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The present status of the calculation of the electron g — 2, the anoma-
lous magnetic moment, is reviewed. An outline of the methods used in
analytical calculations is given, together with a detailed exposition of the

“natural variables” required to rationalize square roots of integrals re-
quired.

PACS numbers: 12.20. Ds, 14.60. Cd

1. Premise and general problems

Electromagnetic vertex for a mass shell electron and a photon of arbi-
trary momentum A is written®

v#(P’A) =
(~e)ia(p - 1) (- A% - 75 (- A0 rud— dn) s+ 34),
(1.1)

* Presented at the XVII International School of theoretical Physics “Standard
Model & Beyond '93”, Szezyrk, Poland, September 19-27, 1993.

1 Metric is 8, p,» = 1,2, 3,4. For instance, an electron on mass shell has mo-
mentum p, = (7, p4) = (9,%P0), PuPu =| P |° —p3 = —m® and its propagator
is: (_i);)—:f—m?'

(1361)
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where —e, m are the electron charge and mass, 42, u; the spinor wave func-
tion of final and initial electron, and pF 1/ A their four momenta. Fj(—A?)
and F;(—A?) are the Dirac and Pauli form factors, depending only on
-A% = A2 | A |2, the moment transfer.

Renormalized perturbative QED expansion gives them as power series in
a/n, a being the fine-structure constant [1]:

P-4 =1+ Y (2)"FiV(-a2),
n=1

Fp(-A%) = i (%)npz‘“)(—m), (1.2)
n=1

hence to zero th order in a one has simply:
Fi(-AY) =14 0(a), Fy(—-A4%) =0+ 0(a).

Conservation of electric charge requires Fy(0) = 1, F; being the whole,
physical, renormalized Dirac form factor at zero momentum transfer, i.e.
—A? = 0. A practical rule for renormalizing Dirac form factor is to sub-
tract from it its infinite value at zero momentum transfer; the form factor
so obtained satisfies F;(0) = 1. On the contrary Fj(—A?), Pauli form fac-
tor, needs no renormalization: it vanishes at zero order, but not at zero
momentum transfer, and it is a pure radiative correction.

As it is well known, the anomalous magnetic moment of the electron
is: pe = lfgpy, where py is Bohr magneton. One has from QED: g =
2(F1(0) + F(0)). At zero th order in o due to (1.2) one has g = 2, but, at
—A? = 0, according to radiative corrections and the condition F;(0) = 1,
one has ¢ = 2(1 + F>(0)). It is preferred to define the “electron anomaly”
a. so that

ac = F(0) = 3(g-2). (1.3)

From (1.2) one has then that also the “electron anomaly” a. is expressed
as a power series in a/7 :

= S e (2)". (14)
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2. Experimental and theoretical values

a) Experimental Values:

The anomalous magnetic moment of the electron and of the positron
have been measured by Van Dyck, Jr., Schwinger and Dehmelt up to 0.004
p.p.m. [2-4], using Penning trap technique:

al™ = 1159 652 188.4 (4.3) x 10772,

al}® = 1159 652 187.9 (4.3) x 1072, (2.1)

Experimental error in (2.1) derives from several sources. Statistical error:
0.62 X 10712, error due to microwave power shift: 1.3 x 1072, error due to
cavity shift: 4 x 10712,
The same experimental group obtained a new better result constructing
a hyperboloid cavity to avoid strong coupling of electron with the resonances
of the cavity:
at*P = 1159 652 185.5 (4.0) x 10712, (2.2)

A precision of 0.0005 p.p.m. is expected.

It is worth while to note that the equivalence of the values for e~
and e is one of the best proofs of charge conjugation. Such an accuracy
demands comparable or better theoretical precision to become perhaps the
most precise test of QED, or the QED definition of a (which would be now
the most accurate) to be compared with the determinations offered by the
new solid-state effects.

b) Theoretical Values:

In perturbative QED a. is written [4]:

_A1+A2( >+A3( )+A4(m" me) (2.3)
my m, my,’ m.

and each term A, k = 1,2, 3,4, can then be expanded as a power series in
a/nr (1.4):

O N AT O NG AN O NN O N LAY _

Ay =l (W)—i-ak (W) +a§ (W) +af (W) +..., kE=1,2,34,
: ' (2.4)

where ain), k=1,2,3,4and n = 1, 2,... are numerical coeflicients free from

infrared divergences.

First and second order coefficients of 4, a
analytically since a long time [1, 5]:

(

2
and a, ) , have been known

(1)
1

o) = 144 +1¢(2) + 3¢(8) - 3¢(2) 1g(2) = —0.328 478 965. (2.5)
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oo
. .. 1
Riemann {(n) function is used: {(n) = Z —, n=23,...
p=1
whose values are (analytical values are known only for even integers argu-
ments):

2

¢(2) = 1.644 934 067 ... = % ¢(3) = 1.202 056 903 ...,
4

((4) = 1.082 323 234 ... = %6 ¢(5) = 1.036 927 755 ...,

¢(2n) = const 72"

The values of third and fourth order coefficients a3 and a4 are known only
numerically [3, 4]:

a{®) = 1.176 13 (42) (error 0.04%),
a{ = -1.434 (138)  (error 10 %). (2.6)

Third order coefficient a(lz) consists of 72 Feynman Graphs (40 of them
different) belonging to 3 different sets:

1) 6 light light graphs, recently evaluated in close analytic form [11],
2) 16 vacuum polarization graphs, known analytically [6],

3) 50 three photon ezchange graphs ({3, 4, 7-9] and references therein)
subdivided into three topological families:

3a) twice reducible diagrams (no crossed photon lines), known analytically,

3b) once reducible diagrams (2 crossed photon lines): many are known an-
alytically, but the whole family is known only numerically,

3c) irreducible diagrams (3 crossed photon lines), known only numerically.

Fourth order coefficient a(14) consists of 891 Feynman graphs, and its
calculation can be done only numerically, not only due to the number of
the graphs, but also for the essentially elliptical nature of required integrals
[3, 4]. Some simple graphs have been calculated analytically mainly to check
numerical calculation of the whole [10].

Higher termsin a/~, a(ln), n > 5, are too small to be significative at present.
It seems impossible as far to now to calculate them also numerically, nev-
ertheless some simple graphs have been calculated (analytically or only nu-
merically) [10].
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Summing up the results (2.5) (2.6) and using the most precise available
value of a from Quantum Hall Effect (QHE) [12]:

a”1(QHE) = 137.035 997 9 (32), (error 0.024 p.p.m.) (2.7)
one has [4]:
Ay = 1159 652 136.2 (5.3)(4.1)(27.1) x 10712 (2.8)

Error in the value (2.8) of A; derives (3, 4]:

5.3 x 10712 from ags) ,

4.1 x 10712 from a(14) ,
27.1x1071?  from a.

It is worth while to note that the error is dominated by the error of a.

Other QED contributions to electron anomaly are [3, 4]:

1 me ,ray? —12
Az( p meson) = +45(m,,,) (r) ~2.804 x107°°,
Aj3( 7 meson) ~ 0.010 x 1072, (2.9)

The most significative not QED contributions are

a(hadrons) ~ 1.6(2) x 10712,
a(weak) ~ 0.05 x 10712, (2.10)

The importance of the hadronic contribution has to be noted.
Other terms, 44 and further not QED contributions, are to small to be to
be significative at present.

Summing up the results of (2.8), (2.9), (2.10), the theoretical value of
a,- becomes [4]:

a™ = 1159 652 140.7 (28) x 102 (2.11)
which agree within 1.7 standard deviation with (2.1) and (2.2). It is worth
to note that the theoretical error is larger than the experimental error: it
becomes then necessary to improve the theoretical value!

As the error is still dominated by the error of a, to have a better test
of QED it is necessary to improve the value of a. Conversely it is possible
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to obtain the value of a comparing the experimental and theoretical values
of a. to get [4]:

a”1(QED) = 137.035 992 22 (94) (error 0.0069 p.p.m.)  (2.12)
which is better than previous non QED results (2.7).

3. Techniques and algorithms
3.1. Form factor decomposition

To calculate electron anomaly it is enough to know the off mass shell
vertex amplitude up to the first order in the photon momentum and to
expand it with respect to A for an arbitrary p [7]:

Wa(p, 4) = Vul(p) + AT () + .. (3.1.1)
On invariance grounds the following decomposition hold:

vu(p) Vivu + V22{7;u g+ 1} + ngp”(zj +1) + V42 [7m iy +1],
;w(p) =T 51[7;;’ 7V] + TZZ{[’Y;A’ 1), 7} + T3z[p#, 7o)y + T4 3 2[{#;“ Yo} 7]
+ T5i6p.u + st-;wﬂ + T7ip.upu + TBP;LPV# + TQ[P;M 7u] + T]O{p;u 'Yu} y
(3.1.2)

where [A,B] = AB — BA, {A,B} = AB + BA, and electron mass = 1
everywhere.
Having already taken the A — 0 limit, all the above factors depend only on
the variable u = —p?:

Vi = Vi(u) i=1,...,4,

T; = Tj(u) j=1,...,10. (3.1.3)
Moreover, due to charge conjugation, V4 =0 and T; = 0,7 > 5.
Closing W, between spinor states and comparing with usual expression for

the vertex in the case of mass-shell electrons and arbitrary photon momen-
tum (1.1), one finds that the anomaly is:

a = F(0) = Va(1) — 2Ty (1) — 2T3(1). (3.1.4)

To obtain V;, T; to be used in (3.1.4) one has to work out, by a straightfor-

ward but cumbersome calculation, projectors P:;(p), ng(p) to obtain form
factors by a suitable trace:

V; = Tr{P‘ V,L(p)} i=1,...,4;
T; = Tr {P.,(p)T.(p)} ji=1,...,10. (3.1.5)
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These projectors are found to be:
Vectorial Projectors for V,.(p)

1 1 2 . 4
Pp(P)—sz‘ (p +1)7u+3zpu—(17+1)1’u# ,

1 (4 .
P(p) = ( —=pulf - 3210,4—7“),

12p?
Pip) =15 2( I%pyz/) ,
Py(p) = Ei;;(p# —z/m) : (3.1.6)

Tensorial Projectors for 7. (p)

—1

(— 397 V1] + Hlpss 7v]) ,
el + mevul)

1yl + 2y[pu,7u1),

(-
(
Pi(p) = 24_;2( 2p Py +zf{pu,7u}),
(
(
(

1
Pﬁ,,(p) = 1_2'1')_( —-p d‘s;w + deupv p [P;n')'u])
1
Pﬁu(p) - 24p2 [p;u')'y],
P1(p) = -2 2 3.1.7
v (P) = 247\~ YPuPy + P [Pu, 1] ) (3.1.7)

As already stated, once the A — 0 limit is taken, all the above factors
V,T (3.1.4) depend only on the variable u = —p?, like the form factors

Se(u), k=1,2 (3.1.8)
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of the self-mass amplitude:
iS(p) = i(ig + VIS1(w) + (iF +1)S2(w)], (3.1.9)

where mass renormalization has been carried out, but not wave function
renormalization. Of course also self-mass form factors can be obtained like
(3.1.4).

Sk(u) = Tr {P*(p)iZ(p)}, kE=1,2 (3.1.10)
and respectively:

Scalar Projectors for :X(p)

; _if +1
Pl(p) = —34?((1’2 - 1)"p2—+“1—+1),

P%(p) = "Z%(:p%tfl - 1). (3.1.11)

In the A — 0 limit the only differences between vertex and self-mass are:
i) strings of y—matrices in the numerator, giving different polynomials in
the external and loop momenta when the form factors are projected;
ij) square denominators in the vertex amplitudes. As the main difficulties
in analytical calculation come from denominators, the “core” of the an-
alytical calculation is to handle them, and it important to be able to
handle them in a simpler form. One has, for instance, that the denom-
inator of the electron-propagator just before and after the emission of
the external photon can be expanded in A:

1 1 pA

(;»i%A)2+1_102+1:F(102+1)2
1 1 1

= 0(42%).

priaf+np=tar+y @+ o)

+0(4%) =

Integrals with square denominators can be calculated as derivatives of suit-
able single denominators

1 0 1 1
d'p ... = - d4.“( - )
/ p (p? + 1)2 o2 P p?+pu?  p?+ M2 ,ﬂ:l’
where the exchange between integration and derivation is allowed, and
Pauli-Villars counter term is only for convergence, and does not play any

other role.
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When a suitable analytic expression for the self-mass form factors is
obtained, vertex form factors can then be derived by “straightforward” op-
erations, such as rearranging terms and taking derivatives with respect to
intermediate masses.

The knowledge of the “off mass shell” amplitudes permits also their
insertion in more complicated graphs, being careful of infrared divergences.
It becomes then possible to calculate separate single “subgraphs” and to
“assemble” them in the complete graph. This technique allows, for instance,
a rather simple evaluation of “multiple-ladder” graphs [10], which were the
most difficult using old methods [1].

8.2. Integration

In principle one has the standard dispersion relations:

F(-¢®) = %/ q—j—:—u Im F(u), (3.2.1)

where F may be any of V, T, S (3.1.3) (3.1.8) and discontinuities are taken
according Cutkosky-Veltman rule [13] before performing the (—8/du?), if
necessary. Subtracted relations are used if necessary, and, as usual, infrared
singularities are parameterized giving fictitious mass A to photon.

If the number of graphs increases too much and the most complicated
structure can be isolated, it may be convenient to Wick rotate dpy and use
hyperspherical integration [ dpidp;dpsdps for peripheric propagators [9].

These techniques permit to control ellipticity and divergences. About
ellipticity, although there is a lot of radicals involving integration variables,
they are all of the kind:

R(a,b,c) = Va? + b2 + ¢ — 2ab — 2bc — 2ac, (3.2.2)

which is the usual “phase space root”. The integrations can be conveniently
done by introducing the “natural variables” {1, 7, 9] which allow their ana-
lytical evaluation (if the roots are not too many!). The choice of the suitable
“natural variable” depends on the integration range, determined by the val-
ues of a,b. For instance, given the complete root of eq. (3.2.2), when
a € [(Vb++/c)?, 0| , i.e. over the threshold, one has to perform the change
of variable:

a=+_\/z§ (”‘*‘\/g) (z+\/§) — 2o +(+a—b—c;;£(+a,+b,+c)
(3.2.3)
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to have:
Ve

R(a,b,c) = T(l —z?). (3.2.4)

Typical integrals can then be rationalized in the following way:

+oo 1
da dz
| frem@= [ EraE), 629
(Vh++/)? 0
+ oo
da 1

R(+¢, +b, +¢)
(Vb++/c)?

; /1 d—’”( LI f(a(w))), (3.2.6)
0

R(+a1 +b, +C) a-— qf(a) -

where:

g—b—-cx R(+q,+b,+c¢)
=+ s _ = +41.
9+ ov/be q+9q +

Such changes of variables must be done as late as possible, because due
to them the number of terms increases enormously also for computer, and
moreover it becomes extremely hard to control fictitious divergences arising
from separate calculation of integrals. It is then essential to manipulate
integrals in their elliptic aspect as far as it is possible, and to find relations
to calculate analytically groups of integrals which would be one by one
elliptic.

When the suitable method has been chosen, analytical calculations [1,
6-10] are performed using powerful and fast algebraic computer programs:
SCHOONSCHIP [14], by Veltman, on CDC and (now) on SUN computers,
ASHMEDAI by Levine on VAX computers and now FORM by Vermaseren
[15] on VAX computers (an PC’s too). Numerical calculations [3, 4] are
done using the adaptative Monte Carlo integration routines RIWIAD and
VEGAS [16].

3.3. Nielsen polylogarithms

Multiple integration of logarithms required by the calculation of Feyn-
man graphs requires the knowledge of a special class of functions, the Nielsen
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Polylogarithms [1, 9, 17}, defined as:

~1)(ntp=1)
Snp(z) = (=1) / dt lg" 1 tigP(1 - zt) n,p>1. (3.3.1)

(n—1)p! t
0

For p = 1 one defines:
Lz’n(:c) = Sn_l,l(z) , (3.32)

that when n = p = 1 reduces to the Fuler Dilogarithm:

1 T

, 1g(1 — zt) lg(1-t¢)
51,1(3:) = ng(z) =—dt | ———FL=—dt | —— (3.3.3)
[T

which is strictly related to the so-called Spence function, defined usually as:

T

#(z) = / ?-gﬂt—*i)dt = —Liy(~z) + Liz(~1). (3.3.4)

It has been introduced (see, for example, [18] and references therein) also
the Rogers Dilogarithm:

L(z) = —%]dt (lg(l -1, lg(t)) : (3.3.5)

t 1—~t¢
0

that, using Euler Dilogarithm, after a simple partial integration reduces to
L(z) = Liz(z) + 1 1gz1g(1 - z).

One has the most important rules (often not enough pointed out)

1 ¢ dt
Sn,p(2) = —Sn1,5(2) S Snp(t) = Snt1p(z).  (3:36)

0

4
dz

The possibility to extend to usual logarithms these rules, defined above only
for n,p > 1, also to n = 0,p > 1 defining

So,p(2) = (—plg)P lgP(1 -z), (3.3.7)
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suggests the introduction of a classification of the “trascendentality”, the
Logarithmic Degree (LD):

LD {Spp}t=n+p, (3.3.8)
giving LD to products of logarithms according to the usual rule
LD {lgPt(...)1gP?(.. )} =p if p1‘+p2 +...,
extended to
LD {Sny,p1(-+-) Snppa(-- )} =m1+p1+n2+p2

and to
LD =20

for pure algebraic expressions.

LD is conserved in algebraic transformations of the argument, like z —
1-2z, 2z — 1/z, ..., integrations by parts or sums and decomposition, but,
due to (3.3.6), LD is increased by 1 by non trivial integrations (i.e. not by
part) and s decreased by 1 by differentiation:

1 1 1
LD {/d:c (;,m,m,) S(a:,LD-n)} —n+1,

LD {ad;S(:c,LD = n)} =n-1. (3.3.9)

This structure suggests to handle “pure logarithmic expressions”, i.e. ex-
pressions which are sum of addenda having the same LD (logarithmic de-
gree), to obtain simpler and more ordered calculations.

3.4. Algorithms for analytical calculation
As stated above, it is better to handle “pure logarithmic expressions”

[9, 19]. After some algebraic manipulations it is possible to write required
integrals in one of the “standard” forms:

a3z
da
F](q,b,C) = / mi(aa b,C),
al

asy p
Fy(g,b,¢) = R(q,b,c)/ R(a,(:), 3 (ai J fla,b,¢), (3.4.1)
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where R is the usual phase space root (3.2.2) and f(a, b, c) is either a rational

function or (a,b) + B(a,b)R(a, b,¢)
ala, @ ot
(a,b,c)=1g afa, b) — B(a, b)R(a, b, c)

and a, 8 may be either radicals or functions having logarithmic degree lower
than F(qg,,¢).

Performing the change of integration variable from a to z (the “natural
variable”), one obtains:

z2(a2)
d
Fl(Q» b, C) = / —Ef(a(z):b, C)s

z1(a1)

z3(az)

Babd= [ E( 2o - i)

z-q4+ 2—q-—
z1(a1)

It is clear due to (3.3.6) that if f(a,b,c) has pure logarithmic degree, inte-
grals (3.4.1) have themselves pure logarithmic degree, and precisely:

LD{F]} = LD{FI} = f(aab,c)’
LD{F;} = LD {F2} = f(a,b,c).
It is worth to differentiate them to have lower LD expressions:

b= 5 [ mgronn) = (5279

a=ay
al

+7 da_ [0f(a,b,¢)  a+b—c 0f(abc)
R(a,b,¢c) ob 2b fa ’
a]

ay
a a da 1
&'F2(Q1b) C) = %{R(q, bac)f R(a, b, c) (a — q)f(aa b,C)} =

[(@R(q,bac) _ a(—b -q+ C) + 3b% — 2bc — qb+ qc — cz) f(a, b, c)]"'=a2

b (a—q) 2bR(q,b,¢) R(a,b,¢) a=ay
{ (g,b,c)0f(a,b,c)
/ R(a, b )l (a—q) Ob
a( b—q+c)+ 3b% — 2bc — gb + gc — % df(a,b, c)}
2bR(g,b,¢) Oa (3.4.2)
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Performing the change of variable (3.2.5) (3.2.6): this must be done several
times to obtain a “simple” expression, ¢.e. which can be integrated by means
of the changes of variable of the kind of Eq. (3.2.3). Repeated integrations
give then the final result, that, as usual in QED calculations, is quite simple,
despite the amount of work. Is there a more compact approach to QED?
The problem stands still open, also if many improvements have been made
since thirty years!

The author wishes to thank the Group of Theoretical Physics of the
Institute of Physics of the University of Silesia, Katowice, Poland, for the
warm hospitality received during the XVII International School of Theoret-
ical Physics, “Standard Model & Beyond '93”, held in Szczyrk (Poland), on
September 1993, where this article was presented.

Appendix A
“Natural variables” to rationalize phase space roots

As pointed out in Sect. 3.4 radicals involved are always of the kind of
Eq. (3.4.1). The changes of variable required to rationalize them belong to
the same family, although slight differences occur depending on the values
of the arguments. Due to their wide use in such and similar calculations, it
seems worth to write them in detail.

Case 1: R(+a,+b,+c) = Va2 + b2 + ¢2 — 2ab — 2ac — 2be.
One searches to rationalize it in the following way:

R*(+a, +b,+c) = R*(—a,-b,—c)
=a?-2(b+c)a+(b-c)?
= a? + b% + ¢ — 2ab — 2ac — 2be

[a - (VB + Vo] [a- (VB - Vo)

be
=3

11— z%?. (A.1)

This can be performed using the change of variable:

ANy
ai(z)zi\/gg(zi\/:)( i\/;)

z
\/bc(2 +b+ ¢ )
+¥ 2 (22 1 1
z " e T

im<z+é)+b+c. (A.2)




... Analytical Caleulation of the Electron g-2 1375

Solving Eq. (A.2) with respect to z, one has the solutions zjf for ay
and z¥ for a_ :

+(a—b-c)x R(+a, +b, +c)

+

z = ,
+la+) 2vhe
+ —(a—b-c)+t R(+a,+b,+¢)

2_(a-)= A3
*(a-) == , (43)

having the properties:
zi:l/z;, :ct:l/:c:, :ci = —-z_, z_;::—:v'_", (A.4)

ae[(Vb+ve), +oo] =
zi € [+1,+0of; =z €[+1,0]; et €[-1,0; 2 €[-1,-o0]
a€]-oo,(Vb-Ve)'] =
et e[0,-1]; =27 €]l-o00,-1]; 2zt €[+o0,+1}; 2 €[0,+1]
ae[(Vb-ve),(Vb+ve)’] =  R(+a,+b,+c)gRe.  (A5)
The order of the extremes in the intervals of Eq. (A.9) shows the direction
of the variation of 2 with respect to a. As it is required for convenience of

calculation that z € [0, +1], one has to choose:

z_ for the values of a over the threshold and 2z~ for the values of a under
the threshold.
Summarizing the results, one has:

. a€[(Vb+ve) +oo| = 2] €]0,1], (A.6)

(+45) (44

a=ay(z])= +vbe

r
_ Yo (z2++—b—f—cz+1) :+\/52(z+1) +hte,
z Ve z
+(a - b—c)— R(+a, +b,+c)
r = ,
2v/be

JE

b
R(+a,+b, +¢) = Va2 + b2 + % — 2ab - 2ac — 2bc = —;—6(1 - z?)
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and, for the typical integrals:

+o0 1
da dz
mf(a)z/?f(a(z)),
(Vh+ve)? 0
e d 1
a
Ri+a, 45, +e) / R(va,+b+e) (-0
(Vb+ve)?
1
1 1
+ - )
0/ (w -g+ z- q-) f(a(=))
g—-b—ct R(+q,+b,+c)
— =+1.
9+ =+ a/be ) q+9q +

. a E] - 007(\/_" \/‘—3)2] = z_€ [0’ 1] ) (A'7)

VLAY
a=a_(z7) = —Vbe (r C)m( b

_ e (z2—+b+cz+1)
z Vbe
=—\/E(:c+l)+b+c,

—(a—b-c)— R(+a,+b, +¢)

z = 3he ’
R(+a,+b,4+c) = Va2 + b2 + 2 — 2ab — 2ac — 2bc = @(1 - z%),
(Vb—/e)? da 1 i
mf(a) = / ';f(a(“’)),
—oo 0
(Vo-ve)?
R(+q, +b, +c) R(+a,d s 7o) (@ - /@ =

1
- (=) e
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q—b_CiR(+9a+b)+c)
= — —_—— 1.
9+ 2\/52 y 4+9 +

e ae((VB-vOR (VB+vE?] = R(+a,+b4c)gRe. (ASB)

A most common special case occurs when b,¢ = 1, i.e. are on mass
shell. Referring to case 1, one has:

Case la: R(+a,+1,+1) = va? — 4a

R*(+a,41,41) = a® —da = ala—4) = —[1—2*]%,  (A.9)

z?
2 2 1
ai(z)=ﬁ:(z:i:1) =:}:2 i22+1=i(2+—‘)+2, (AIO)
z z z
+ _ +(a—-2) £ \/a(a—4) + _ —(a-2)£ 4/a(a—-4)
zi(at) = 5 y zZ(a-) = 5 ,
(A.11)
el =1/z7, zX=1/z7, zi=-22, 27 =-2%. (A.12)
a € [+4,+00] =
z-t € [+1, +°°[; .’B; € [+1,0]; 2’i € [-1,0]; _€ {"'1: _00[

a€]-o00,0] =
zi €[0,-1}; =z €] - o0,~1]; zt € [+o0,+1); =z~ €[0,+1]
a€[0,+4] = R(+a,+1,41)=+/a(a—4) ¢&Re. (A.13)

. a € [+4,+00] = =z €[0,1]. (A.14)
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9+ = 5 » g49-=+1
. a€]—o00,00 = =z €]0,1],
_1)2
__(z-1) __(z+l)+2,
4 z
—(a—2) - —4
R

( 1 1
z—qy T—g-

° ace€ [0, +4]

’ g+9- = +1.

= y/a(a—4) ¢ Re .

Appendix B

In a similar way one has the follo

wing cases:

Case 2: R(+a, —b, --c)\/a2 +2(b+cla+ (b—c)?.

(A.15)

) fa@)),

(A.16)

R?*(+a,-b,—c) = R*(—a,+b,+¢c) = a® + 2(b+ c)a+ (b — c)?

=a2+b2+62

+ 2ab + 2ac ~ 2bc

= [a+ (Vb + V] [a+ (Vb - vey?]

(B.1)
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() (o)

at(z) = +Vbe -
\/_b—c( 9 _b+e )
=+— 1
- z° F \/E:c-l-
=:i:\/52(:c+£)—-b——c, (B.2)
2t (ay) = +(a+ b+ c)+ R(+a,—b,—c)
B 2v/be ’
+ ~(a+b+c)+ R(+a,-b,—c)
_)= . B.3
#(a-) == (8.9
zi:l/z;, et =1/2", zi =-z_, =z =—zt. (B.4)

a € [~(Vb- V), +oo| =

et € [+1,+00[ 23 €[+1,0] 2t €[-1,0] 22 €[-1,—o0]
a €] - o0, -(Vb+ve)!] =

zl €[0,~1] 27 €]-o00,-1] z¥ € [+oo,+1] 22 €[0,+1]

ac [—(\/E-I— \/2)2’ —(\/Z - \/5)2] = R(+a’ -b, —-C) g Re . (B5)

. a€[-(Vb-Ve)?, +oo] = =z €[0,1]. (B.6)
b c
()
a=ay(z])= +Vbe -

=+i—gg(z2—b+cm+1)
z Vbe

:+xfb2(:c+i~)—b—~c,

. +(a+b+¢)— R(+a,-b,—c¢)
2v/be ’
/e

b
R(+a,—b,—c) = Va? + b2 + % + 2ab + 2ac — 2bc = —:—t—c(l - z?),
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+ o0

1
da dz
/ mf(a)’;/;‘f(a(x)),
(VB++/c)? 0

-+ oo
da 1

R(‘Hb _b’ —C) R(+a, —-b, —-C) (a_q)f(a) =
(Vh++/e)?

1

+ [ (- 2) state,
0

g—b—-c+t R(+q,-b,—c)
= N - = 1.
g+ + 2\/1}_6 a+q +

o a€]-o00,—(Vb+ve)] = zIelo,1]. (B.7)

D) (o4

a=a_(z°)= —Vbe 2

:-ﬂ (22+b+cz+1)
z Vbe

=-—\/§(m+%)—b-—c,

—(a+b+c¢c)— R(+a,-b,—¢)
2v/be '

b
R(+a,—b,—c) = Va2 + b2 + 2 + 2ab + 2ac — 2be = \/T_c.(l - z?),

—(Vb+/e)? g L
a z
mf(a)=/‘;f( (),
(Vb-ve)?
R(+g, ~b,—c) da " f(a) =
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g—b—-cx R(+g,—b,—c)
= — - =+1.
9+ ovbe ’ 9+9

hd ac [_(\/E“!' \/6)2’ _(\/z - \/E)Z] = R(+a7 _ba —C) ¢ Re . (BS)

Case 2a: R(+a,-1,-1)va? +4a.

1
R*(4a,-1,-1)=a® + 4da=afa+4) = ;c—zll - 2?2, (B.9)

2
i(:c:Fl) -
z z

212 1
i z+1=:l:(z+;)—2, (B.10)

at(z) =

+ +(a—2)x y/ala+4) + —(a—2)+ /a(a + 4)
e(as) = VY e = ALCED
(B.11)
zi = _1_' 3 2i = L_a 21 =-z_, 2__*_. = —-:Bf 3 (B12)
z z_
a€f0,+oo] =
et € [+1,+00[ 27 €[+1,0] zt €[-1,0] = €[-1,~oo
a€]-oo,—-4] =

2T €[0,-1] 2] €]-o00,-1) =zt €[+00,+1] 2 €0,+1]
a€[-4,0] = R(+a,-1,-1)=+/(a(a+4) ¢gRe. (B.13)

. a€0,+0][ = =z €]0,1]. (B.14)
=+.(_’;z1£=+(z_%)_2’ z___+(a+2)“2 (a(atd)
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1
'q(q+4)/ W(a—q) +0/(=v—q+ z—q- )f(a(m))’
qi=+q_2i2”qq+4), g+g- = +1.
. a€]l-oc0,—-4] = =2 €]l0,1]. (B.15)
_ (2:;1)2 —(93+‘:1;)—2, =—(a+2)—2 (a(a+4)’
Valatd) = (1%,
0 ]d
/ a+4 /? a(2)),
- 00 [1] .
0 1
da
fq'(q—”+4)_[° T 0/ (2 - =) fGeten,
. q—2i\/2q(q+4), dhg. = 41.
. a€[-4,0] = y/a(a+4)¢ZRe. (B.16)
Appendix C

Case 3: R(+a, —b, -}—c)\/a2 +2(b—cla+ (b+c)?

R*(+a,—b,+c) = R*(—a, +b, —c)

be
= 3_2“ + 2:2|2 )

(12—{-2(b-—c)a—i—(b—f—c)2
a2+b2+c2+2ab—2ac+2bc

[a - (Ve + z\/l;)z] [a - (Ve - z\/5)2]
(C.1)
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) e

at(z) = £Vbe .
= i\/TE (:cz:t _\b/z-_ccz—l) :i\/E(:c— %) —b+¢,(C.2)
sh(ay) = Hotizl T hro),
st(a_) = —(a+b—- c)2f/bR;c(+a, —b, +c) , (C.3)
zi:-;-l-_-, zi:-zl_, el =-22, 2 =-21, (C.4)
7 Z

a€[-b+ec,+oof =
:ci € [+1,4oof; =23 €[-1,0]; e e [+1,0]; 2= €[-1,—o00]
a€]l—o00,-b+¢c] =
el €[0,+1); 27 €]—o0,-1]; 2t €]+ 00, +1]; =z €[0,-1]
R(+a,-b,+c) € Re Va € Re;

R(+a,-b,+c)#0 Va€Re. (C.5)
. a€[-b+e,+oof = 2t elo,1]. (C.6)
b) c
T+ T4/
I

_ —(a+b-c)+ R(+a,-b, +¢)

- b}

2v/be

b
R(+a,—b,+c) = Va2 + b2 + % + 2ab — 2ac + 2bc = g(l - z?),
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+ o0 1
da dz
R(Ta b5 @ =/?f(a(:c)),
—b+ec 0
R ) 4o i . f )
(+¢,+d, +¢) / R(+a,+b,+¢) (a—q) (a) =
(Vo++/<)2

+0/1 ( lq_) Fa(=)),
)

q_b—Cﬁ:R(+q,+b’+c

= - 1.
9+ =+ ov/be ¢+q- =+
. a€)-oo,~b+c = =zIelo1]. (C.7)

(%) (-+

a=ay(2}) = +Vbe

+(a +b- C) + R(+a: -b, +C)
2v/be ’
Vbe

R(+a,-b,+¢c) = \/a2 4+ b2 4+ ¢2 4+ 2ab — 2ac + 2bc = T(l - :cz) ,

=

—b+c

[ sttt [
et 0

(Vh-ve)?
R(+q,+b, +c)

-—00

da 1
R(+a,+b,+c) (a—gq)

1
- (=) e,

f(a) =
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g—b- ¢+ R(+q,+b,+¢)

= N - =4+1.
g+ e grq- =+
. Va € Re R(+a,-b,+c)€ Re. (C.8)

Case 3a: R(+a,-1,+1)va? +4

1
R*(4+a,-1,41)=a® + 4 = Ell + 2%, (C.9)
22 -1 1

ax(z) == = + (23 - ;) ) (C.10)

+a+Vva?+4 —atva?+4
sh(ay) = TOEVEHE - r ) - T0EVERE o)
sl=-=, ol= 1%—, el =-22, zi=-2f,  (C12)

+ —_

a€[0,+00] =
:ci € [+1,+400f; 2z €[-1,0]; 2T € [+1,0];
a€l—00,00 =
:ci €[0,+1]; =z €] - o0, -1]; et €]+ o0, +1]; 2 €0,-1]
R(+a,-b,4+c) € Re Va € Re;

- € [_Ia —OO[

R(+a,-b,+¢c)#0 VacRe. (C.13)
. ac[0,+00] = 2z¥ €]0,1]. (C.14)
a——mz*l—-—(z—-l) —a+Vva?+4
B z )’ T 2 ’
Vat+4= l(1 - z?),
z
Ny d
a z
| == [ Zrtat,
4
+oo 1
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-2+ +/¢*+4
g+ = +1 2q , 7+q- = +1.
. a€]-00,00 = =ze€l01]. (C.15)
z2 -1 ( 1) +a++va? +4
a=— =—lze4+-)-2, z= —uv—o
z z 2
1 2
Va2 +4==(1-2°%),
z
’ d 1d
a
—Jlaiz
[ =@ /zf (a(z)
-0
0 1
Ve +4/ s == [ (7 - ) fate),
,/2+4(a / :c—q_|_ :c—q_
g—2++q +4
g+ = — 5 ) q+9- = +1.
. Va € Re R(+4a,-b,+c) € Re. (C.16)
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