700 - T

i=1

2 4 b
g2 HZ (M) S (=) _}
—t = — T Ms(—3 A A
21—-M%/3 ﬂW 1 5( [R4t] ) +

6 z 3
3 X Mi(+:0,3) = Che (6) € 3y _ HI(AA)
Xi M,(—{-,)\,)\)-CA’,-\(e)e (H;Y(A,/\)—I—:M—%/; +..., (8)

=1

where C;‘L"S‘(G) =‘\/§ﬂw7?,‘;'|kl"|xldi‘:,A,\(0) with vy = (1 — ﬂ%v)—% being
the Lorentz factor, d‘,{‘e’, ax(8) arotation matrix by angle 8 around the second

axis, AX = A — X and Jy = max(| ke |,| AX |); M5(——;/\,:\) is a reduced
helicity amplitude defined by '

Ms(—; 0, %) = Cy55(6) Ms(—5 A, 3) (9)

and H,V are dependent on final state polarization combinations of the form
factors given by

HY(0,0) = (2+757)4Y +24] - By AT,

H,;V(:t, )= AY’

HY (£,0) = 241 + A} F pwA{,

HY(0,%) = 241 + 47 + fw4y,

‘H‘L‘/(i’ :F) =0. (10)
As it has been shown in [13] the terms denoted in Eq. (8) by the ellipsis
can be safely neglected in the energy region from the threshold up to 1
TeV. We would like to stress once more that the SM form factors AY of
Wt W ~V-vertices contain also contributions from other radiatively induced
vertices as well as self energies and ‘boxes’. The amplitudes H and HF

are determined relative to each other and the SM v-exchange contribution.
Notice that near the threshold, where Sy — 0, the terms containing H'
and H f in Eq. (8) are suppressed by factor Sy. Similarly, the contributions
of form factors Ag and AX are suppressed by ,B%V and Bw, respectively.
From Eq. (8) we see that the gauge cancellations in the one-loop order work
like the ones at the tree level.

In the limit m. = 0 we have 2 x 3 x 3 = 18 polarized cross sections. The
CP-invariance which is satisfied in the one-loop order of the SM implies the
following relations between the helicity amplitudes

M(o,5;0, ) = M(=&,—0; -, =)). (11)
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Eq. (11) reduces the number of independent helicity amplitudes to 12. This
is also the number of independent polarized cross sections. The possible CP
even deviations from the SM couplings WtW ~y or WHW—Z add to the
loop induced form factors. If the C' P violating couplings were present one
would observe deviations from the relations implied by Eq. (11)

a(he; R —) _ O’(he; —,0) . U(he; 0’ _) _
a(he;+1 +) U(he;oa +) U(he;+,0)
The 4 TT (AX = £2) polarizations do not contain contributions from
the interesting s-channel amplitudes. Thus, there remain 8 polarized cross
sections, which, in principle should be enough to determine 8 independent
form factors AY, i=1,...4, V = 4,Z. However, many polarized cross
sections are substantially suppressed (see Fig. 4). The best possibility to
determine them seems to be a detailed investigation of the ete™ — WTW—
peak around 200 GeV up to about 300 GeV with a factor 100 increased
luminosity compared to LEP 200. However, if deviations from the SM
couplings are present, new high energy ete-colliders will have a much
higher sensitivity to them.

1. (12)

3. Transverse polarization

For natural polarization in et e~ storage rings the polarization vectors
of the electrons and positrons point in opposite directions due to the different
sign of the respective magnetic moments. For the sake of the following
discussion we fix our reference frame in the ete~ CMS such that the z-
axis is alined with the e -momentum, y-axis is antiparallel to the external
magnetic field of the storage ring and the z-axis points from the centre of
the ring outwards as it is illustrated in Fig. 2.

b
g
Fig. 2. The reference frame for polarization.

Let us consider first the transition amplitudes for collisions of arbitrarily
polarized beams [14]. In the helicity base the electron density matrix is given

by
1+&"P_l 1+-PL 1)'1‘6_1‘¢
2 T Z\Pretit 1-P

Poo! =

(13)
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with P = (Pr cos ¢, Py sin ¢, P), P, the longitudinal polarization and Py
the magnitude of the transverse polarization. The density matrix for the
positron has the same form with corresponding polarization vector P =
(P cos¢', —Prsing', P| ) and polarization angle ¢’. We note that |P| =
((Pr)?+(P)?)*? < 1and |P| = 1 for a pure state of complete polarization
in a given direction. The square of the matrix element for polarized beams

is
IMZ =" poorbas Moz M}, (14)

where M,; are the helicity amplitudes, which are xndependent of ¢ and ¢'
but depend on the azimuthal production angle ¢y of the W—. However,
we may perform a rotation around the beam axis (z,y) — (z',3') such
that the amplitudes can be evaluated at zero azimuthal angle as usual (see
Sec. 2). Doing so we have to replace ¢ — ¢ — ¢w and ¢' — ¢' + dw.
Substituting expressions for the electron and positron density matrices to
Eq. (14) and making use of the fact that in the limit m, — 0 only the
amplitudes M_ = M_, and M, = M, _ are nonzero, we obtain

M2 =5 [(1 - PLA) (IM4? + IM_?) + (P, - B) (IM4]? - [M_]?)

+ (2PrPg) (cos(A¢) Re(M4 M2 ) + sin(A¢) Im(My M2))] (15)
where A¢p = ¢ — ¢' — 2¢w. The last term proportional to Im(M M?*) is
CP-violating. .

For natural polarization in a storage ring we have Pr || —H and Py || H
such that ¢ = ¢' = 7 and hence
IMP? = {(1- PLPL) (IM4 ]2 + M- 2) + (Po - Pp) (IM]* - |M-]?)
+ (2PrPg) (cos(2¢w) Re(My M?*) — sin(2¢w) Im(M4 M2))] (16)

Thus with unpolarized beams one measures |[M_|% + |M;|? via the cross
section

do d
dcose 3 (chsG + dcosO) = bdns (IM 12 + IM+| ) (17)

with polarized beams one can measure |[M_|* — |[M;]? via the left-right
asymmetry Apr defined by

d(o ALR) dop, _ _dog
dcose %(dczso dc((’)so) = 6ans (|M—|2 |M+I2) ) (18)

while Re(M4M?*) is measurable with transversely polarized beams from
the azimuthal asymmetry At defined by

d(o A7) __/
dcos@ ) dcosfdow
0

cos 26w dw = azﬂ;;z Re(MyM2). (19)
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Fig. 3. Contributions from TT, LL and LT + TL final states to transverse asym-
metry c At at tree level.

A transversely polarized state is a linear combination of the two helicity
states and therefore transverse polarization provides an interesting possibil-
ity to measure the relative phase of the helicity amplitudes. However, to the
extent that the electron is massless, the leptonic chiral symmetry implies
that the transversely polarized cross-section averaged over the azimuthal
angle is equal to the total unpolarized cross-section. Any deviation from
this ‘sum rule’ is a clear signal for ‘new physics’ which breaks the leptonic
chiral symmetry [15].

Properties of the transverse asymmetry oAt defined in Eq. (19) can
be again understood from its Born approximation [17] (see Fig. 3). The
TT final state with AX = +2 does not contribute since M(+;+£,F) = 0.
Contributions of the final states with one longitudinal and one transverse W-
boson (LT and TL) cancel each other. In the result the sum over final state
polarizations is dominated by the LL polarization. Thus, the transverse
asymmetry probes the most interesting LL mode without analyzing the
final state polarizations. Unfortunately, | A | is rather small, of the order
of 1%. At LEP 200 it thus can be measured at best with 10% accuracy.
Numerical comparison with og performed in [17] shows that o A is slightly
disfavoured at LEP energies but wins above 400 GeV.

4. Bremsstrahlung and mass effects

In order to cancel the infrared divergence of the one-loop virtual cor-
rections the soft hremsstrahlung cross section has to be added to the virtual
corrected one. In that way also the large Sudakov double logarithms are
cancelled. The soft bremsstrahlung correction to differential cross-section
(2) has been calculated in an analytic form in [9, 10].
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As the hard bremsstrahlung process et e~ — W+ W 7, where the pho-
ton goes into the beam pipe, has energy grater than the soft photon cut E .y,
but still below a detection threshold, or cannot be experimentally distin-
guished from the decay product of the W’s, can imitate the final state of
process (1), the corresponding correction has to be taken into account, too.
The helicity matrix element of the hard bremsstrahlung process has been
calculated using the method developed in [19]. The phase space integration
has been done with the use of the Monte Carlo routine VEGAS [20], which
allows to incorporate kinematical cuts in an easy way. During the integra-
tion care has to be taken in order to diminish an effect of the peaks which
arise for the photon collinear to the beam, for the low energy photon and, in
the high energy range, for the W™ -boson collinear with the electron beam.

Of course, the sum of soft and hard bremsstrahlung corrections has to
be independent on E.y;, which has been in detail checked in [18] and [16]
where the hard bremsstrahlung correction has been added to the existing
calculations of electroweak corrections of [9] and [10], respectively.

Since we are mostly interested in the kinematical situation where the
photon is collinear to the beam, we have to take into account the non zero
electron mass correction. The latter arises when the scalar product (kp)
of the photon and electron or positron momenta, k and p, respectively,
appearing in denominator of the matrix element becomes of the order of
m?2. Remind that terms containing powers of m, has been neglected up to
now. In case of polarized beams this correction has been studied extensively
in [21]. For the photon parallel to the electron or positron, the polarized
matrix element squared which accounts for the non zero m, correction can
be expressed in terms of the matrix element of the non radiative process with
m, = 0 and appropriate change of the momenta and polarization vectors.

2
Z 2 € Z 2
IMrad,me;/-'OI - (kp)(l _ z)A lMoime=0|p__,p_k,15_,ﬁ(eﬁ‘) ) (20)

where

1+(1-2)2 m?

A= (- a),
(o) _ L f1+(1-2) mg. . oo
PL ‘A{ z kp(l :l:+:l}) 9
ple) _ 1 2(1"”)_’“_3(1_3) (21)
T ~ 4 z kp ’

with z = k%/Ep.am being the fraction of beam energy carried by the pho-
ton. We have checked numerically that the replacement of the polarization
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components by the effective ones changes the result at the CM energy of 200
GeV by at most 0.0004% which is more than 3 orders of magnitude below
the expected accuracy of the LEP 200. Thus the change to the effective
components of the polarization vector, which depend both on z and cos¥é.,
with 6y being the photon angle with respect to the beam, can be safely
neglected. This allows to save a computer time during the MC integration
since the results of the integration can be combined with different degrees
of the beam polarization.

5. Standard model results

As it has been shown in [10] and [16] O(a) corrected results depend
very little on the renormalization scheme choice. Therefore in Figs 4-8 we
present the results in the G,-scheme only. The relevant parameters used
are

G, = 1.166389 10~ GeV~2,

Mz = 91.176 GeV, my = 100 GeV, me = 130 GeV.

This gives My = 80.151 GeV. The values of the remaining fermion masses
are the same as in [17]. For the evaluation of the one-loop integrals we have
used the package FF by van Oldenborgh [22].

Ay (PD)

Oyt (PD}

Fig. 4. Lowest order versus O(a) corrected cross sections including hard brems-
strahlung without kinematical cuts. Shown are the total cross section for unpo-
larized beams, with the individual contributions from TT, LL and LT + TL final
states, and the total sections for left- and right-handed electrons.
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In Fig. 4 we show the lowest order and the O(a) corrected cross sec-
tions including hard bremsstrahlung without any kinematical cuts. The
plots show the total cross section for unpolarized beams, with the individ-
ual contributions from TT, LL and LT + TL final states, and the total
sections for left- and right-handed electrons. For all the cross sections, the
O(a) corrected results are smaller than the corresponding Born order cross
sections near the peak and, at some value of the CM energy, they become
slightly bigger than the lowest order results. This can be easily understood
in terms of the Bonneau-Martin formula [24] which expresses the total pho-
ton corrected cross section in the leading logarithmic approximation by the
radiator function times the lowest order cross section calculated at the re-
duced CM energy s' = s(1 — z). At the threshold, where the cross section
raises steeply, despite the fact that the emitted photon is rather soft, a small
shift of the energy scale to lower values results in substantially smaller value
of the radiatively corrected cross section. Similarly, for high CM energies,
the emission of a very hard photon shifts the energy scale to lower values,
where the lowest order cross section is bigger, and this time the radiatively
corrected cross section becomes bigger than the Born one. The lowest fig-
ure illustrates a suppression of the right-handed initial polarization by two
orders of magnitude relative to the left-handed polarization.

aAg (pb)

aAy (pb)

E

GaV)

.o

Fig. 5. Left-right asymmetry cd ALg and transverse asymmetry cAr. The O(a)
corrected asymmetries include hard bremsstrahlung without kinematical cuts.

In Fig. 5 the left-right asymmetry o A1 g and transverse asymmetry o Ay
are shown. The O(a) corrected asymmetries include hard bremsstrahlung
again without kinematical cuts. Since the left-right asymmetry differs from
the unpolarized cross section only by the contribution of the right-handed
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initial polarization (see Eqs (17) and (18)), the two quantities look very
much alike. In the upper figure we assumed 100% longitudinal polarization
and in the lower one, the maximal values of the transverse polarization
Pr = Py = 92.4% [14].

d(0A R)/d(cos®)  (pb)
dioAp)/dicos®)  (pb)

dloA p)/dicos®)  (pb)
dlioAy)/dicos®)  (pb)

8 g -ao
<<<<<< [ =
s ™ — O ta) ~ a2
2 @
S 8 om
3 ™ ]
R °
3 S e
3 X
- -
E 0% E 0.5
T s
0.06
N 0 @ . W M w0 0 180 2 W @ % 100 ™ w0 1w
0 e, (dw) 8 g (de)
. .
Fig.6 Fig.7

Fig. 6. Lowest order versus O(a) corrected left-right asymmetry d(o ALr)/dcosé
as a function of the production angle. The hard bremsstrahlung is included without
kinematical cuts.
Fig. 7. Lowest order versus O(a) corrected transverse asymmetry d(o At)/dcosé
as a function of the production angle. The hard bremsstrahlung is included withcut
kinematical cuts.

In Figs 6 and 7 the lowest order versus O(«a) corrected left-right asym-
metry d(o ALp)/d cosf and transverse asymmetry d(c At)/d cos, respec-
tively, are shown as a function of the production angle for the CM energies of
170, 200 and 500 GeV. Again the hard bremsstrahlung is included without
kinematical cuts. Finally, for comparison, in Fig. 8 we present results as in
Figs 6 and 7 for the longitudinal-longitudinal (LL) final state polarization.
While, for high energies, the left-right asymmetry and the LL cross section
become strongly peaked in the direction of the initial electron, the trans-
verse asymmetry assumes largest absolute values for larger angles. This can
make the detection in future high energy accelerators easier.
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Ecn. - 70 (Gev

dlo}/d{cos®) (pb)

» L) L 0 0 120 W 160 190

3.5 Ecop, = 200 GeV)

d{ao}/dicas®)  {pb)

0 W & 80 W X Ko 160 180

. = 500 (GeV)

digy)/dlcos@) (pb)

. 20 ] L] ] 100 120 1%o 180 180
8o ()

Fig. 8. Lowest order versus O(«a) corrected longitudinal cross section doj/d cos@ as
a function of the production angle. The hard bremsstrahlung is included without
kinematical cuts.

We conclude that beam polarization provides an indispensable tool for
studying the non-abelian structure of the SM of electroweak interactions.
Especially the transverse beam polarization allows to study the most inter-
esting LL polarization of the W bosons without analyzing polarizations of
their decay products. Therefore, we strongly recommend to make efforts in
order to measure transverse polarization at LEP 200 and in future colliders.

The author would like to thank the organizers of XVII International
School of Theoretical Physics for the invitation and kind hospitality.
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