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A massless scalar field in the (1 + n)-dimensional Minkowski space-
time is considered. The d’Alembert equation for the field is solved in
pseudospherical coordinates. The positive frequency part of the solutions
is found using the symmetry between coordinates and momenta. The
solutions are projected onto the n-dimensional de Sitter hyperboloid em-
bedded in the flat spacetime. The results for the special n == 4 case are
easily reproduced. '
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1. Introduction

It is generally believed that all known physical fields should be described
on a fundamental level by the principles of a quantum theory. However in
the absence of a viable theory of quantum gravity we are led to the natural
subject of formulating a theory of a quantum field in a classically describable
curved background spacetime [1].

The de Sitter spacetime, which we will consider in this paper, is one of
the most frequently studied examples and has been applied to many physical
problems [2]. The reason for that stems from the fact that it is the unique
maximally symmetric curved spacetime with the same degree of symmetry
(i.e. the same number of Killing vectors) as the Minkowski spacetime. Still
the presence of curvature and non-trivial global properties introduce new
aspects to the quantization of fields in the de Sitter spacetime.

Let us now state some fundamental concepts of a scalar field theory. The
Lagrangian density of a classical scalar field ¢(z) in a (1 + n)-dimensional

(19)
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Minkowski spacetime is given by

L(z) = 3(9" 8,98, ¢ — m*¢*)
g,v=0,1,...,n, (1)

where m denotes the mass of the field and g#” is the metric tensor of
signature (+1,—1,...,—1). By requiring the variation of the action

§ = / L(z)d™H e, 2)
to vanish we obtain the Klein-Gordon equation

(Ont1+m*)p=0. (3)

An analogous procedure may be applied to an n-dimensional curved
spacetime. The Lagrangian density is then given by

L(z) = § {g"*(2)0,8(2)0,d(z) — [m* + (R(z)] #*(2)}
pvy=01,...,n-1. (4)

Here g#¥(z) is the metric tensor of the curved spacetime and R(z) is the
Ricci curvature scalar. The term (R¢? represents the coupling between the
scalar field and the gravitational field. The coupling constant { may be put
equal to zero and the case is called the minimal coupling. Then the gravity
affects the Lagrangian density only via the metric tensor in the first term.
In the case of the so-called conformal coupling ( is given as a numerical
factor dependent on the dimension of the spacetime. The corresponding

action is
S = /L(z)\/——g(:c)d":c (5)

with g(z) being the determinant of g,,(z) and the Klein-Gordon equation
takes the form
[On + m? + (R(2)] ¢(z) = 0. (6)

In the case of the Minkowski spacetime there exists a complete set of
orthogonal mode solutions uj(z) such that the field ¢(z) may be decom-
posed in the following way

#(2) = Y [anus(z) + alau(a)]

k
= Z [ake'“" + aieikz] . (7)
k
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P . - 1 /2
Here we choose uy(z) = etFZ—iwrt o = (]k] 24 m2) . The modes are
said to be of positive frequency with respect to the global time ¢ if they are

eigenfunctions of the operator 7%, the global timelike Killing vector field in
the Minkowski space

%uk(z) = —iwpug(z) (8)

with w; > 0.

The quantization of the theory is then implemented by adopting com-
mutation relations between the annihilation and creation operators to which
the coeflicients a, al in the expansion are promoted. They are used to de-
fine the vacuum state in the Hilbert-Fock space. In the Minkowski space-
time the vacuum state |0) is defined as the one annihilated by the operators
ag

ak|0) =0 Vk.

It is therefore essential for the construction of the Hilbert—Fock space to
know which solutions are of positive frequency.

In a curved spacetime the construction of a vacuum state can proceed
in the same way but there appears an ambiguity in defining the positive
frequency solutions. In the generic case there are no global timelike Killing
vector fields and thus we are given no natural mode decomposition.

A way to avoid the difficulty in the particular case of the de Sitter
spacetime is to treat it as a hypersurface in the Minkowski space of one
higher dimension. Then the positive frequency solutions may be obtained
by projecting the well-defined positive frequency solutions from the higher
dimensional flat spacetime onto the curved spacetime embedded in it. The
possibility arises from unique properties of the de Sitter spacetime.

The above idea was given by Staruszkiewicz [3] and first applied to
the projection from the (1 + 3)-dimensional Minkowski spacetime onto the
(1 + 2)-dimensional de Sitter hyperboloid. A similar task was done by
Wyrozumski [4] who introduced one more dimension thus covering physi-
cally the most interesting case of the (14 3)-dimensional de Sitter spacetime.

In this paper we generalize the construction in order to obtain the posi-
tive frequency solutions of the Klein—-Gordon equation in the de Sitter space-
time of arbitrary dimension. As the construction is performed by projection
of the Poincare invariant solutions of the Minkowski space onto the de Sitter
hyperboloid the results are de Sitter invariant (although we do not provide
an exact proof of the fact here) and may apply in multidimensional cosmo-
logical models.

In Section 2 we consider a massless scalar field and solve the d’Alembert
equation in the (1+n)-dimensional Minkowski spacetime. Then in Section 3
we determine which of the solutions are of positive frequency. In Section 4
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the Klein—Gordon equation in the n—dimensional de Sitter spacetime is con-
sidered and we show its equivalence to the angular part of the d’Alembert
equation in hyperspherical coordinates in the Minkowski spacetime. Then
in Section 5 we give the explicit formula for the restriction of the positive
frequency solutions to the de Sitter hyperboloid. In Section 6 we discuss
the mass spectrum obtained for the projected field and finally in Section 7
compare the results with the special 4-dimensional case.

Units are chosen so that G = h = ¢ = 1 throughout the paper and the
notation for special functions follows that in [6].

2. Solution of d’Alembert equation in (1 + n) dimensions

We consider (1 + n)-dimensional flat Minkowski spacetime. Let us
parametrize the spacetime by the pseudospherical coordinates (r, £, i,
62, ..., 0,_1) in the following way

O — rsinh¢,

z

z! = rcoshfcosby ,

z? = rcosh{sinfy cosfy,

z3 = r cosh ¢ sin 8y sin 6, cos 03 ,

i—1
2! = rcosh¢ (H sinﬁk) cosf;, 2<i<n-1,
k=1

: n—1
"™ = rcosh¢ (H sinﬂk) , (9)

k=1

where the variables vary in the ranges

0<r<+oo,
—0 < €< 400,
0<6;<m, 1<j<n-2,
0< 0,1 <27. (10)

The metric is then given by

n—11-1

ds? = r%(d€)? — (dr)? — #% cosh? £ |(d6;)? + z H sin? 0, (d6;)?| . (11)
=2 k=1
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The hypersurface » = const is the n—dimensional de Sitter hyperboloid
n
Sin-1= {(:co,zl,zz, ez eRM: (292 4 Z(zi)z = 1,2} . (12)
. i=1

The massless scalar field ¢ in the (1 + n)-dimensional Minkowski space-
time obeys the d’Alembert equation

Dn+l¢ =0. (13)

After computing the d’Alembert operator in the pseudospherical coordinates
(9) we get

o, o190 & 1 @
n+l = P2 362 or2 P2 C08h2 E 36%
82
- Z 2 cosh? ¢ H' 1 sin? 6, 30
oD 18 ety o
r2 3¢ ror 72 cosh? £ 86,
n—2
cot §; 0
_ —7i-1 2 —. 14
j;(n 7 )r2 cosh? ¢ H{;ll sin? 6, 99; (14)

Let us separate the radial part of ¢

¢(T, £,61,02,..., 0n—1) = R(T) &(E’ 61,62,..., on—l) . (15)
It obeys the equation
r2d?R  nrdR

“Ear R = const = 4, (16)
where A is a separation constant, or
1 d d
i (gR) HAR=0. ()
The solution of this equation is
R, (r)=17" (18)

with v being an arbitrary complex number and we have

A, =-viv+ (n-1)]. (19)
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By fixing v we get solutions of the (n+ 1)-dimensional d’Alembert equation
that are homogeneous functions of r of degree v.

The d’Alembert equation (13) takes now the form similar to that of the
Klein—-Gordon equation (3) in one lower dimensional space

lin+1d-’ + All$ =0, (20)
where EJ,,.H is the angular part of U1, independent of r, and A, plays

the role of the square of the mass for .
Now we separate the {-dependent part from ¢

(};(f, 01, 027 seey on—l) = X(E)&(Oh 02$ vy on—l) (21)

and obtain from the d’Alembert equation
cosh? {— ;2( + (n — 1) sinh§ cosh£ + (Aycosh?€ 4+ B)X =0, (22)

where B is another separation constant. Introducmg the so-called conformal

time 7
n = 2arctan(ef) (23)
we have £x ix A
— —(n—- —_ ByX=0. 24
an? (n 2)(:01:17(1’7 + (sm . + ) (24)

We search for the solution of this equation in the form
X (n) = sin™~ /2y P(n) (25)

suggested by the n = 4 case [4]. This way the equation (24) may be reduced
to the form of the associated Legendre equation

1-p )51—25—2,11‘(111p [s(s+1)-1fzyz]1>=o (26)

with g = — cos 7,

022_("_';1.2—‘4,,=(u+'n—1)2 (27)

and the free coefficient

gyt n-1_ (I+"——§) (z+"—--1-)

4 2
= (k— -;-) (k+ %) : (28)
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where we put k = [ + 232,

The general solution of the Legendre equation may be expressed as
a linear combination of the associated Legendre functions of the first and
second kind {6]

P(—cosn) = DP?_ —12t EQi‘:-l/z ) (29)

where D, E are constant coefficients. The n-dependent part of the solutions
of the d’Alembert equation (25) thus takes the form

Xy(n) = sin™~D/2 [DPZ_, (- cosn) + EQS_, ;p(~cosm)| . (30)

The constant B was introduced as a separation constant for the angular
(i.e. independent of r and 1) part of the d’Alembert equation. Thus we have
the following eigenvalue equation

Ly Yp(Q) = BYB(m), (31)

where Yp(2,,) (denoted as ;S before) are hyperspherical functions (or hy-
perspherical harmonics) and L2 is the Laplacian on the unit (n — 1)-sphere
8§71, The eigenvalues B reflect the dimensionality of the space [5]

B=l(l+n-2). (32)
The hyperspherical harmonics are given by [7]

Y(mk, 0,,) = e:tim"“"za"‘1
n—3

X H(sinﬁk_H)'""“C:::“,:::l_z)/z k/2 (cosOr41), (33)
k=0

where m;, stands for the set of (n—1) integer constants (mg, m1,...,Mn—2)
such that
mg2>my2>...2mp220

and @, denotes the set of (n — 1) angles (61, 62,...,0,_1) introduced in the
parametrization (9). Cg are Gegenbauer polynomials.

The general solution of the equation (20) is given by the linear combi-
nation

co mp—1 my

)= >, > . Z a(my)d(me,n,6k), (34)

mo==1 ma=0 mg=0 my,_3==0
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where a(m},) are constants and

$(my,n,0y) = sin"~ 1)/217[D o — 1/2( cosn) + EQ2, mo— 1/2(--cosn)]
n—3

etiMn_26n_1 H (sin 0k+1)’”k“Cﬁ:tﬁk‘f;”/z—"/z(cos Bx41) . (35)
k=0

Here the 7-dependent solutions (30) and the hyperspherical harmonics (33)
were combined according to (21).

These basic functions ¢(my, 7, 0;,) include both the parts of positive and
negative frequency and in what follows we will specify the positive frequency
solutions.

3. Positive frequency solutions in (1+n) dimensions

The field ¢(z) may be represented as a (1 + n)-dimensional Fourier
integral
é(z) = / "+ kS (kk)(E)(k)e %% + cc. (36)

In the (1 4+ n)-dimensional flat spacetime the definition of a positive fre-
quency solution reads

(z) = / APk (kE)O(RO ) p(k)e—* (37)
which may be evaluated performing the integral over k% and we are left with
d -1 2:
bo)= [ s (38)
ko_

where k is the length of the spacial part of the (1 + n)-dimensional vector

= (k% k!,..., k™)
n 3
k= (Z(k‘)z)
PES |

As it has already been stated ¢(z) is homogeneous of degree v
$(Az) = A\"4(z). (39)
Given this we can determine the homogeneity degree for ¢(k)

B(Ak) = NIV g(k). (40)
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We may parametrize the light cone in momentum space by (k°, ko, ,
koys--ska,_,)

k} = k% cos ke,

2 0.
k* = k" sin kg, cosky, ,

k™ = k%sin kg, sinkg, ...sinkg _, . (41)

There exists a symmetry between momentum space and coordinate space
which can be easily seen if one compares the above parametrization (41)
and the definition of coordinates (9). The spaces are related to each other
by the Fourier transform. We make use of the fact here stating that the
angular part of basic solutions of the equation (¢ = 0 in momentum space
must have the same form as in coordinate space.

Since the dependence on k° is given by the homogeneity degree (40) we
have

n-—-3
—pn—yp T —a2k .
$(mp, k) =(k°)!1 77V "2 %n-1 T (sin kg, ,, )"+
k=0
my 41 +(n—2}/2-k/2
Mp—Mk 41

x C (cos kg (42)

k+1)'

The Jacobian for the variables change as given in the parametrization
(41) reads [7]
_ ok, k2,... k™)
O(k% ko, ,-.. ke, ;)

= (k)™ 1sin™ 2 kg, sin™ ™3 ke, - . .sin? kg, g sinkq, _, (43)

J

and the exponential term in (38) may be expanded as follows

kz _ ilk||E ! - Tt polElIZ])
etk = gilklIZlcosy — olp(py E (l+p0)iP0_.L£_:.l__Cpo(cos7) , (44)
Po=0 (1&l121)
where £ and # are n-dimensional vectors, 7 is the angle between them and
J14 po is the Bessel function of the first kind. For [ = 3 — 1 the Gegenbauer
polynomial may be expressed as a series of hyperspherical harmonics (33) (7]

Ca 7 = G(p, n)Y (prs ko, )Y (P k) » (45)
Px
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where p; are constants analogous to my,

Pn--8

IED IS

Pk P1=0  pnp_2=0

and G(py, n) are normalization constants. The integration over kg, in (38) is
easily performed using orthogonality relations for spherical harmonics and
Gegenbauer polynomials [6]

1
/ d(cos kg, )(sin kg‘.)“_lC’;‘(cos kgi)C:,(cos ko) =8, 4. (46)
-1

The final result of the integration over the angular variables is just
Y (my, 0;) and we are left with the integral with respect to k°

o o]
dk° —ik%rsinh ¢ 0
I=/ (O com ) T(goyire®  In/a-tem(E T cosht), (47)
0

where we put k%°z° = k%r sinh£. Changing £ into 7 defined by (23) we may
put the integral in the form of Legendre polynomials [6]

I= rve—-i-lr(g+1/2)/2 sin(n—l)/Z n
2t
X [P:to—l/Z(_ cosn) — ;ano—lﬂ(_ cos n)] , (48)

where p is given by (27) and we assume

n+1

<Rer<o, (49)

for the integral to be convergent.
Finally the basic positive frequency solutions of the (14 n)-dimensional
d’Alembert equation (13) in the coordinates (9) are

$(my, z) = Nrve im(et1/2)/2 gip(n—1)/2

X [P:,,O—l/z(_ COS‘I]) - ?;anO"l/z(— cos 77)] Y(mk,ok) ’ (50)

where Y (my, 6;) are the hyperspherical harmonics given by (33) and M is a
normalization constant. The equation (50) is the final result of performing
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the integral (38) and by comparing it with (15), (34) and (35) we can easily
check that (50) is a solution of the d’Alembert equation in the coordinates
(9). It confirms that the assumption (42) was correct.

We may now compare the result with the special case n = 4 [4] and find
that while performing the construction the n-dependent separation con-
stants A, (19) and B (32) are absorbed into the indices of the Legendre
functions while the Legendre functions of the first and second kind enter
the 7-dependent part of solutions with the similar coefficients as for n = 4.

4. The Klein—-Gordon equation in the n-dimensional de Sitter
spacetime

Let us now consider a massive scalar field ¥(z) in the n-dimensional
de Sitter spacetime (12). As it has already been stated the field obeys the
Klein-Gordon equation (6)

[On + m? + {(n)R(n)] ¥ = 0. (51)

In the case of the conformal coupling, which we consider here, the coupling
constant {(n) depends on the dimension of the space in the following way
1]

1n-2
The curvature scalar of the de Sitter spacetime is constant (i.e. independent
of z) and also reflects the dimensionality of the space [5]

(52)

n(n - 1)
r2

R(n) = (53)

with r being the de Sitter radius.
We may parametrize the de Sitter hyperboloid by the coordinates (¢, 8;)
2% = rsinh d ,
r

t
z! = rcosh - cos b,
T

t .
z? = r cosh —sin 8, cosf; ,
e

" ¢ n—1 )
z =rcosh; Hsmak , (54)
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where t is the global timelike coordinate and therefore we have ¥ = ¥(t, 8;)
in the equation (51). The de Sitter hyperboloid can be viewed as the n-
dimensional hypersurface of constant r in the (1+ n)-dimensional flat space-
time and if parametrized by (, 0 ) the equation (51) may be compared with
(20). The d’Alembert operators [J,, and (J,,4; both act in n-dimensional
spaces actually as (0,41 is only the angular part of U,41. Thus the ex-

act equivalence between the equations (51) and (20) may be obtained by
putting

P(t,05) = ¢(€, k),
t= rf 3
A

m?+(R=—. (55)
T

5. Positive frequency solutions in the n-dimensional de Sitter
spacetime

It was shown that the massive scalar field in the n-dimensional de Sitter
space may be introduced via a restriction of the massless scalar field in one
higher dimensional flat spacetime in which the hyperboloid is embedded.
The fact allows us to project the positive frequency solutions obtained for
the flat spacetime onto the de Sitter space. The corresponding prescription

P(t,0k) = 7 p(r, €, 0k) (56)

with
t=r§,

can be found by comparing (55) and (15). Therefore the basic positive
frequency solutions of the Klein-Gordon equation (51) in the n-dimensional
de Sitter space are given by

P(my, z) = Ne~i7(et1/D)/2 gin(n=1)/2

9
X [Pio—l/z(" cosn) — ;.Z'ano—l/z(” cosn)] Y(mg,0:), (57)

where we used (50) and (56). From (23) we have the definition of the global
time on the hyperboloid

zoztzrmtang-. (58)
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6. The mass spectrum

The last of equations (55) imposes a restriction on the mass of the field.
We have "
m? = 22 _ ((n)R(n)
which we do not want to take any negative values in order to avoid tachyons.
We calculate m? using (19), (52), (53) and have

mzz—rl2 [V(u-}-(n—l))-i—n—(zf-zl] >0. (59)

With v = a + i, a,8 € R we obtain real values of m? for 3 = 0 or
a = (1-n)/2. For f = 0 we get from (59) the following range for a

n n
e €<l — = 60
5 Sas 1 5 (60)
which is a stronger restriction than the convergence condition (49). These
values of a correspond to the following range of m?
1
2
< — 61
™Sl (61)

which is independent of the dimension of the space. The largest value of
the mass
2 1

T a2

0

IN

(62)

3

is obtained for a = (1 — n)/2. For the same value of a, if we assume 3 # 0
(but still real values of m?), we get

1 p? 1
2 Bl —— pe—— e—e——
472 t r2 > 4r2°

The remarkable value » = (1 — n)/2 for which we get the mass (62) also
appears to be the geometrical dimension of the field (i.e. the dimension
corresponding to the requirement for the action to be dimensionless).

Considering the form of the equation (20) and the dependence of the
mode solutions on A4,, we might want to re-express the above results in
terms of

(63)

M? ==X =m? 4 (R. (64)

The conditions for the imaginary part of M? to vanish are the same as for
m2. For B = 0, M2 > 0 is equivalent to

1-n<a<0 (65)
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(which for n > 3 is a weaker condition than (49)) and

- 1)2
<mr< P 66
0<M*< e (66)
The maximum of M? is again obtained for a = (1 —n)/2. For the same
value of a, when 3 # 0 we similarly get

2 _ (n-— 1)? B
M?* = 7 + 7 (67)

As was shown in [9] in the analysis of the Lorentz-type SO(n, 1) group
representations, (n — 1)?/4r2 is the minimum of the eigenvalues spectrum
of the Laplace—Beltrami operator on the hyperboloid of type (12). The
spectrum corresponds to the continuous series of the most degenerate rep-
resentations of an arbitrary noncompact SO(n, 1) group.

7. Discussion

The mass value (62) obviously does not depend on the dimension of the
de Sitter space and is exactly the same as for n = 4 [4]. For n = 4 it has
been revealed that this value is in a sense critical as it divides two types of
solutions that have different asymptotical behaviour for 20 — 400 [10]. One
can therefore suppose that the same result also holds in higher dimensions
although the detailed analysis goes beyond the framework of this paper.

We considered the massless field in the Minkowski spacetime in order
to find the positive frequency solutions of the d’Alembert equation and then
to project them onto the de Sitter hyperboloid embedded in the Minkowski
space. The fact that the field was massless was of essential importance.
If we considered a massive field then its homogeneity in coordinates would
not imply the homogeneity in momenta of its Fourier transform and the
construction could not be performed within the framework proposed here.

The problem of vacuum construction in curved spaces does not have
unique solution. However the one presented here seems simpler and more
natural (due to its connection with the unique solution of the problem in
the flat Minkowski spacetime) compared to the solution presented e.g. in
[11]. We also obtain the complete mass spectrum contrary to the case in [5]
which applies only to the mass region above the critical value (62).

The positive frequency solutions of the Klein-Gordon equation obtained
for the de Sitter space of an arbitrary dimension have the similar structure
as the solutions for n = 4 [4].

1 am grateful to Professor A. Staruszkiewicz and Dr T. Wyrozumski
at the Institute of Physics, Jagellonian University in Cracow for inspiration
and discussions.
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