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Electron-nucleus elastic scattering is calculated by means of the
multiple-scattering theory of Glauber and the eikonal approximation ap-
plied to different forms of nuclear charge distribution. The differences be-
tween the calculated cross-sections are examined and compared with the
experimental data for 12C, 180, °Ca and 2°8Pb nuclei at different ener-
gies. A very good agreement with the experimental data, at higher angles,
is obtained for densities other than Gaussian. The multiple-scattering
shows even better agreement than the eikonal approach for lighter nuclei,
especially at the diffraction dip.

PACS numbers: 25.30. Bf

1. Introduction

The Glauber approximation multiple-scattering series has been widely
used, in nuclear physics, for some 25 years [1]. Although Glauber theory has
been successful in describing hadron-nucleus elastic scattering at different
energies, it has been rarely used to investigate multiple scattering effects in
electron-nucleus collisions [2].

Generally, in the study of electron-nucleus scattering the theoretical
expression of the cross-section was obtained by solving the Dirac equation
numerically. In such a case, the electron-nucleus many-body problem is ap-
proximated by a two-body problem which in turn is reduced to calculating
the scattering by an effective potential obtained from a simple function for
the nuclear charge distribution: Zp(r), using the Dirac equation. It is of in-
terest to study how much such calculations for the differential cross-section,
according to the eikonal approach, differ from the multiple-scattering dif-
ferential cross-section obtained by considering the individual Z protons of

(43)
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the nucleus with single particle distribution p(r)? Both cross-sections can
be calculated using the Glauber approximation.

Instead of solving the Dirac equation numerically, Baker {3] showed
that the Glauber approximation is in remarkably close agreement with the
exact partial wave analysis, even at large angles. The expression for the
scattering amplitude is an integral over a variable related to the classical
impact parameter which replaces the sum over discrete partial waves, with
the addition of a spinor term; so that the use of the Glauber approximation
in electron (or positron) elastic scattering is appropriate.

Then, Franco [4] described the calculations for the differential cross-
section, by considering the elastic scattering of an electron by a nucleus
containing Z protons, taking into account the collisions with the individual
protons.

The main objective of this paper is to compare the calculations based on
the full multiple-scattering of the Glauber approximation and that obtained
by means of the usual effective two-body eikonal solution over target nuclei
(Z ranging from 12 to 82) and over an energy range (E ranging from 175
to 450 MeV).

Second aim of this paper is to study the effect of varying the charge
density distribution in the above mentioned two theoretical approaches.

The paper is organized as follows: in Section 2 we present the gen-
eral formalism, Section 3 contains the results of the calculations and the
discussion. The conclusion is given in Section 4.

2. Formalism

To get the theoretical expressions for the differential cross-sections %%

and %%, according to the eikonal approach and the full multiple-scattering
approach, respectively; we shall follow the method and notations as outlined

by Franco [4].
The phase shift function xq(b), can be written as:
xo(b) = 2ZnIn X + 6(b), (1)
where n = —7‘% for incident electrons, b is the impact parameter and a is

an arbitrary constant. The first term in equation (1) is simply the contri-
bution due to a point charge. The function §o(b) represents the effect of the
deviation of the nucleus from a point charge and will depend on the charge
distribution p(r).

The differential cross-sections may be written as

0
202  cos? 3 | fela) + hoal@) I (2)
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where f. is the quantum mechanical point Coulomb scattering amplitude
and is given by:

f. = —ik Tb.]o(qb)(;a)zinzb db. (3)
1]

Then
fo = —2nZkg % exp { — i[2nZ1n(qa) - 2arg I'(1 +inZ)]};  (4)

the factor cos? % is produced by the spinors and ¢ = |k — k'| = 2k sin-g-
is the momentum transfer. Franco gave also an expression for hg which
represents a correction due to the interaction of the electrons with the charge
distribution of the nucleus as a whole, viz.:

0o

ho(q) = ik / wo(qb)(é”;)”“z{ 1 — explifo(8)] }db . 5)
0

To get the function hy(g), the Glauber approximation to the elastic scat-

tering differential cross-section %% in which collisions with the individual
protons are explicitly incorporated in the description, we take [4]:

z
%/e‘q'b {1— H[1~I’j(b—8j)]}

i=1

do

an 2

2

) (6)

X | Y(r1,72,...,77) |* dridrs...drzd%b

2in
where I';(b) = 1 - ((5%) and s; is the projection of the coordinate r;

onto the plane of impact parameter vector b. Assuming an independent
particle model for the protons, we have

zZ
l 1/1(1‘1,1‘2,...,1‘2') l2= H p(i‘j).

j=1

Then g% reduces to:

7Jo(qb)b{1 _ [ / (?)Zinp(r)dr]z}db

2
dop

10 (7)

0
= k2 cos? —
cos 5
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Comparing equations (2) and (7) and making use of (3), one gets

m(@) =ik [s5a){(52)" - [ [ (B2 star] “Jas. (9)

0

Now, according to the shape considered for the density, we shall get different

expressions for hg p and consequently for idg%l; fc being the same as given
by equation (4).

2.1. Gaussian density (G density)

A Gaussian density is given by [4]

o) = ()7 exp(-p7), ®

where 3 is a parameter related to the r.m.s. radius by the relation:

NHED

1
=35

Let v = %, adopting the same procedure as Franco [4] and using the tables
of Gradshteyn and Ryzhik [5], we get the following expressions for hg

and
(10)

a
o0
ho(q) = ikB~2 / 2Jo(72)e ¥ 2 {1 — explinZEy(2?)]}dz,  (11)
0
where z = b and E;(z2) is the exponential integral, and
o0
hy(g) = ikB~2 / zdo(v2) {22 — [P(1+in)  Fy (—in; 1;—22)] * Yde . (12)
0

We note that f. is given by Eq. (4) in terms of v, and use is made of Eq. (10)
for the arbitrary constant a.
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2.2. Harmonic oscillator density (H.O. density)

A harmonic oscillator density can be written in the form [6]
p(r) = (A+ Br?)exp[-X?r?], (13)

where A and B are the harmonic oscillator parameters. Following the same
procedure as in (2.1) and choosing the arbitrary constant a to be equal to
%/\, with ¥ = § and z = Ab, we get the following expressions for hg , and

consequently for %%2

o0
ho(gq) =ikA ™2 / zJo(y2)z?"?
0
x {1 — exp[inZ(Ey(z?) + 2F exp(—2?))]}dz, (14)
where
= D B/x
Fexma P=—x
and

w -
hp(q) =ikA_2/ :cJo('y:c){:cz'"Z — [(A1 + Blzz)lFl(—in; 1; —zz)
0

+ C11Fi(—in - 1;1; —-9:2) - 201221F1(—in; 2; —22)]Z}d:c ,

(15)
where

c:—‘f\f(wri%), A1=%’1’(1+in),

B, = g;-l”(l + in), Cy = %{F@ +in).

2.3. Woods—Sazon density approzimated by a sum of

Gaussian densities (S.G. density)
The Woods—Saxon formula for fhe nuclear density is given by:

p(r) = h- (16)

14 exp

T



48 S.A. MOHARRAM ET AL.

Since numerical calculations are slightly cumbersome with such density,
Dalkarov et al. [7] approximated formula (16) by a sum of Gaussian densi-
ties, namely

2

mr
7 (7
a

12
p(r)= ) Cmexp—
m=1

r
where r, is a parameter related to the r.m.s. radius by:

1/5

Ta =

The constants Cy, are taken from Dalkarov et al. (7). Taking # = ;- and
choosing the constant a to be equal to %n with v = % and z = nb; we get
the following formulae for hq p:

. —-2°° 2inZ . 7 \3/2 Zn Cm 2
hﬂ(q) =1k’7 /:I:Jo (72)2 d {l—exp [2712(;5’) mEl (mz )]}dz
0 m=1

(18)

and

ho(a) = ikn? [ 2Jo(r2)
0

z
x { 2¥nZ _ 3 _Cm __ (”)3/21" 1+ in) Fi(—in; 1; 2) dz
z Z mint3/2\ 2 (1 +in)1Fy(—in;1; —mz .

m=1
(19)

3. Results and discussion

In the present work we give a comparison between the cross section
obtained by means of the eikonal approximation and that deduced from
Glauber’s multiple scattering theory using different densities.

We applied the theoretical expressions for f;%l to study the scattering
of high energy electrons from the even-even nuclei: '2C, 160, 4°Ca and
208p} at different energies which are available for us in the literature. The
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only parameter needed in the performed calculations is the r.m.s. radius
of the nucleus under consideration. Table I lists the values taken for this
parameter.

TABLE I

The root mean square radius of the nuclei 13C, 140, 4°Ca and 3°8Pb

Nucleus 12¢ 18 40Cg 308p},
(r*)2/3(fm) 2.464 2.625 3.486 5.235
Reuter et al. Hofstadter Dalkarov et al.
(1982) (1964) (1985)

All figures labelled (a) will refer to the eikonal approximation while
those labelled (b) will refer to Glauber’s multiple-scattering approximation.
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Fig. 1. The differential cross-section for 13C at E = 240.17 MeV assuming Gaussian
density and H.O. density; a — on the basis of the eikonal approximation, b — on
the basis of Glauber’s multiple-scattering theory.

12C nucleus: Figures 1, 2 and 3 show the experimental data [8, 6, 9]
together with the theoretical results at energies 240.17, 420 and 450 MeV,
respectively. From these figures, we see that the G. density fails to reproduce
the experimental data at any angle, while the agreement is good assuming
a H.O. density. At 240 MeV, the minimum appearing at 6 =~ 97° is well
reproduced, especially when using Glauber’s multiple-scattering, as can be
seen from comparison between figures la and 1b. At higher energy the
agreement is excellent, but there is no preference to either approach. In
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Fig. 2. The same as figure 1; a — on the basis of the eikonal approximation at
energy E = 420 MeV, b — on the basis of Glauber’s multiple-scattering at energy
E = 420 MeV.
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Fig. 3. The same as figure 1; a — on the basis of the eikonal approximation at
energy E = 450 MeV, b — on the basis of Glauber’s multiple-scattering at energy
E =450 MeV.
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general, for this nucleus the only difference between the two approaches
appears mainly around the dip which favours the full multiple-scattering at
E=240 MeV.

180 nucleus: A comparison between the theory and the experiment
is shown in figures 4 and 5 at energies 240 and 420 MeV, respectively. At
energy 240 MeV, a H.O. density reproduces well the experimental data [10]
up to 6 ~ 80°, then predicts a minimum after that. At higher energy (420
MeV) the H.O. density succeeds to give an excellent agreement with the
experimental data [6], as can be seen from figures 5. As predicted, the dif-
ference between the eikonal approximation and the full multiple-scattering
approximation is clear at the minimum. The agreement attained favours
the eikonal approximation.
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Fig. 4. The same as figure 1 for 1%0; a — on the basis of the eikonal approximation
at energy £ = 240 MeV, b — on the basis of Glauber’s multiple-scattering at
energy E = 240 MeV.

40Ca nucleus: For this nucleus, the theoretical calculations are carried
out assuming a S.G. density and a G. density at energies 183 and 250 MeV,
respectively. Figures 6 and 7 show that the charge distribution density
for #°Ca nucleus is close to the one predicted by the Woods-Saxon model
approximated by a sum of Gaussians. At energy 183 MeV and assuming a
S.G. density, the agreement with the experimental data [11] is good up to
6 =~ 72°. We see from Fig. 7 that the agreement achieved with a S.G. density
is excellent at all angles, except at the second minimum (corresponding to
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Fig. 5. The same as figure 1; a — on the basis of the eikonal approximation at

energy E = 420 MeV, b — on the basis of Glauber’s multiple-scattering at energy
E = 420 MeV.
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Fig. 6. The same as figure 1 for *°Ca assuming a Gaussian density and S.G. density
at energy E = 183 MeV; a — on the basis of the eikonal approximation at energy

E =183 MeV, b — on the basis of Glauber’s multiple-scattering at energy £ = 183
MeV.
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Fig. 7. The same as figure 6; a — on the basis of the eikonal approximation at

energy E = 251.5 MeV, b — on the basis of Glauber’s multiple-scattering at energy
E = 251.5 MeV.
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Fig. 8. The same as figure 6 for 2°8Pb; a — on the basis of the eikonal approximation

at energy E = 175 MeV, b — on the basis of Glauber’s multiple-scattering at energy
E =175 MeV.
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6 ~ 100°), where there is a slight difference with the experiment [12]. For
this nucleus there is no difference between the two approaches, even at the

208ph nucleus: The elastic scattering cross-sections are calculated as-
suming a G. density and a S.G. density. Comparison with the experimental
data [13], at E = 175 MeV (Figs 8). shows that the agreement attained
with a S.G. density is good up to 8 ~ 75° only. This may be attributed to
the presence of other phenomena, owing to the strong Coulomb field of this
nucleus.

4. Conclusions

Elastic scattering of high energy electrons by different nuclei is investi-
gated. Specifically, this is achieved on the basis of Glauber’s full multiple-
scattering theory and on the basis of the eikonal approximation which
are developed previously in the literature. Comparison between the two
approaches is formally studied, assuming different models of the nucleon
density distribution. This study reveals that the difference between the
two approaches is small, especially for small momentum transfer and for
small impact parameter. This analysis also shows that the effect of vary-
ing the density is more appreciable than the effect of the approach applied.
Clearly, the eikonal approximation converges more rapidly than the Glauber
multiple-scattering approach.

Excellent agreement is achieved when we apply the theoretical expres-
sions of the cross-section to some even-even nuclei. No preference between
the two approaches has been realized, except at the diffraction minimum
where the full multiple-scattering approach generally gives a better agree-
ment between the theory and the experiment for lighter nuclei. The fit
shows that the main discrepancies between the theory and the data appear
for the heavy nucleus: 29¥Pb. The calculations employ a point Coulomb
amplitude appropriate to the Schrodinger equation, whereas the electron
should be treated as a Dirac particle. The eikonal approximation for the
Dirac case, and corrections to it are discussed by Wallace and Friar [14].
The corrections of order V2 are different from the Schrédinger case, and
such corrections may be relevant to heavy nuclei such as 2°8Pb. This will
be the subject of our future work.

In the meantime, work is in progress towards a study of correlation
effects in the calculation of the elastic scattering of high energy electrons.
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