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This paper develops the hypothesis of quanium relationism. Quan-
tum relationism is compared and contrasted with the Cartesian eventism,
which is the ontology behind the conventional local quantum field theory.
In more technical terms the paper deals with a relativistic description
of bound quantal systems which, in Author’s opinion, provide an ideal
testing ground for his hypothesis.
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PREFACE

The aim of this paper is to present a geometrical hypothesis of absolute
relational space R3 that settles the wave—corpuscular duality of quantum
physics on the level of first geometry of physics. In this way, directly unob-
servable relations y between two hypothetical constituents of an elementary
micro-world M = A; + A, will precede observable events X, i.e. the four-
points of spacetime of measurement. Thus, the presented paper is a lecture
on the hypothesis of quantum relationism. The reader must forgive its
length, but several fundamental concepts have to be revised first, in order
to get a proper perspective onto them. Such a perspective is required by
the very abandoning of the Cartesian eventism of external z-space.

The mathematical basis of R3 geometry is presented in Sections 10-13.
It is shown that mathematics of classical field theory discloses two kinds
of geometrical shapes. This branching of geometrical extensions acquires
a physical meaning with the quantum momentum-localization duality or
the p—z duality (A # 0) combined with true Minkowskian spacetime L4 of
measurement (1/c # 0). The point is that eventism of Galilean spacetime
G4 coexists with nonrelativistic (NR) relational space RS.

Two experimental facts make the hypothesis of relationism R3 possible
and — what is even more essential — result in measurable effects which
transgress the borders of the present eventism. The first fact is the quantum
p— duality and the second fact consists in the privileged position of the
energy-momentum p language of measurement of micro-processes expressed
by the § matrix theory parameterized by the Mandelstam p variables and
resulting in elimination of spacetime localization of the micro-process under
description.

The hypothesis of relationism rules out the one-body problem of even-
tism in favour of the elementary nature of two-body problem. It is shown
that relations y convert into events X of spacetime, provided however, that
in the corresponding subspace of the configuration space of the micro-object
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under description the object itself interacts with a heavy measuring device.
Thus symmetry L of events X, much like the events themselves, ceases
to be given a priori contrarily to what is usually taken for granted in to-
day’s physics.

Everybody who insists on the a prior:i character of the symmetry L

should remember that physicists opposed the special theory of relativity
(STR) because they thougth that symmetry G of Galilean spacetime G4
should be regarded as if it were given a priori. Hence Albert Einstein’s
motto:
“ ... Concepts which have been proved to be useful in ordering things eas-
ily acquire such an authority over us that we forget their human origin
and accept them as invariable. Then they become “necessities of thought”,
“given a priort”, etc. The path of scientific progress is then, by such errors,
barred for long time. It is therefore no useless game if we are practiciz-
ing to analyze current notions and to point out on what conditions their
justification and usefulness depend, how they have grown especially from
the data of experience. In this way their exaggerated authority is broken.
They are removed, if they cannot properly legitimate themselves, corrected,
if their correspondence to the given things was too negligently established,
replaced by others, if a new system can be developed that we prefer for
good reasons. ...”

1. Introduction

The fundamental conflict between the locality of Minkowskian space-
time Ly of STR and the spacetime nonlocality of quantum physics inclines
one to abandon eventism according to which directly observable events X
should be regarded as unanalyzable elements of physics. The hypothesis of
relational space will precede eventism, because it transfers the momentum-
localization (p—z) duality of quantum physics onto the first level of physical
geometry. Events X and their Lorentz—Poincaré symmetry L will stand on
the footing of limited relations conditioned, however, by a suitable physical
situation of the system M under description. In particular, such a situa-
tion will accompany any measuring process performed with the aid of heavy
(classical) measuring devices.

Note that the p—2 duality results in a discretization of internal-energy
levels of composite bound systems M, which solves the fundamental prob-
lems of stability and extension of M,,’s. The same discretization makes the
full isolation of micro-worlds M, from external world to be a realistic state
of M’. In consequence, a composite system M may remain hidden from
observation (measurement) and hence, its first metrical relations may break
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symmetry L of measurement. Of course this requires abandoning the con-
cept of Cartesian metrical z-space (eventism) as a “holder” of all physical
extensions.

The p-z duality of relational geometry justifies one to speak of the
privileged position of the momentum p language (over the z language) of
measurement of micro-processes in the asymptotic zone of kinematics. Such
view is taken for granted in the § matrix theory, parameterized by the Man-
delstam p invariants, which, in principle, eliminates the spacetime localiza-
tion of the micro-process under description.

Mathematical basis of the hypothesis of relational space R3 consists in
the bifurcation of geometrical shapes into two different kinds: the event
shapes and the relational shapes (c¢f. Sections 11-14). However, before
entering mathematics some problems must be clearly formulated which are
connected — first of all — with the principle of relativity, ¢.e. with symmetry
of Minkowskian spacetime L4 and its NR limit (¢ — o) given by symmetry
G of Galilean spacetime G4. This limit exhibits the fundamental singularity
of symmetry G' which consists in the separability of the internal degrees of
freedom of isolated systems from the external ones. From the point of
view of relational space R3 this singularity of symmetry G results from the
coezxistence of eventism G4 with the relationism of 3-space R?, the latter
being the NR limit (¢ — oo) of relational space R3. This would explain
the tremendous success of NR quantum mechanics and, at the same time,
it works in favour of the hypothesis of relational space R3 accounting for
finite universal constant k/c which, however, must go beyond the borders
of eventism Lg.

In consequence, 3-space R3 extends the NR separability of internal (ab-
solute) degrees of freedom of composite micro-structures M from external
(relative) ones. In Section 17 and in Appendix B the Lorentz limit of re-
lationism is analyzed. From this analysis follows that symmetry L of mea-
surement ceases to be the one given a priori by the Cartesian z-spacetime
continuum (eventism), but it represents the limiting case of symmetry R of
relationism. Thus, symmetry L introduces an essential dichotomy of mea-
sured characteristics into internal-absolute and external-relative ones which
enables one to distinguish between the properties of M itself and those con-
nected with the measuring tools. In general, however, we cannot abstract
from the realization of mathematical reference frames S by real reference
bodies § which characterizes eventism L4. This will be illustrated by the di-
latation effect of the life-times of unstable particles (quantum clocks) which,
at the same time, provides us with an Rj effect connected with the decay
mode of composite system (particle) M.

The breaking of dilatation symmetry of physics which accounts for fi-
nite universal constants h, ¢ and M discussed in Section 21 works strongly
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in favour of the relational origin of metrical physics and the p-z duality
of the first continuum of physics that breaks the Thales similarity inherent
in flat Cartesian z-space. Relational origin of metrical physics represents
philosophy much more akin to this of Leibniz than that of Descartes and
Newton. According to the latter, an external space (spacetime) precedes
any physical reality and the existence of any physical reality coincides with
its existence on the background of spacetime of directly observable but un-
analyzable events X.

The author is fully aware that a lot of many important questions remain
still open. Nevertheless, in his opinion, the quantum predictions concern-
ing the behaviour of a system M are rather incompatible with almost all
intuitions (the classical eventism included) and for this reason our concept
of spacetime must be thoroughly revised.

2. Eventism and the quantum p-—z duality

The concepts of external space—and-time continua as preceding any
physical reality take their origin in our everyday macro-experience. The
globality of these concepts takes for granted — more or less tacitly — that
all physical objects M are intercommunicated because they automatically
acquire a coordination in terms of observable events X, i.e. four-points of
pre-existing spacetime. Therefore, we shall use the term eventism for the
hypothesis of the external spacetime given @ priort, although the very word
eventism has been coined after Minkowski’s geometrization of STR [1]. The
point is that this geometrization disclosed a real opposition between the
eventism and objectism [2] concealed by the singularity of Galilean eventism
G4, although the latter is also based on directly observable events X.

From the viewpoint of an instrumentalist, eventism disregards both the
physical aspect of measuring process and the physical reality of messen-
gers propagating information about the structure and localization of the
observed (measured) object M. In other words, everything that physically
exists is automatically visible by outer world and commensurable — with
any accuracy which might be desired — with good measuring rods and clocks
with optionally selected units (e.g. those of meter and second). Now, let us
confront this visibility of M with the fundamental concept of its isolation
as the state of isolation of M remains at the foundation both of classical
and quantum physics. Vistbility of M combined with its isolation calls for
existence of specific carriers of information which shall be analyzed below.

Still in the framework of classical physics (theory with A = 0), two fun-
damental facts stand in favour of relational nature of practical (physical)
geometry [3]. The first is the Newtonian action-at—-a—distance between at
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least two objects and the second concerns the relativized simultaneity rela-
tion of two events X; ;. It is STR which has shown that the propagation
of information by light signal with velocity equal to the universal constant
¢ enters the very symmetry of eventism L4. Simultaneity relation between
two events X ; relativized to the space scaffold of a (real) reference body
S favours the ob_]ect1sm and, at the same time, the relational origin of the
spacetime metrics. In spite of that, classical physics (A = 0) is condemned
to eventism in which the realization of mathematical reference frames S
parameterizing an empty L4 is done with the help of real reference frames
S. This realization, however, becomes irrelevant as the classical framework
admits the existence of classical carrier of information (CCINF).

By CCINF we mean a physical “half-being” characterized by the fol-
lowing three properties: (1) at any instant ¢ CCINF is perfectly localized
with regard to all physical objects; (2) it carries a negligible (zero) amount
of energy and momentum; (3) it interacts — at least indirectly — with any
form of physical reality. In consequence, CCINF’s determine, with unlimited
accuracy, the structure and localization of any object in spacetime without
perturbing object’s state which remains the same as the one existing before
the observation. Indeed, the vanishing energy-momentum transfer between
the object and CCINF’s makes that the measured object suffers no recoil
and, therefore, a classical theory (h = 0) admitting existence of CCINF’s
must be an eventistic one.

After distinguishing between gquantum-potential existence of M sym-
bolized by its state 9 and actualization characterized by irreversible [4] and
registrable track [5], we can conclude that, owing to CCINF’s, classical the-
ory reconciles the total actualization of all its entities with the state of their
full isolation. Thus, classical physics (framework) deals with one-level ac-
tualized reality, whereas quantum physics discloses a two-level physics with
realities on the quantum-potential and classical-actual levels. Note, that ac-
tualizations result in a 0 —1 alternative of any property of M, which may be
either existent or nonexistent, whereas quantum propensity (potentiality)
inclines one to speak of the fractional-potential-ezistence of M or of some
of its properties on the second quantum level of reality. CCINF’s reduce
this to one-level actual existence which will be discussed further on.

Now, let us show that the classical frameworks (A = 0), both rela-
tivistic and nonrelativistic (NR) one, admit the existence of CCINF’s. In
the NR theory they are realized by action-at—a-distance or by very light
and small particles of Newtonian mechanics with sharply defined spacetime
trajectories. In the classical relativistic theory CCINF’s cannot propagate
with velocities greater than that of light but they are realizable by sharply
localized electromagnetic pulses of classical Maxwell equations which admit
negligible amounts of pulse energy and momentum. In the everyday praxis,
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the real light imitates CCINF’s, but the real quantum light (% # 0) cannot
approximate CCINF’s with an arbitrarily high accuracy.

Similarly to STR which eliminates signals moving with velocities greater
than that of light, the quantum p—z duality eliminates CCINF’s from the
realm of physical world. Indeed, the uncertainty relations

AX; AP, > h6, (i k=1,2,3) (2.1)

which follow from the p—z duality prove that the attributes (1) and (2) of
CCINF’s can be realized by no physical object. Of course, from the state-
ment that the existence of CCINF’s results in eventism does not follow the
opposite statement abolishing eventism; nevertheless, the lack of CCINF’s
shakes the very philosophy of Cartesian z-localization (eventism). Indeed,
any observation (measurement) respecting uncertainty relations belongs to
physics, hence the separation of the measured object from the measuring
tools ceases to be given a priori, like it has been in the classical eventistic
physics. In particular, direct z-measurements of the localization or struc-
ture of a micro-object M must be connected with an uncontrollable recoil
of M, leading to uncontrollable destruction of the M structure.

Let us remember that the p-z duality establishes (in general) a one-to-
one correspondence between the p and z representations of a Hilbert vector

|G), as

(21G) = / dp Uz, p)(pG),
(#l6) = [ d2 U (3, 2)(2lG), (2.2)

where U(z, p) is the element of the unitary operator U which establishes the
one-to—one correspondence between the z and p representations of Hilbert
vector |G). Note, that in Dirac’s abstract formulation of the state G of M,
the physical meaning of the z and p variables remains undetermined. How-
ever, in the L4-eventism, the quantum p~z duality means that p's denote
four-momenta of the corresponding degrees of freedom of M represented in
some reference frame S. Let us remark that in the case of, for instance,
hydrogen atom neither electron measures proton nor does proton measure
electron. Hence — as far as the measurement is concerned — the identifica-
tion of mutual position # and mutual energy—momentum p with four-vectors
of L4 geometry follows uniquely from the hypothesis of eventism.
However, 4-symmetry of eventism L4 has explicitly disclosed the ex-
perimentally privileged position of the asymptotic language p of relativis-
tic kinematics, as pointed out many years ago by Landau and Peierls [6].
The relativistic § matrix theory still enhances this privileged position of
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language p by parameterizing matrix elements S¢; in terms of Mandelstam
L-invariant variables s y determined by asymptotic four-momenta P4 of free
particles A of the initial and final asymptotic states of the collision process
under description. One has

S¢; = 5(4)(P¢ — P¢)Tsi(s15--+,5K) s (2.3)

where P; and P; denote four-momenta of the whole fully isolated system
inside which the quantum-potential collision process takes place. This pa-
rametrization of the L-absolute matrix elements S¢; with the aid of the
L-absolute Mandelstam variables s; suggests that behind this absolute pa-
rameterization stands an L-absolute internal geometry of micro-worlds M
that would a prior: guarantee the absolute nature of the described process.

The privileged position of the p language means that we can — in prin-
ciple — first measure exactly the § matrix elements (cross-sections) and
then evaluate from (2.2) the z-representations of the corresponding struc-
tures. Thus the p—z duality expressed by (2.2) witnesses the coexistence
of the p and z aspects of a structure, which is determined (exactly) in the
p language, rather than Bohr’s complementarity [7]. The latter, as based
upon Bohr’s incertitude relations, questions the possibility of reduction of
the experimental error of any quantitative characteristic, questioning in this
way the very idea of quantitative physics.

Sharp values of four-momenta P4, resulting in sharp values of sy vari-
ables, make that the collision process described by Sy; from (2.3) becomes
entirely unlocalized in the spacetime of measurement. However, this para-
dox may be surmounted by wave-packets which — if sufficiently spread out
— lead to the same cross-sections as those evaluated with the help of sta-
tionary plane waves with sharply defined P4’s of the A particles entirely
unlocalized in the spacetime [8]. In this way, Lorentz 4-symmetry L of
the classical principle of relativity required by all repeatable observables
becomes reconciled with the quantum nonlocality inherent in the very p
language of Mandelstam variables.

Of course, one has to agree with Bohr [7] that L symmetry imposed by
heavy, classical devices is an a priori condition of any physical theory, no
matter how far the concepts of first theory may be remote from intuitions
based on classical macro-physics. The aim of this paper is to show that
in spite of this unquestionable a priori, the quantum p-z duality admits
abandoning eventism L4 and its symmetry L on the quantum-potential
level of existence of M, without violating symmetry L of all repeatable
observables based on adequate ensembles of actualized data.
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In his famous paper, written with Podolsky and Rosen, Einstein (EPR)
[9] shows that quantum indeterminism of actualizations is hardly recon-
cilable with (classical) eventism of quantum physics. Therefore Einstein—
realist who, much alike to all his adversaries, accepted eventism, did not
agree with nonlocal quantum theory as a complete theory of micro-physics.
In this situation, the tremendous success of NR quantum mechanics and rel-
ativistic perturbation theory (quantum electrodynamics, in the first place)
constitutes a great challenge to our eventistic quantum physics. More-
over, the Bell inequalities [10], violated in perfect agreement with quantum-
nonlocal predictions {11], show that Einstein’s classical reality [9] based on
eventism has collapsed. This has inclined Clauser and Shimony to form
the conclusion that: “... either one must totally abandon the realistic phi-
losophy of most working scientists, or dramatically revise our concept of
spacetime. ...” [12]. The hypothesis of relationism presented below follows
the second leg of this alternative.

3. Balances of practical (physical) geometries

We shall call — after Einstein [3] — the Euclidean spaces E,(n =
1,2, 3), similarly as the spacetime geometries Ly and /or G4, practical ge-
ometries as they reflect behaviour of good measuring rods and clocks. In
Bridgman’s terminology [13], practical geometries carry the physical text
of mathematical symbols of physical theory. Without such physical text
no confrontation of theory with experiment is possible, as any quantitative
theory without physical text underlying theory’s symbols is reduced to pure
mathematics. Note that Cartesian synthesis of geometry with algebra was,
in fact, based on such (at that time) self-evident text of geometry.

Let us point out that in the Cartesian synthesis of algebra with E,
spaces, the orthogonal reference frames §,, with common (chosen option-
ally) unit on all axes of all equivalent reference frames S,, play a distin-
guished role. Besides the well defined instruction that can be given to each
individual observer on the manner he should proceed in order to construct
his reference body S, so that his §,, be identical with §',, of another ob-
server (they have to exchange the unit length), the orthogonal reference
frames §,, (bodies §,) disclose the fundamental symmetry of E, space.
The point is that if X;(j = 1,...,n) denote the representation of the point
X in some S, and X; do the same in S, then X} and X; are connected

by n(n + 1)/2-parameter orthogonal group of transformations

X} =0\, + 4", o™ =07, (3.1)
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where O(™) is a n x n orthogonal matrix and A represents the trans-
lation symmetry subgroup. Of course, the relative position z = X, — X,
representations, where X; 7 are two arbitrary points of Ey,, are connected
by homogeneous rotation group

2} = 0y, (3.2)

The distinguished position of orthogonal parametrization of the points
X of E,, does not exclude point-transformations to, for instance, spherical
(or other) coordination £; of Ep

£ =&6(Xw), Xj=X;(€)» (3.3)

but the physical text of initial symbols is imposed by the orthogonal (equiv-
alent) reference frames §,(X;). The fundamental reason for the distin-
guished character of the §,(X;) reference frames consists in the facts that:
(1) the coordinates X; of S, have the same physical text as X} of 57,

X} of S::, etc. (Using the vocabulary of principle of relativity we shall
speak of different equivalent observers in different reference frames (bodies)

Sny S5, S':: having at their disposal analogous measuring devices); (2) from
the algebraic point of view, the distinguished role of 5,(X;)’s means that
the interval 7 between two points X 3 is 0(™)-form-invariant, as

=2z;z; =r2, (3.4)

Moreover, as it is well known, the opposite statement is also true, namely
if quadratic form z;z; is to be form-invariant under point transformations
(3.3) we have

& =X}, (3.5)

which means that point transformations (3.3) are restricted to those given
by (3.1). In other words, only X ;j-parametrizations do reflect, algebraically,

the symmetry O(™) of Euclidean spaces E,.

Of course, one may always introduce, in flat spaces E,, an X; parametri-
zation when the metrics of E,, is given by finite quadratic form (3.4). How-
ever, this aspect of flat spaces ignores the double aspect of transforma-
tion (3.1) corresponding with — using the Wigner terminology [14] — the
passive and active interpretations of point transformations like those from
(3.1), strictly connected with the existence of O(")-form-invariant exten-
sions G(r?) embedded in E, and depending on the two-point ¢ = X3 — X;.
This double aspect of suitable point-transformations will be crucial in un-
derstanding the principles of relativity in L4 and in G4 discussed further on.
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In our case of Euclidean spaces E,, the passive and active interpreta-
tions of symmetry group (3.1) means the following: According to the passive
interpretation of point-transformation (3.1) we have to deal with a single
geometrical object, like a point X of E,, and hence, with a single extension
f(X;), spanned on X’s and represented in some fixed reference frame §,,.
Simultaneously, we have to deal with an infinite set of representations of
the same (single) object represented in all equivalent reference frames S.,.
However, the same mathematics (algebra) contained in (3.1) carries quite a
different, active interpretation of symmetry (3.1). In the geometrical (phys-
ical) language, this means that we are fixing an arbitrary reference frame
Sn, while n coordinates X, of the left member of (3.1) are the coordinates
of another point X' in E,, measured in the same reference frame S, as
the coordinates X; of the right member of (3.1). Thus X' is the picture
of X under point-transformation (3.1). Physically, this means that we are
dealing with a single observer in §, and an infinite set of physical (geo-
metrical) objects, each of them being the picture of another one under a
suitable point-transformation (3.1).

The geometrization of physics (so far restricted to static Euclidean
spaces E,) resorts to the passive interpretation of symmetry (3.1) only.
Indeed, the question concerns various (possible) and, at the same time,
equivalent positions of an observer as represented by different (existing at
observer’s disposal) reference frames S,. Thus if f(X;) represents a point-
shape in §,, (as spanned on the points X ), the same point-shape f takes
on another algebraic expression in §!, (c¢f. Section 5). This sameness of
f embedded in E, is guaranteed by the O(") covariant structure of laws
and boundary conditions which determine f(X;) in any reference frame S5,.
However, the O(™) covariant form of laws which determine f’s does not
involve an O(™)-form-invariant form of f’s, and it is this very form which
constitutes the clue to the active interpretation of a suitable symmetry, e.g.
— in our case — that given by (3.1). Let us illustrate this by a simple
example.

The Poisson equation of the scalar point-shape of potential $(X ;) takes

the O(®) covariant form
AS(X;) = —p(X;), (3.6)

where p(X;) is also a scalar point-shape, representing (in some §,) a given
source p of ¢. (For further purposes, we shall also refer to the point-shapes
as to event shapes.) Of course, the algebraic form of external event or
point shape p(X;) is not O(™)-form-invariant and hence, equation (3.6)
represented in another reference frame takes the form

Ag(X;) = —p (00 (Xi — 44)) (3.7)
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which is algebraically different from that of (3.6).
A different situation occurs for a homogeneous equation with p = 0,
when

AS(X;) =0, (3.8)

as this equation becomes O(™)-form-invariant. Consequently, if $o(X;) is
some particular solution of (3.8), then this solution, together with the pic-
ture of $¢(X;) under transformation (3.1), i.e.

8(X;) = %o (0L (Xx - 4x) , (39)

represent the n(n + 1)/2-parameter family of solutions of (3.8). In other
words, the O(™)-form-invariance of (3.8) means that O(™) is the internal
symmetry group of (3.8). In such a case, only some boundary conditions
imposed onto the solutions #’s may distinguish between different reference
frames which parametrize S,,.

Now, let us proceed with 4-spacetimes (G4 and L4), %.e. let us turn
our attention to eventism, although the fourth dimension (that of time) was
originally added to the E3-space in order to account for the phenomenon
of change as exemplified by motion of a corpuscular matter. Metrical time,
measured by good clocks, creates a new physical tezt of practical geome-
try of space—and-time strictly connected with the first Newtonian principle
(objectism) based on the state of isolation of the physical system M under
description. The 4-space—and-time has been introduced to define quanti-
tatively the potential reality of forces as the entities which are responsible
for accelerated motion of M as a whole in an inertial reference frame 5, in
which any isolated object M moves without acceleration. Thus, the inertial
reference frames § (we leave out the subscripts) reflect the inertial nature of
the global spacetime structure strictly connected with the time dimension.

For the same reasons as those mentioned when discussing F,-spaces, the
events X (points of spacetime) represented in § frames will be parametrized
by the same Cartesian coordinates X; of the E3-spaces of §’s and the time
variable t indicated by good (and synchronised) clocks at rest in the given
reference frame §

X = (Xj,Xo); Xo = ¢t in L4, XO =1 in G4. (310)

It is worth emphasizing that §4 acquires the nature of inertial reference
frame § if one assumes that S, is the rest frame of an infinitely heavy
object M (M — o0). Indeed, finite forces cannot accelerate M of an
infinite inertia.

Now, let us introduce an important notion of balance of practical ge-
ometries: FE,, G4 and Ls which characterizes the relationship between
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their mathematical and empirical aspects. We begin with Euclidean ge-
ometries E, (n = 1,2,3) whose foundations resort to the existence of
(practically) rigid rods which obey the Pythagoras law. Thus, from the
empirical world we borrow the rigid rods and introduce an absolute prop-
erty — the rods’ lengths (measured in some optional units). Hence, the
debt of theory amounts to —1. However, after assuming that the practical
space-geometry is a Euclidean one with symmetry O(™) given by (3.1), the
0(™)form-invariant interval r = (zjz; )(]/ 2) parametrizes properly absolute
extensions of real objects (rigid bodies). In consequence, mathematics of
E,, geometries returns the debt (+1) which makes it justified to say that
the balance of practical E,, geometries is equalized: —1 + 1 = 0.

Let us consider, in an analogous way, the practical spacetime geome-
tries G4 and Lg4, beginning with G4. As it follows from the consideration
presented above, each of the reference frames S deals with an E; space “of
its own” with the equalized balance but the metrical time borrows from the
empirical world good clocks (—1). However, symmetry G of G4 results in
G-invariant intervals At of F,(t) parametrizing absolute intervals of real
good clocks. Thus, the total balance of G4 eventism will be characterized
by the equality —2 + 2 = 0 which means that the balance of G4 geometry
is equalized. Logically, one may expect that the G4 eventism makes room
for a (non-relativistic) closed theory capable of reproducing the structures
of rods and clocks as its particular solutions.

Minkowskian spacetime L4 starts with the same negative balance —2 as
G4, but eventism L4 has to deal with only one L-form-invariant four-interval
(+1)

12

g% =2 z'g =a? —zl =22, (z¢ = cAt). (3.11)

According to the above we should end up with a negative balance: —2+1 =

—1. In classical physics (R = 0) which employs CCINF’s (and hence is

condemned to eventism), no other L-invariant spacetime-interval exists a

priori, but the L-invariance of the velocity of light suggests the possibility

of following argumentation in favour of equalized balance of L4 geometry.
Let us consider a light signal and let the equality

r = cAt (3.12)

define the measure of space-interval  which reduces such an interval to a
time-interval At (provided that c is known). (N.B. this is the way we define
today the metre.) Such a reduction of the measure of » to the measure of
At excludes possibility of independent measurements of the velocity of light,
but it entails, on the other hand, that we borrow from empirical world only
one measure — that of time-interval. This would lead to the initial balance
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—1 but the L-invariant four-interval (3.11) equalizes this negative balance:
—1+ 1 =0, similarly as in E,, spaces with definite metrics.

Such an operational way of arguing in favour of equalized balance of
Minkowskian L4 spacetime geometry (—1 + 1 = 0) makes an essential use
of the classical framework (A = 0) and CCINF’s. Here, the measurement
of space-interval r with the aid of a light signal can be performed with ar-
bitrary (in principle) accuracy, as the classical light signal (CCINF) causes
no uncontrollable recoil of M which carries the space extension. Conse-
quently, in quantum physics without CCINF’s, there is no place for the
above (classical) equalization of the balance of Ly (—1+ 1 = 0). In order to
avoid having an uncontrollable localization (§ X ) and uncontrollable velocity
(8V ~ 6P/M) for M, i.e. in order to have

86X -0 and 8V -0 (V = LAI—;—’) , (3.13)
without violating the uncertainty relation
k A1
DY e N — .14
(8X) 5P~ M §V’ (3.14)

we must assume A to be infinitely heavy, which in turn entails the rest
frame of M to be an inertial one as

M- . (3.15)

So, in quantum physics, we are left with two qualitatively different proper-
ties of space- and time-extensions which proves that the L4 eventism deals
with a negative balance. This supports strongly the opinion formulated by
von Weizsaecker: “Spacetime is not the background but a surface aspect of
reality” [15]. In the perspective of balance of practical (physical geometries)
this would mean that the L4 geometry must be based on some (relational)
geometry which would go deeper into the metrical nature of physics and
whose balance would be equalized a prior:.

The most spectacular manifestation of the negative balance of Minkow-
skian spacetime L4 takes the form of no interaction theorems. In classical
relativistic mechanics, subject to canonical p—z symmetry, from the L-form-
invariant equations of motion of an isolated composite system M follows a
free motion of each of the system constituents, so these equations admit
relativistic kinematics only (16, 17]. The same extreme restrictiveness of
symmetry L concerns also field theories, where — as clearly shown by Feyn-
man [18] — the event locality of symmetry L remains in conflict with the
internal dynamics responsible for stability of an extended system M. The
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same no interaction theorem is also strongly suggested by the axiomatic §
matrix theory [19, 20] based on symmetry L and resulting in § = 1.

The no interaction theorems support strongly the opinion formulated
above according to which the negative balance of geometry L4 excludes
possibility of existence of any closed theory based on eventism L4, i.e. any
theory which would respect symmetry L and would provide us with the
structure of good rods as its particular solutions. In this context, it might
be worth remembering that “young Einstein”, when putting forward the
hypothesis of STR, always strongly emphasized that the notion of space-
and time-intervals has no other physical sense apart from that of real rods
and clocks. At the same time, he maintained that so far we are forced
to borrow from the empirical word the space- and time-extensions of rods
and clocks, respectively, as the theory is still far from being capable to
furnish the structures of rods and clocks as its particular solutions [3]. After
Minkowski’s geometrization of STR, Einstein’s opinion on this subject has
remained dominated by eventism (opposed to the previous objectism [2])
most extremely perceived in his GTR.

It is interesting to inspect more closely the reason of fundamental dif-
ference between symmetry groups L and G, the latter group being free of
any no interaction theorems. Let us start with eventism G4 which admits
an orthogonal group of transformations much larger than symmetry G by
admitting time-dependent, orthogonal matrix O and space translations A;
(also time-dependent)

X} =0;(t) X + Aj(t), t'=t+ A9 (5T = 6’1) . (3.16)

The point is that both r = | X3 — X|,,_, and the time-interval At between
arbitrary events X ; are the two invariants of (3.16). In order to introduce
the physical text of inertiality of spacetime we must explicitly resort to the
Newtonian principles, similarly as we do it when determining pseudo-forces
and/or when determining the equations of motion of an NR rigid body.
On the other hand, the universal constant ¢ that enters symmetry L
amalgamates space with time as it accounts for (relativistic) Maxwell equa-
tions. Consequently, the equations characteristics as parametrized in our
Cartesian coordinates X; and X¢ = ct (carrying the same text when re-
ferred to different reference frames) require form-invariance of four-interval
z%, i.e. 2'? = z2. However, contrarily to symmetry G, the form-invariance
of the quadratic form z? = z2 — 22 determines symmetry L of events X and
restricts automatically the reference frames S4 to inertial reference frames
§. Indeed, if X = (X;; Xqo) were to parametrize an object M in some refer-
ence frame S4 # 5, e.g. an object rotating in S with a finite angular velocity
2, from the very infinity of Cartesian reference frame 54 would follow that
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M at rest in §4 acquires a superluminal velocity in some inertial frame S,
as rf2 > c if r is large enough. Thus, we must have 2 = 0 and hence,
S54=3S5.

Thus, the L4 eventism is intimately connected with the inertial nature of
spacetime which, in the case of the G4 eventism with its equalized balance,
must explicitly resort to the Newtonian laws of motion.

4. Singularity of eventism G4 and NR relational spacetime I

The representations in different inertial reference frames S of the L4
and G4 spacetimes of an event X are connected by

X'=LX+4, (L) X' =GX+4, (G (4.1)

where I and G denote the 4 x 4 matrices of homogeneous 6-parameter
Lorentz and Galilean symmetry groups, respectively, and A is the 4 X 1 ma-
trix of the spacetime symmetry. Neither L4 nor G4 are Cartesian products
of space [E3(X)] and time [E1(t)] continua, but from the absoluteness of
the Newtonian time follows that G is a semi-group. Thus (4.1 G) rewritten
in terms of the space and time variables takes the form

X_;‘:Ojk(Xk_th)+Aj7 t' =t+ Ao (j’k:1,213) (4'2)
while the representations of 2 = X5 — X are connected by
z; = O]-k(zk - Vi At), At = At. (4.3)

As it follows from (4.3), the space-interval R between two events depends
on the reference frame §, as

R™? = g'? = 22 — 2(Vz)At + VI(At)? # 2 = R?. (4.4)

However, the G-form-invariant constraint At = 0 imposed onto two events
X1,2 and contained in the very one-time non relativistic equations of motions
makes r = R|,,_, a G-absolute equality. Consequently,

" =R'|y,_o= Rlamg=7 and At'=At (4.5)

are two G-form-invariant intervals of the spacetime G4 making the balance
of G4 geometry equalized: —2 + 2 = 0.

On the other hand, the frame-dependent value of R discloses a dilemma
of eventism (here of eventism G4) connected with the spacetime vicinity of
two spacetime regions which is the basis of experimental actualizations.
Suppose two events X 1,2 to have, in some reference frame, the same space
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localization (@ = 0), but to occur at two different instants ¢; 2, so At =
tz —t; > 0. From (4.4) it can be seen that in the reference frame §' which
moves in § with a velocity V' = |[V| the space distance between the two
events X; 7 is equal to R' = VAt. However, the velocity V of §' with
respect to § can be, in G4, arbitrarily large and hence,

R'=VAt y— o0, (4.6)

V—oo

even if At is arbitrarily small. Thus, in eventism G4, the vicinity of two
spacetime regions loses the G-absolute meaning unless we impose, from the
very beginning, the constraint At = 0 when »' = r. No experiment can
realize this mathematical accuracy, although the one-time NR theory is free
of this dilemma.

The reasons why the above dilemma does not concern practical (exper-
imental) physics are quite different than those in theoretical physics, where
the condition At = 0 is imposed by the one-time laws of motion. In practical
physics, we tacitly assume that, in spite of Galilean principle of relativity
admitting arbitrarily large velocities V', the mutual velocities between cor-
puscular objects (characterized by some velocity v) are negligible (zero) as
compared with the velocity of signals which are the carriers of the informa-
tion on the space localization of the corpuscular objects. Since information
is carried, first of all, by light with the velocity ¢, this tacit assumption
is equivalent to the condition that v is much smaller than ¢. Indeed, if
I = vAt is to characterize the change of space configuration of the observed
system during a time-interval At = r/c, where r is the distance between
the observer and the observed object, than [ should be much smaller than

r, hence

!
ol (4.7)
r [

The finite velocity of light ¢ was discovered by Roemer who observed irregu-
larities of one of the Jupiter’s moons due to the varying distance » between
the Earth and Jupiter.

In principle, the strong inequality (4.7) that really dominates the world
of macro-physics neither abolishes the dilemma of eventism, nor is canceled
by the mathematical limit ¢ — oo characterizing the NR physics when
symmetry L of Ly converts into symmetry G of G4. Indeed, even with c
tending to infinity, the velocity v may tend to infinity as well, preserving
the v/c ratio finite, although less than one. From the point of view of
the Galilean principle of relativity (symmetry G), strong inequality (4.7)
realized by macro-objects is “accidental” and it was this “accident” which
made possible the conceptualization of the NR physics. _

From now on — in order to refrain from introducing new symbols — let
z; denote, in G4, the relative space components of two simultaneous events
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occurring in G4, in agreement with the usual notation of NR mechanics.
However, let z denote, as before, the relative four-coordinate in G4 and Ly:
z = (zj;20), where 2o = At in G4 and z¢ = cAt in Ls. With this notation
equation (4.3) transforms into

2 =05,z (At =At=0). (4.8)

The superscript G in the orthogonal matrix is meant to point out that
the space-rotation symmetry O is induced by symmetry G of eventism G,.
Accordingly to (4.8), #'? = 2, hence the only dependence of z;’s on §
results via rotation group 0¢.

In classical physics, with CCINF’s and condemned to eventism, the
rotation symmetry of internal variables such as z;, must be coupled to
the rotation symmetry of the whole E3(X) space of some reference frame
S, hence 0 = 06. However, together with the quantum p—z duality, it is
possible to presume that a micro-system M, fully isolated from the external
world of measurement, constitutes a self-dependent micro-world M. In NR
theory (1/¢ = 0) this hypothesis is realized by introducing the Euclidean
relational space R:? whose rotation symmetry ORisa priori independent
of the rotation symmetry 06. Consequently, let y; denote the relational

coordinates of a point in the Rf(y)~space whose isotropy results in the
3-parameter rotation symmetry

v;=0h v, 2j=0%5z, v =2°. (4.9)
The lengths of # and y remain the same, but
OF + 0°. (4.10)
According to relationism, the quantum p-z duality expressed by
(45, Tk] = ihd (4.11)

becomes anchored in the p and z aspects of the relational space Rf, i.e.
in R§(q) and RS (y). Fourier transforms establish correspondence between
(g|F) and (y|F), i.e. between the p and z representations of a Hilbert vec-
tor |F) in RS (q) and R§(y), respectively. Fourier transforms make the
relational space R? an infinite and indivisible whole in its p and z aspects.
Duality p-z of the Rf space makes it essentially different from Cartesian
z-space E3(X) of classical physics. Of course, Cartesian z-space E3(X) ad-
mits Fourier transforms of (X|F), but physics without k (A = 0) excludes
the quantum p—z duality, so there is no room left for the duality of the first
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background of any classical extension. Therefore, one is justified to speak
of RS as of a geometrical meta-object connected with a mechanical config-
uration sub-space rather than with classical spacetime G4 of pre-existing
events X.

However, in spite of the signalized difference between RS and E3(X),

and although OR # 5G, R;? and G4 are indeed connected by a mathe-
matical isomorphy which is responsible for the tremendous success of NR
quantum physics based on classical eventism G4. We shall see that this
isomorphy between the hypothetical R3-relational space and eventism L4
disappears in physics which presumes finiteness of the universal constant
h/c. Then the distinction between relationism and eventism becomes phys-
ically relevant.

From the point of view of the relational space R3 introduced further on
and accounting for the finiteness of the universal constant % /c, which in turn
leads to abandoning of eventism Ly, the singularity of NR eventism G4 con-
sists in its coexistence with relational space Rg;. In consequence, the struc-
ture of a system M composed of N constituents: M = A1 + A2 +...+ Apn,

finds the room in the 3(/N — 1)-dimensional configuration space induced by
N-1

e e,
RS: RS ®...® RS whose dual p-z nature reflects the wave—corpuscular
duality of the quantum M’s. The coexistence of Rf with G4 would be re-
sponsible for the enormous success of NR quantum mechanics which main-
tains the classical spacetime G4 of actualizations (measurements) as the
background of quantum relational structures on their potential level char-
acterized by v function. In true physics which employs finite i/c constant,

the relational structure of M on its quantum-potential level will be hidden
N-1

prm—— ———

[21) in RS ® ... ® RS -space.

Let us emphasize that the elementary (in relationism) two-body system
M = A; + A; introduces two hypothetical constituents A, 7, but that does
not entail existence of each of them separately in the external spacetime of
measurement as it takes place in eventism. The point is that, according to
relationism, the spacetime continuum of observable events X will stand on
the footing of a limiting case of relationism conditioned by suitable physical
situation of the system under consideration. Let us remember that the
identification of physical existence of some entity with its existence in the
external spacetime of measurement is inherent in eventism and hence, in
classical physics (A = 0) with CCINF’s. The quantum p-z duality makes
room for the hypothesis of relational space of directly unobservable points-
relations which constitute foundations of metrical physics and make possible
to analyze directly observable events X.
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In order to emphasize the configurational origin of relationism with
its quantum p-z duality, let us stress — after Heisenberg [5] — that the
wave—corpuscular nature of matter reveals itself in each (canonical) degree
of freedom of the configuration space of M = A;+...4+ Ax. These waves in
configurational spaces are then of quite a different nature than the classical
waves in spacetime. Within the eventism (G4 or/and L4) the wave of matter
may appear in spacetime for a one-body problem only.

Let us attach, in G4, to an isolated micro-world M (viewed as a whole)
a G-absolute internal-time continuum 7 () which coincides, up to an ar-
bitrary (a priori) translation constant, with the Newtonian time continuum
T(t), i.e.

T=t+C, Ar=At. (4.12)

This exhibits also the singularity of symmetry G or, in other words, the
equalized balance of geometry G4. The 3-parameter rotation symmetry OR
of RG together with the 1-parameter translation symmetry of internal-time
T constxtute the 4-parameter symmetry group R of the a priori G-absolute
internal spacetime If . Thus I, 4G is a Cartesian product of Rf and 7€

IS =RS @ TC. (4.13)

5. Relational shapes versus event shapes and NR mechanics

Full contents of the principle of relativity call for the passive and active
mterpretatlons of syrnmetrles (4.1) of Ly and G4. These two interpretations

of symmetries I and G, as well as of the orthogonal symmetry (3.1) of B,
are connected with the fact that the spaces: Ly, G4 and E,,, if parametrized
by our Cartesian coordinates, deal with z-form-invariant intervals under
the transformation groups: L, G and 6, respectively. In particular, L
covariant equations of motion, and thus consistent with STR which requires
only the passive interpretation of symmetry L, become L-form invariant if
they describe a fully isolated system M in the whole L4 spacetime. Had
the symmetry L not been the internal symmetry of equations of motion,
the analytic form of these equations expressed by X-variables would have
distinguished between different (equivalent) reference frames S in conflict
with the principle of relativity.

In quantum-relativistic physics, the Bethe-Salpeter equation [22] de-
scribing two-body systems is an example of L-form-invariant equation. Free
Maxwell and free Dirac equations are other examples of L-form-invariant
equations, similarly to equation (3.8) which is O-form invariant. However,
the L covariant Maxwell equations with external four-current density j(X)
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break the internal symmetry f; the breaking results from the presence of ex-
ternal field j(X). Let us examine this in a more detailed manner which will
enable us to introduce some classification of shapes embedded in spacetime.

IE is sufficient to confine our considerations to scalar representation of L
and G groups given by a scalar property f spanned on spacetime continuum.
Consequently, in some (arbitrary) reference frame §, the property f takes
the form of a mathematical function (distribution) f(X) and, therefore, let
us call f an event shape. Now, let 'f(X) denote the same event shape f
when represented in S', hence

-~

"F(X') = f(X), X'=(é)X+A. (5.1)

Thus 'f parametrized by the same mathematical variables X as f was
in § takes the form

'F(X) = f { ((%j ) x - A)} - (5.2)

If four (mathematical) variables X are interpreted geometrically as vari-
ables which parametrize event X in a fixed reference frame S, then (5.2)
illustrates the active role of symmetries L and G. Now, if the X variables
(non-primed variables) in the right member of (5.2) parametrize events in
§', while the X variables in the left member of (5.2) parametrize events in
S, then the symmetries L and G exhibit their passive role. Equation (5.2)
shows that no event shape can represent an L-form-invariant shape, except
from f(X') =constant in the whole infinite spacetime. Thus

"f(X)# f(X) if f(X)# constant. (5.3)

Following the same principle, let us consider another scalar property
g which now is spanned on relative coordinates: z = X2 — X;. Logically,
we shall label g a two-event shape, and the sameness of g represented in
different reference frames and parametrized by four mathematical variables
z = (z;;z0) results in

'9(z) =g (gi z) : (5.4)

Again symmetries Z and G can be interpreted passively and actively and,
in general, 'g(z) # g(z).

However, two-event shapes disclose the fundamental property of flat
spaces, such as E,,, G4 and L4, namely that these spaces deal (in our
Cartesian parametrization) with form-invariant metrics. Let us remember
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that in the case of E,, and L4 geometries the requirement of form-invariance
of interval 72 = z;z; in E, and the form-invariance of four-interval z* in L4
result in symmetries (3.1) and (4.1 L), respectively. In consequence, there
is a sub-class of two-event shapes in Ly and in G4 — denoted henceforth
by cagital letter G — which are form-invariant under the corresponding I
and G transformation groups. In L4 we deal with

'6(2?) = G(=*), (5.5)

while in G4 we deal with two types of G-form-invariant two-event shapes,
namely

'G(At) = G(At), (4)
'G(z) = F(z?)§(V(At). (i) (5.6)

We shall denote by L4(z) and G4(z) the four-space spanned on relative
four-coordinates z = X3 — Xj, depending on whether the corresponding
spacetime is L4 or Gy, respectively. Since L4(z) will induce the configura-
tion spaces L4 ® L4 ® ... of composite micro-objects and micro-processes,
the p—z duality of these objects and processes imparts the p and z aspects
to the 4-space L4 itself, hence we deal with L4(p) and L4(g), respectively.
Infinity of 4-space L4, together with its indivisibility connected with the
unitary transformation structure (Fourier transforms) establishing the cor-
respondence between the p and z representations of gquantum extensions
make L4 — besides Rf — another geometrical meta-object.

The L-form-invariance of form factor G(z?) of particle M embedded in
L4(z) or, interchangeably, L-form-invariance of G(p?) embedded in L4(p),
carries two different physical texts resulting from the passive and active in-
terpretation of symmetry L. The same concerns the G-form-invariance of
form factor G(z) from (5.6). Passive interpretation means that G takes the
same analytic form if parametrized by invariant intervals of spacetime, inde-
pendently of the lab-system in which G is being measured. Active interpre-
tation means that the external motion of M as a whole in a fixed lab-system
does not affect the analytic structure of G. Thus the form-invariance of form
factors (5.5) (in L4) and (5.6) (in G4) manifests the separation of the inter-
nal and external degrees of freedom of M. In Ly, the L-form-invariance of
G(z?) means that the structure of M suffers from no relativistic distortions
[23], the best known among which is the Lorentz contraction, a distortion of
a purely kinematic origin [24]. The non-separability of the internal degrees
of freedom of M from the external ones, inherent in the L4 eventism, will be
discussed in Section 7 and, as we may see, it stands in fundamental conflict
with L-form-invariant form factor G(z?) (or, interchangeably, G(p?)). The
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equalized balance of geometry G4 makes this conflict vanish in G4, because
of the coexistence of Rf with G4 which entails the separation of the internal
degrees of freedom of M from its external ones.

Besides the L- and G-form invariant two-event shapes (5.5) and (5.6),
respectively, the eventism itself results in the L- and G-form invariance of
the four-dimensional Dirac function

54 (z) = §( ( éj :c) = 6(z). (5.7)

This is obvious, as §(#)(z) accounts for the L- (G-)absoluteness of the co-
incidence of two events when z = X; — X; = 0. In consequence, 6(4)(2:) is
the universal L-(G-)form-invariant form factor of all point—particles. Owing
to the equalized balance of geometry G4 and confronting (5.6 i7) with (5.7)
we see that the space-locality factor §(3)(z) of §(4)(2) can be continuously
approximated by a space nonlocal and G-form-invariant form factor F(r),

My
F) - 20D =), (r=ly)). (58)

Tr

The negative balance of geometry L4 excludes any L-form invariant form
factor which would account for the space nonlocality (in a similar way as
(5.8) does in G4). This results immediately in a dilemma of eventism L4
analogous to that of eventism G4 discussed in Section 4. Indeed, besides
the spacetime-local form factor 6(4)(2:), any other L-form-invariant form
factor takes the form G(z?) and occupies the whole L4(z)-space remain-
ing constant on the unbounded Minkowsk:i’s spheres z? = constant. This
shows why L4(z) is an infinite and indivisible whole, called the geometrical
meta-object. The discontinuity between G(z?) and §(4)(z) shows that it is
impossible to express L-absolutely the vicinity of two bounded spacetime
regions. This fact will be essential when we will be discussing the adiabatic
hypothesis in Section 9. The same dilemma of eventism L4 explains why
relativistic (spacetime-local) field theory is restricted to point-particles only
[25] with the universal L-form-invariant form factor §(#)(z).

Now let us show how NR mechanics exhibits the singularity of symmetry
G which — as we know — consists in the coexistence of G4 and R3G and
hence, in the separability of the internal degrees of freedom of an isolated
system M from its external ones. It is sufficient to consider the elementary
composite two-body system M = A; + A, starting with the (equal-time)
6-dimensional configuration space E3(X1) ® E3(X2) based on an arbitrary
reference frame S parametrizing G4. The Newtonian, G-absolute, time
parametrizes absolute evolution of all possible states of M, both scattering
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or bound ones, generated by Hamiltonian HS. This Hamiltonian can be
taken in its simplest form

Py, P}

HC =
2m1 2m2

+V (X2 - X1)?). (5.9)

Here, the dependence of HS on S enters via the kinetic energy operator
only, as the action-at-a-distance given by potential V ((Xz — X1)? = y?)
is a G-absolute relational shape embedded in Rg;.

The well known canonical transformation

XZG.GX1+(1—G.G)X2, z=X; - X;

} (5.10)
P =P, + P, p=a®P; - (1-a%)P,

with the weight a@ given a priori by masses of the constituents

aG:m, 1—aG:m, m=m +my, (5.11)
m m

guarantees (a priori) the G-absoluteness of internal canonical variables z, p

p'=a®Py— (1-a%)P} = a®(Py + myV) + (1 — a®)(Py + myV)
=aSP; - (1-a%)P; = p,
2 =X, - X1 =Xo+Vt+A-X;-Vt-A=X;-X; ==,
(5.12)

and changes the parametrization of the configuration space according to

E3(X1) ® Eg(Xz) = E3(X) ® E3($) . (5.13)
According to (5.12), 22 = y? and p? = ¢?, and HC becomes separated (in
the new variables) into external (X) and internal («) variables, as

HG = P2 jG(p2_ 2 p? = g?),

2
hC :g;-I—V(yz), @ =mymy/m.

The relationship between the a priori G-absolute characteristics of M
obtained from h€ and the corresponding measurement data obtained in
some lab-system in G4 is given by (5.10). Keeping in mind that OF # OC,
the connections between the space orientations of M in Rf and in the
space E3 of lab-system S are established a priori. If the isolated system
M = A; + A3 is in a scattering state this connection is established by
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means of the asymptotic momenta of A; and A3 in the asymptotic zone of
measurement. If M is in a bound state, the orientation of internal structure
of the (composite) particle M in Rg;, with regard to the external space of
lab-system, requires some polarization effects such as those in the Stern-
Gerlach experiment.

The coexistence of RS with G4 manifests itself in (5.13) or/and in
the separation of the external éfree) Hamiltonian P?/2m from the inter-
nal G-absolute Hamiltonian A“ as shown in (5.14). The same separa-
tion concerns any isolated N-body system parametrized from its inside by
3(N — 1) relational coordinates y;,...,yn_; of the configuration space
R$(y1)®...® R§(yn_1)- In the Schrédinger equation, the p—z duality is
realized by relational momenta q,,...,qy_; conjugate with yy,...,yn_1
and equal to gy = —ihd/dy;. The Schrdédinger equation then takes the
form

.3¢Gy...y_;7- ~
th (¥1 3,—’ N-1 ):hG¢G(y1,..-,yN_1;T), (5.15)

which results, for stationary states, in an eigen-problem of hC

hGiﬁf(y],...,yN_l)=WS¢g(y1,...,yN_1)- (5'16)

The remaining 3 degrees of freedom Xwhich describe M as a whole, i.e. as
a single particle in G4, are determined from the Schrédinger equation

LoC(X,5) P 4
ih 3t = rH(X,t) (5.17)
with P = —ihd/0X.

The coexistence of Rf with G4 makes the internal equation (5.15)
and the ezternal equation (5.17) to be quite different from each other. In
true physics with finite h/c constant, when L4 is the spacetime of measure-
ment, the hypothesis of (L-absolute) relational space R3 must abandon the
L4 eventism and the solutions of the corresponding internal and ezternal
Schrédinger equations will be subject to a hierarchy: first one has to estab-
lish the state of M in R3 and then only solve the external equation. Briefly
speaking, this hierarchy results from the energy-mass relation which, as it
will be seen, has far-reaching geometrical consequences. R

If M as a whole is in the eigenstate of total momentum P and, simul-
taneously, in the eigenstate ¥ of hC as defined in (5.16), it follows from
(5.14) that the total energy E,? of M is equal to

2

EC = :Tn + w8, (5.18)
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The dependence of ES on external reference frames S enters via kinetic
energy P2?/2m only, while wS is G-absolute a priori. In consequence, the
equality

ES* = w8 (5.19)

in the rest frame $* of M, in which P* = 0, takes place a posteriori and
hence, it does not distinguish the reference frame $* in a way which would
conflict with the Galilean principle of relativity.

6. Relative time variable At as a degree of freedom

Low-energy physics and, in particular, low—-energy transport phenom-
ena in micro-physics which are very well described by the NR Schrodinger
equation, are based on classical spacetime background of heavy, classical
measuring device. In spite of this background, the quantum motion is hardly
reconcilable with the physical text of space and time continua found by mea-
suring rods and classical clocks [26, 27]. The same concerns the electron
motion inside loosely bound systems like atoms [28, 29]. This suggests that,
on the elementary level of micro-worlds M, the metrical relations existing
in M’s are originated by relationism accounting — by its very nature — for
the p—z duality rather than by the macro-eventism of classical physics. One
of the problems which arises together with the opposition relationism ver-
sus eventism is connected with the role of relative time variable in N-body
states (N > 2). Let us confine ourselves to the simplest two-body system
M = A; + A; when the problem concerns a single relative time variable
At =ty — 5.

In classical physics, after determining the trajectories X »(t) from the
one-time NR equations of motion (At = 0), the classical spacetime back-
ground does not forbid to speak a posteriori of each of these trajectories at
different instants t1 < £ with At £ 0

X1:X1(t1), X2=X2(t2), At =ty —t1 £ 0. (61)

It is instructive to analyze how does this problem look like in two-body
quantum systems starting with the most reliable case of two free particles
(kinematics) in spacetime Ly4.
Let A; and A3 be in the eigenstates of their momenta P,z with cor-
o o
responding eigenvalues P; 7 and let Py 2 denote their four-momenta when

o
A; 2 are on their mass-shells; hence, P; 2 are subject to two constraints

52 2 2 0 2 52 \1/2
Pjs=-mjac’, hence E1z2=c (ml,z + Pl,z) , (6.2)
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o
where F; . denote the energies of A; 2 in some arbitrary reference frame

S parametrizing L4. The corresponding eigenstates of f’l,g take the well
known form of plane waves

[+ [+]
Pi1X:+ P2X,

g; = Aexp(ig%) , ;1)5 = - , (6.3)

which embed @ in the 8-dimensional configuration space L4(X;) ® L4(X2).

Thus one may determine s; for an arbitrary value of the At = t3 — t;
degree of freedom as required by 4-dimensional continuum L4. However,
as it has been pointed out by Dirac [30], the two constraints (6.2) show,
in the p language of measurement, that four-dimensionality of L4 is not a
simple extension of the 3-symmetry of NR physics into the 4-symmetry of
STR, as this extension calls for some additional constraints eliminating the
relativistic redundancy of degrees of freedom.

Now, following the NR procedure expressed by (5.10), we intend to
change the parametrization X7 of 8-dimensional configuration space of
M = A; + As in a way which would separate the internal variables from
the external ones. Among the new variables there must be the total (exter-
nal) four-momentum P = P; + P, and the (internal) relative four-coordinate
z = X2 — X;. As the p—z duality must concern the old variables as well as
the new ones, the change of variables must preserve the unitarity of trans-
formations between the corresponding z- and p-representations of all states
of M. The necessary and sufficient condition for this is the following iden-
tity of the expression for @ in the old and new z and p variables. Omitting
the superscript o, this identity may be written in the form

he = P1 X1+ PbX,=PX +pz. (6.4)

Under these assumptions we end up with

X:aX1+(1—a)X2, z=X; - X1,
} (6.5)

P:P1+P27 p:aP2_(1—a)P13

with the arbitrary (so far) weight a as a free parameter. In consequence,

the elements of the unitary operator U between the z and p representations
in the old and new variables are of the form

U= (27\"71.)_4 exp {%(P]Xl + PzXz)}

= (27h) *exp {%(PX + pz)} . (6.6)
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Hence, the state (6.3) in the new parametrization takes the form

o 1 /0 o
¥ = Aexp [ﬁ (PlX] +P1X2)} = Aexp [

E(PX +Pa:)], (6.7)

independently of the value of a.
Although the internal phase ¢ of 5; with

hé=pz, (6.8)

remains L-invariant independently of the value of a, similarly as do z2 and
o o
p?, the four-length P? depends on a. Let us confront this with the G-

invariance of p? = ¢2 from (5.12) due to the NR, weight a® = m; /m, which
is crucial for the separability (in G4) of the internal degrees of freedom
of M = A; + A, from the external ones as well as for the abstraction of
relational space R3. The relativistic energy—mass relation makes that the
weight a cannot be given a prior: (as in the NR case), because it depends on
the internal state of M which decides about the value of the mass M of M.
This very fact imposes the hierarchic description of the whole state of M;
such a description is excluded by eventism L4 and calls for the hypothesis of
relational space R; extending RS to physics of finite /c. We shall explain
this in the following sections, after introducing the R3 space, but now let
us present the following argument from which some fixed value of a will
result, confining ourselves to the trivial case under discussion when M is
composed of free constituents on their mass-shells as in (6.2).

The point is that if the variables ¢ and p are to be internal variables
of an isolated micro-world M separated from its external variables X and
P then, in the case of free constituents Ay ; of M, M’s absolute mass M
should be parametrized by L-invariant four-length of p as this four-length is
the only internal, L-invariant quantity which we have at our disposal. Thus

W (p?)

ez’

M=M@p®) = (6.9)

where W is the internal energy of M. However, using (6.5) and taking into
account the mass-shell constraints (6.2) one obtains

* * * w
Py =Mc=(mi +p 2)1/2—|-(m§c2-i—p 2)1/2 = (6.10)

where p* is the space component of p in the rest-frame §* of M in which
P* =0.
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Equality (6.10) conflicts with the requirement (6.9) because p? coincides
with p*? provided, however, that pg = 0 which, rewritten in a manifestly L
covariant form, means that

Pp=0 (p;=0). (6.11)

Thus the external four-momentum P imposes a constraint onto p which
conflicts with its internal self-dependent character required by (6.9). The
constraint (6.11) proves that 4-symmetry L excludes the separation of the
internal degrees of freedom of isolated systems M from the external ones
already on the elementary level of relativistic kinematics. The fact that
4-symmetry L4 conflicts with the separability of internal dynamics of M
was first disclosed by Dirac et al. [31] and discussed after by Foldy [32] in
connection with the semi-relativistic equation of motion of two-body sys-
tem put forward by Eddington [33]. Within the L4 eventism, Eddington’s
semi-relativistic equation starts with the CM system $* which — from the
point of view of symmetry L as the one given a priori by eventism L4
— postulates the separability of internal dynamics of M conflicting with
symmetry L. Let us remember that (5.14), which follows from (singular)
symmetry G, means the separability of the internal (absolute) coordination
of M from the external (G-relative) one. Thus, the a priori G-absolute
internal Hamiltonian AC realizes the idea of Eddington of an absolute equa-
tion of motion without distinguishing CM system S$* and hence, without
violating the (Galilean) principle of relativity.

Thus the two constraints of scattering states (free states) of M, given
by (6.2) in the initial parametrization of M = A; + A, convert, in final
parametrization, into two constraints (6.11) and

P = M2 (6.12)

which determines the L-invariant mass M from the outside of M as given
by the external four-momentum P. Now, let us show that the constraint
(6.11) and the equalities (6.5) determine the weight a.

From (6.5) we obtain that

p’(a) = (aP; - (1 - a)Py)? = p*? — (aMz — (1 - )My )’c?,  (6.13)
Ml,Z:(m%,z‘*'P*z)l/z, M=M +M;>m=my+my.

The constraint (6.11) results in p? = p*? which leads to

14+ 1

a(M) = e

% 1 m2——m§
M 2

G mi
— = — 6.14
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and — as it was to be expected — results in the dependence of the weight
a on M, i.e. on internal state of M. For scattering states, when M > m,
the very notion of weight and hence, the dependence of the centre of mass
coordinate X [cf. (6.5)] on internal state of M is of secondary importance.
However, the same analytic dependence of a on M remains valid for bound
states when M < m (cf. Section 18). Then the dependence of a on M,
acquires physical interest, much like the hierarchic description of the state
of M,, connected strictly with the hypothesis of L-absolute relational space
Rj.

The space-like relative four-momentum p for ¢ = a(M) results in
h¢ = pz = p*2” (6.15)

which means that in the rest-frame §* of M internal phase ¢ of internal
state of M is independent of the At-degree of freedom. Let us review this
conclusion in the context of the NR framework (1/c = 0) which deals with
an a priori given weight a® = m; /m resulting — in accordance with (5.12)
— in the G-invariant internal phase ¢©

hqﬁGl =p'2' =pe=Hh¢®, (6.16)

free of the time component (pozo)/h in all reference frames S.
However, the L-invariant phase ¢ from (6.15) is equal to

h¢ =pz — pozo, (6.17)

hence, one should expect the time component of ¢ to vanish identically and
the space component to convert into the G-absolute one from (6.16) in the
NR limit (¢ — o0). Here a delicate point of the NR limit is revealed which
will be discussed in a more detailed way in Section 8. The point is that if
we put — from the very beginning — a = a® in the transformation (6.5),
in order to guarantee that in the NR limit (¢ — co) the space component p
of four-momentum p becomes the G-absolute relative vector p from (5.12),
then the time component of ¢ equal to ppzg/h does not vanish (in this limit)
in §* of the G4-spacetime. Thus the dependence of @ on M becomes an
essential one if one endeavours to obtain the equality (6.15).
In the NR approximation the time components of P; ; take the form

(C Py 2)0 =mq 262 + P%,Z (618)
) ) 2m1’2 ?
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and hence, from (6.5) and for a = a®, the time component of four-momentum

p is equal to
m P2 P?
cpo = =1 (mzc2 + 2 ) e (m;c2 + L )
m m m

1 dmy o, mp o,
o [mzpz—mlpl . (6.19)

Thus, the (tending to infinity) rest energies mj 3c? cancel out; nevertheless,
in the rest-frame §* of M in which P} = —P} = p* and in the NR limit
with p* converting into the G-absolute relative momentum p, we obtain

i saay o 1 (M1 m2) o
Cl}_{go(l’o”o) = om - P At#0. (6-20)

ma mi
As it can be seen from (6.19), po itself vanishes in the NR limit

lim pg =0. (6.21)
00
However, since 29 = cAt, the quantity given in (6.20) remains finite.
In G4 we deal with the total phase $F of two-body plane wave ¥ equal
to

1$C = PX — E®t + pe. (6.22)

This means that from the point of view of 4-symmetry L we must impose
onto #C the simultaneity constraint At = 0 resulting from the one-time
NR equations of motion. Otherwise we should add to ¢ the phase (6.20)
different from zero, unless m; = my.

7. Separability of scattering and bound states and symmetry L

In scattering states each of the constituents of M = A; + A3 reaches
separately the asymptotic zone of relativistic kinematics of measurement
and this makes the two constraints (6.2) or (6.11) to be imposed on four-
momenta of M. Let us remember that constraint (6.11) excludes separabil-
ity of internal and external states of M and, moreover, from this constraint
follows that four-momentum p has only 3 degrees of freedom. However,
symmetry L recognized by eventism L4 as the one given a prior: results in
nonseparability of the internal states of M from the external ones, indepen-
dently of whether M is in a scattering state or in a bound one.

According to eventism Ly, equations of motion of a fully isolated system
M = A; + A; must be L-form-invariant, ¢.e. symmetry L must be their
internal symmetry group, as otherwise they would be able to distinguish
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a reference frame, similarly as the semi-relativistic equations do [33]. The
Bethe-Salpeter equation is an example of L-form~invariant equation. The
spacetime translation invariance of such equations, included in symmetry
L, incites one to look for solutions of such equations in the form

o7 = Aexp [L(BX)] wh(ai B, (1.1)

where the superscript L insists on the symmetry L of initial laws based
on eventism Ly. In order to show that 4L may not be separated into
internal and external states of M it is sufficient to consider the subclass

of the most symmetric solutions % (z; }‘;) which depend on the three L-
[o] o
invariant variables: z2, Pz, and 132 = — M?c? which can be constructed a

(24
priort from two independent four-vectors z and P. Of course, basing on the
p—z duality one could introduce instead of z the relative four-momentum

p. The }(;2 variable is irrelevant in the separability problém, so the z- or
(interchangeably) p-representations of |/*) take the form

¥l = ¢L(2?, Pz) or ¢* = ¢L(p? Pp). (1.2)

The state (7.2) could be recognized as separated from the external one
parametrized by 1‘_—’, if ¥ would depend solely on z2 (p?), i.e.

L =yl(z?) or PL =4E(p?). (7.3)

However, expression (7.3) cannot represent any state in L4 which would ful-
fill an L-form invariant two-body equation of motion, because, first of all,
¥ (2?) remains constant on Minkowski’s spheres v? = constant. In conse-

quence, the dependence of %L on the Igz variable proves that relativistic
wave functions [34, 35] of scattering states of M, as well as those of bound
ones, cannot be separated from the variables which parametrize external
motion of M.

The general conclusion is that no form factor GL(z) of M obtained
from a theory based on eventism L4 can be separated from the variables
that characterize external motion of M as a whole; this motion results in
relativistic distortions of GL(z).

The separation of the internal degrees of freedom of a micro-world M
from the external ones will be substantial for the hypothesis of relational
space Rj realized automatically (apart from OF # OF) by eventism Gj.
Therefore within the eventism L4, mathematical formulation of this separa-
bility is an artificial one and it is preceded by physical text of internal and
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external coordination of M, alien, in principle, to eventism which regards
spacetime as a pre-existent (hence external) background of all extensional
degrees of freedom. For the sake of simplicity, we shall confine ourselves to
the elementary two-body problem and scalar form factors G of M. Thus
z (or, interchangeably, p) is recognized as the internal four-coordinate of
M = A; + A, and C denotes all parameters which determine the analytic
form of form factors represented in some reference frame §. Consequently,
one gets G = G(z;C); however, the set of parameters C must be divided
into two classes of entirely independent parameters: the internal ones C;
and external ones C.. The geometrical nature of internal parameters C;
belongs to the internal 4-space L4 containing its p and z aspects, while ex-
ternal parameters C, belong to the external spacetime L4 of measurement.

The four-momentum P of M (¢f. (7.1) or (7.2)) represents the external
parameters.

Let the Lorentz transformation L, act uniquely on the external variables
and parameters, leaving unchanged the analytic form of representation of
G in the internal (geometrical) meta-object £4. Geometrically, this means
that we begin with G represented in some (arbitrary) reference frame §
and, in some other §’, the external properties of G are — in spite of being
observed in §' — kept the same (i.e., rewritten L covariantly), whereas the
internal properties of G, also observed in §', become transformed under the
L1 transformation and hence, they do not remain the same from the point
of view of eventism L4. This active treatment of the internal properties
by L. transformation, combined with the passive treatment of the external
properties (or vice versa) may be regarded as a mathematical operation
conflicting with the universal spacetime background of eventism L.

However, one has to remember that the very partition of degrees of free-
dom into the internal (z) and external (X ) ones goes beyond the eventism,
as such a partition must be preceded by existence of some reality M char-
acteristic for objectism [2]. Without M such a partition would be deprived
of any sense, whereas the eventism means that empty metrical continuum
L, precedes any reality M.

In spite of this non-eventistic aspect of the very problem of separability,
we shall assume existence of a system M = A; + A; and treat £ and X
as system’s internal and external degrees of freedom, respectively. Then,
transformation L. enables one to distinguish between the analytical struc-
tures of form factors G(z) separated (SE) and non-separated (NS) from the
external characteristics of M, according to

Le{Gse(z)} = Gse(z), (%)
Le{Gns(2)} # Gns(z). (i) (7.4)
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According to (7.4), the fundamental consequence of eventism L4 can be
rewritten in the form

GL(z) = Gns(=). (7.5)

On the other hand, the L-form-invariant form factors G(z?) from (5.5)
depend uniquely on the a priori L-form invariant four-interval z2 and they
represent SE structures Ggg(z)

G(z?) = Gsg(z). (7.6)

In order to prove (7.5), it is sufficient to consider the two-event shape

g(z) = ( P z) and to apply the L. transformation to it

Lelg(2)] = ([Le P)2) # (Pz) = g(z) - (7.7)

In consequence, relativistic form factors GL(z) of M represent, as well as
the relativistic wave functions from (7.2), Gy s shapes.

The L covariant expression of simultaneity of two events X7 » in some
reference frame S in L4, calls for an external, time-like direction field n
(n? = 1)

nis = (0,0,0;1). (7.8)

As z = X3 — X3, the L covariant expression of simultaneity of X ; takes
the form

g(z) = (nz)=0. (7.9)

Thus, if z were to denote internal degrees of freedom of M = A; + A, then,
similarly as in (7.7),
Le(nz) = ([Ln]z) = 0 (7.10)

would express the simultaneity of X1 ; in some reference frame S’ different
from S in which relation (7.8) holds. However, apart from M, the relation
z = X3 — X, is determined in an empty L4 and its representations in
different S’s are subject to (homogeneous) symmetry L.

The double aspect of £ which serves as the internal coordinates of G (ob-
jectism) being at the same time the relative four-coordinate in empty space-
time L4 (eventism), discloses (in spite of mathematical isomorphy) the fun-
damental difference between the geometrical meta-object L4(z), parametriz-
ing composite system M in its configuration subspace L4(z) (or, inter-
changeably, in £4(p)), and the classical (Cartesian) eventism L4(X). This
mathematical isomorphy of two meanings of z makes the 4-space L4 a
mediator between the quantum relationism of micro-structures and micro-
processes and the classical measurement in the Cartesian spacetime L.
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Employing criterion (7.4) of separability-nonseparability of form factors
G, with z representing the internal degrees of freedom of M (objectism), we
are in position to indicate the essential difference between the bound states
of M and the scattering ones. Such a difference is alien to singular eventism
G4 as it is intimately connected with 4-symmetry L. The point is that in the

o
scattering states of M = 4; + 43, M’s internal four-momentum p as well,
[24
as the external four-momentum P, represent external parameters C, of M,

because of the constraint (6.11): PP = 0 which couples P to p. However,
the mass-shell constraints (6.11) follow from two independent measurements

of four-momenta 1?’1,2 of Ay 2 which — independently of each other — both
reach the asymptotic zone of measurement. If M is in a bound state ¥,
with (L-absolute) mass M,, < m = my + m2, the entity M,, represents
a single particle hence, for the same reasons as before, there is only one
constraint (6.12) imposed onto P,, namely

W2
~P2 = M3 = c—;‘ < m?c?. (7.11)

In consequence, constraint (6.11) drops out and Fermi four-momenta p
conjugate with z gain the 4-parameter freedom, much like the relative four-
coordinate z which parametrizes the z representation of form factors G of
bound structures M. The 4-parameter freedom of p makes room for L-form—
invariant form factor G(p?) of M (or, interchangeably, G(z?)) which belong
to Ggg form factors (¢f. (7.6)). After introducing relational space R3, we
shall show — cf. Section 18 — that 4-freedom of p results in undetermined
four-momenta Pj 2 of the constituents of bound structures of M.

Now we can even better appreciate the singularity of eventism G4. In-
deed, without explicitly distinguishing between eventism (G4) and objec-
tism, the separability of total Hamiltonian H (as in (5.14)) makes that
NR quantum mechanics provides us with the G-form—invariant form factors
F(2? = y?) (or, interchangeably, with F(p? = ¢?)) which, as such, are
separated from the external characteristics of M as a whole. This is due to
the equalized balance of G4 geometry or, in other words, to the coexistence
(apart from OF # O€) of eventism G4 with relationism of the RS space.

8. NR limit (¢ — oo) of geometry Ly

The discontinuity which exists between the one L-form invariant four-
interval z% of geometry L4 and the two G-form invariant space and time
intervals » = |2| = |y| and AT = At of geometry G4 implies that G4
(regarded as the limit of L4) must conceal an additional assumption besides
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the condition ¢ — co. Having in mind the experimentally privileged position
of the p language over the z one, let us start to analyze the NR limit with
considering the limits of three kinds of four-momenta p for ¢ — oo, namely
when p is: time-like, isotropic and space-like.

For “dimensional” reasons, let us attach to a time-like p an auxiliary
(fictitious) particle with mass m. Then m, together with the universal
constant ¢, provide us with the required dimension of p, namely

p? =p? —pl =-m?c? <. (8.1)

Thus, a purely dimensional analysis shows that in the NR limit (¢ — oo)
there is no room for an NR counterpart of time-like four-momentum, as p?
tends to infinity. The energy—mass relation disappears and we are left with
two notions of mass and energy which are essentially different from each
other in G4. A more detailed analysis of the NR limit of time-like p is given
at the end of this section.

For isotropic four-momenta when p? = 0, the representation of p in any
reference frame § in L4 takes the form

p=(p;po = £|pl), e=Ipolc, (8.2)

where e is the energy of a carrier which propagates with the velocity of light
c. If the Minkowskian spacetime L4, with its light cone structure, is to be
converted into the Galilean space G4 (without light cones) a constraint has
to be imposed — namely, the time components pg of all p’s must tend to
zero with ¢ — 00, because only then all isotropic four-momenta p vanish:
p = 0. Thus, besides the (mathematical) limit ¢ — oo we must assume an
independent constraint

e<Kc1‘f'=:>|p0|=§<Kc“E:>m0. (8.3)
Here K is an arbitrarily large, but finite, constant and ¢ is an arbitrarily
small, positive number. Of course, a particular signal carries a finite amount

o
of e, say €, hence € /c = | Po| ;=2 0. However, the conversion of L4 into
G4 concerns two (actualized) infinite geometrical objects. Saying that the
limit ¢ — oo results in the Ly — G4 conversion, one tacitly assumes that

in some lab-system § we deal with some particular signals carrying given,

finite values of €.

A similar situation concerns space-like four-momenta p which — as the
only ones — have their NR counterparts. From (6.21) we know that the G
symmetry of NR mechanics requires the time components po of all space-
like four-momenta p to vanish when ¢ — oo, similarly as in (8.3). Indeed, in
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this limit, the L-absolute four-length-squares of all space-like four-momenta
p convert into the G-absolute length-squares of relative (and relational)
momenta p(q), as

3 . — (p- : 2 __ 02 _ 2
Jim (p;po) = (p;0) = lim p* =p” =¢". (8.4)

Again, the f’o component of a particular four-momentum ; does vanish with

¢ — o0, because of finite value of € = c|1¢; |. However, condition (8.4) must
concern all four-momenta p at once and this requires the assumption (8.3)
which does not uniquely follow from the limit ¢ — oo.

It is remarkable that a similar situation concerns the most popular
demonstration of the Ly — G4 conversion, because in the limit ¢ — oo
the Lorentz transformation (4.1 L) converts into the Galilean one (4.1 G).
In order to show where is the point, it is sufficient to consider the special,
homogeneous Lorentz transformation of one space variable X and time ¢
which takes the well-known form

X'=I(X-Vt), t':l’(t—v—;—) . (8.5)

One may say that, in the limit ¢ — oo, transformation (8.5) converts into
the corresponding (special) Galilean transformation

X'=X-vt, t=t. (8.6)

Since V < ¢, for ¢ — oo the term V X/c? must tend to zero and the Lorentz
factor I must tend to unity; the transition from (8.5) to (8.6) is then justified
if we assume, together with ¢ — oo, that

C
|X| < B¢, (3) (8.7)

< Ac™¢,  (3)

where A, B are some, arbitrarily large but finite, constants and € is an
arbitrary small, positive number, similarly as in (8.3). Of course, for a

particular event X and for a particular value of velocity V (|V| = V< c),
inequalities (8.7) are fulfilled automatically. However, the question concerns
again all events X at once and all velocities V (|V| < ¢) admitted by
symmetry L, because we deal with actualized infinities of geometrical objects
L4 and G4. If so, inequalities (8.7) must be added to the limit ¢ — oo in
order to convert Ls into G4. These additional assumptions — (8.3) and/or
(8.7) — are responsible for the discontinuity connected with the NR limit
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of Ly and consisting in transition from geometry L4 of negative balance to
geometry G4 of equalized balance.

This discontinuity reveals itself in the transition from one kind of L-form
invariant two-event shapes (5.5) to two kinds of G-form invariant two-event
shapes (5.6). The first kind of G-form invariant shapes G(At) from (5.6 1)
may be, however, obtained immediately under an additional assumption
corresponding to that from (8.7 i), namely that

|e| < Bel™¢, (8.8)
as, under this assumption, s2 = —z2/c? = (At)? — 2% /c? =3, (At)? and
. 2y
Jim G(s”) = G(At), (8.9)

which coincides with (5.6 2).

In order to obtain the second kind of G-form invariant two-event shapes
from (5.6 i7) we must resort explicitly to the quantum p-z duality and the
p representation of L-form invariant shape G

oo
(2

G(z?) = (2ﬂh)_4/d3p / dpo G(p* — pj) exp [h(pw —Po-’ﬂo)]- (8.10)

— o0

Instead of the relativistic variables o = cAt and pg = e/c which — with
¢ — oo — tend to infinity and zero, respectively, we introduce the NR
variables At and e, the latter with the dimension of energy and hence,

At =zg/c, e=cpy = pozo = eAt. (8.11)

From the previous discussion we know that the NR limit of four-momen-
ta p admits space-like four-momenta only if e fulfills inequality (8.3). This
condition will be automatically fulfilled in the limit ¢ — oo if G(2?) defined
in (8.10) is interpreted as equal to

1-¢

2 »
cG(2z?) = (2rh)™* lim /d3p / de G (p2 - 6—2) exp [%(pz - eAt)] .
c— 00 c
—Kcl—e
(8.12)
Taking into account the limiting values of the limits of the integral over e
(cf. (8.3)) we obtain

¢ ( = —) =0 G(p?) = F(p?) (8.13)
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and — since £ K ¢!~ ¢ tends to +0o0 with ¢ — 0o — we obtain

C— 00

lim ¢G(z?) = (27rh)—3/d3p F(p*)exp [%(pz)] §M(At)
= F(2?)6()(At) = F(y*)§(V)(At). (8.14)
The Dirac §(1)(At) function reproduces the locality of the Newtonian
time.

From (8.10) and (8.14) we get the following identities in £4 and G4
4-spaces, respectively

/ dzo G(2? - 22) = F(2?) (L)
and ‘: > (8.15)
/ d(At) G(e2)sMV(At) = F(z* = ¢?). (G)

Now let us analyze in a more detailed manner the NR limit of a time-like
four-momentum P, where E = cPp denotes the total energy of an isolated
system M with invariant mass M = (—P?/c?)1/? and

P2

E = c(M?%c* + P?)'/? = M1 + AE

)2, (8.16)
Here, the NR approximation in the p language of the quantum p-z du-
ality imposes also some constraint as it makes use of the expansion of E
into power series of dimension-less variable P?2/MZ2c2. The condition for
convergence of this series imposes the inequality

PZ

which, in the velocity language v, means that
—< 1. (8.18)

In the one-body problem (system M) of eventism Lg4, constraint (8.18) is
inconsistent with symmetry L, because velocity V is a relative quantity
and hence, (8.18) distinguishes some reference frames § of M conflicting
thus with the principle of relativity. It follows that constraint (8.18) works
in favour of the relational rather than eventistic origin of the p language,
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with P referred to some real lab-system § which makes P? an L-absolute
quantity.

For fixed value of P? = ;’2, the left member of (8.17) (and hence,
of (8.18)) tends to zero when ¢ — co. In general, however, the NR limit
imposes the inequality

|P| < Ac'™¢ = o0, (8.19)

Cc—00

which, for ¢ large enough guarantees the inequality (8.17). This exhibits,
once again, an essential difference existing between the NR framework
(1/e¢ — 0) and the NR approximation dealing with a finite universal con-
stant.

Now let us assume M to be composed of N particles A, each of them
having an absolute mass m; and let us decompose the L-absolute internal
energy W = Mc? of M into two L-absolute components

w

w
W =mc?+w, M:m+c_2:c_2’ (8.20)
with
N
m = ZmJ:clixgoM. (8.20a)
J=1
Since the strong inequality
w
— 21
Imc2‘ <1 (8.21)
characterizes loosely bound systems, one can say that — in the NR limit
(¢ — o0) and with finite |w| — all systems are infinitely loosely bound as
the left member of (8.21) tends to zero.
Equation (8.16) takes now the form
1/2
2 w 2 P?
E =mc [(1 + m_c2) + ————mzcz} (8.22)

and, under assumption {8.17), E may be expanded into a convergent power
series of P2 /MZ2c? which, together with (8.22), results in

E—mc2+w+P—2+0 1 (8.23)
B 2m 2]’ ’
where 0 (1 / c2) vanishes with ¢ — co. After subtracting the term mc? —3_ oo

from E, we obtain

2
lim (E — me?) = w% + % = E°. (8.24)

cC— 00
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Here, ECG coincides with the total NR energy from (5.18) and

w® = lim w (8.25)
€~ 00
denotes the G-absolute internal energy of M.

Singularity of the NR framework (1/c = 0) based on geometry G4
manifests itself by the fact that the total energy EC is a sum of two terms,
each of them having different properties under the G-transformation: the
G-absolute internal energy wg and the G-relative external kinetic energy
P2 /2m of M as a whole. Let us remember that wG’s are — similarly as the
eigenvalues of the internal, G-absolute Hamiltonian A¢ embedded in R —
G-absolute a priori, i.e. without resorting to any fixed reference frame §
parametrizing the external spacetime of measurement — here Gj.

9. Adiabatic hypothesis of field theory and eventism L,

According to Heisenberg’s philosophy of his § matrix, a fully isolated
micro-process splits into three stages which were largely discussed by Fock
[36] and by my master Prof. Weyssenhoff.

In the initial (I) and final (III) stage of a micro-collision process involv-
ing two micro-worlds M and M’ an observer has at his disposal classical
macro-devices with their localizations and structures embedded in spacetime
of the asymptotic zone of the collision process. During these two stages the
initial |#) (I} and final |f) (III) state of the micro-system M + M’ are pre-
pared and detected, respectively. During the stage II the quantum-potential
collision process takes place. This process is out of any (spacetime) control
and the § matrix should take account of it.

In consequence, the matrix elements S¢; = (f|S|i) provide us with
repeatable observables which could detect the directly non-observable in-
ternal collision process occurring on the quantum-potential level of reality.
Note, that the very philosophy of the S matrix follows the objectism [2]
by assuming existence of realities M and M'. Owing to the quantum p-2z
duality, the event-nonlocal language p of asymptotic kinematics makes pos-
sible reconciliation of the 4-symmetry L of measurement with the quantum
nonlocality and its EPR-like correlations which are hardly reconcilable with
eventism Ly. The L-absolute, Mandelstam p variables s y which parametrize
S; elements (cf. (2.3)) suggest that quantum structures are based on (ab-
solute) relational space Rj3 that extends the absolute relational space R?
to physics of finite h/c. The hidden nature of quantum process occurring
during the stage II admits the hypothesis of such a hidden continuum of
relations which — as it will be shown — precedes events of the spacetime
L4 of measurement.



1588 Z. CHYLINSKI

However, eventism L4 excludes any L-absolute space R3 and hence the
enormous success of quantum electrodynamics remains a great puzzle, even
still greater if one remembers how restrictive is the locality of eventism L4 to
any dynamical theory [16-19]. Our present aim is to show that this success
is due to a geometrical aspect of the adiabatic hypothesis that rests at the
foundations of the relativistic perturbation theory and which is responsible
for the fact that the perturbation theory goes implicitly beyond eventism Ly.

The locality of eventism L4 causes that quantum-relativistic theories
resort to local fields, i.e. fields spanned on events X and being subject to
second quantization. In the case of fully isolated systems, we deal with non-
linear equations of motion whose internal symmetry must coincide with the
symmetry L expressing the principle of relativity. In other words, equations
of motion must be L-form invariant and hence 22 = 2% — z2 is the only in-
terval of L4 consistent with internal symmetry L. In this situation, the
internal language of theory cannot express the space separation (|&| — oo)
of interacting subsystems M and M’ of an isolated system M + M!' re-
sponsible for the asymptotic zone of kinematics of the stages I and III of the
quantum collision process. As we can see, this dilemma is strictly connected
with the negative balance of geometry Ly and it vanishes in G4 (of equal-
ized balance) in which the G-form invariant space-interval r = |2| = |y|
exists and provides an absolute measure of the space separation between
M and M'.

Let us start with a definite, although arbitrary, reference frame § in
L4 and let us assume that all coupling constants responsible for nonlinear
(dynamical) terms of the theory vanish in the asymptotic past (¢ — —oo)
and absolute future (¢ — oo0) of the reference frame §. This breaking of the
time-translation invariance of the theory by the adiabatic hypothesis results
also in breaking of theory’s internal L symmetry and involves the scattering
states of M + M'. Consequently, the subsystems M and M' determine
some mean mutual velocity (v) > 0 and hence, the space-interval R in § is
equal to

R = (v)|t}, (v)>0. (9.1)

This interval — independently of the particular value of a positive (v) —
provides the measure of space separation of M and M’ in §.

Note, that the adiabatic hypothesis resorts to objectism by introducing
existence of physical objects M and M'. The essential point is that the
limit |t] — oo of the adiabatic hypothesis leads to

R -+ o (9'2)

|t|—o00

which acquires an L-absolute meaning. In other words, infinite space sepa-
ration of M and M/’ occurs in all reference frames § which parametrize Ly.
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In consequence, the perturbation theory based on the adiabatic hypothesis
reproduces the relativistic kinematics of the kinematic zone of measurement
of the stages I and III and — by virtue of the L-absolute meaning of the
limit (9.2) — results in a manifestly L-invariant structure of the § matrix.
This fact is taken for granted in the § matrix theory.

The L-absoluteness of limit (9.2), contrasted with S-dependence of finite
R, explains the success of the S matrix theory based on the perturbation
theory and, simultaneously, the failure of relativistic Moeller matrices [37]
expressed by integrals taken over finite time intervals. Moeller matrices
assume the NR (and also classical) philosophy according to which states of
any system M (in all its degrees of freedom) evolve with the continuously
increasing parameter ¢ of an external reference frame S in L4. However,
the very relativization of the time dimension by eventism L4 questions that
philosophy. Note, that the 4-symmetry L results in 4-dimensional z and p
variables which, as such, lose the nature of dynamical variables [6, 38]. The
same conclusion may be reached on the basis of all no interaction theorems
which, in their very formulation, favour Landau’s opinion that a decent
relativistic S-matrix theory must abandon local equations of motion in L4.

Adiabatic hypothesis which — accordingly to (9.2) — equalizes im-
plicitly the balance of geometry L4 may explain the essential difficulties of
the perturbation theory in accounting for bound states of M [39]. Indeed,
bound states of M offer no (v)-parameters, hence

(v) =R=0 (9.3)

and the adiabatic hypothesis loses its physical reason consisting in the space
separation of M and M'. From this follows that all dynamical bound struc-
tures of M become decoupled when ¢ - —oo and they remain decoupled
for ever.

In spite of the success of the adiabatic hypothesis in accounting for scat-
tering states, the relativistic perturbation theory remembers the locality of
L4 and fields admitting point-like particles only (25]. The universal form
factor of these particles §(4)(z) vanishes everywhere but at the point z = 0 of
4-space L4(z). Let us remember that any other L-form invariant form factor
G(z?) of M admitted by the phenomenological perturbation theory occu-
pies the whole geometrical meta-object L4(z) (and, interchangeably, L4(p).
The spacetime globality of the form factor G(z?) of M which enters the
integrand of the corresponding integral for the S-matrix element S¢; shows
clearly that S¢; may not be deduced from Moeller matrices. This supports
again the Landau’s opinion about a decent theory of the § matrix [38).

Although the orthodoz perturbation theory is restricted to point-partic-
les, it discloses the relational nature of internal dynamics which goes beyond
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eventistn L4. This manifests itself in the L-form invariance of the propaga-
tors U(z?) which occupy, much like form factors G(z2), the whole 4-space
L4(z) and, being such propagators, they are separated from degrees of free-
dom external to those of the 4-space £4. Thus, accordingly to (7.4), G(z2)
and U(z?) belong to the Gsg(z) class of two-event shapes. This separability
of interaction U(z?), due to its spacetime nonlocality, stands in opposition
to the L4 eventistic nonseparability of internal dynamics resulting as a con-
sequence of “wrong” semi-relativistic equations. The coexistence of RS with
G4 makes the corresponding G-form invariant form factors F(z? = y?) to
be consistent with the time-local NR Schrodinger equation. Simultaneously,
the G-form invariance of theses form factors means that they do belong to
the class of separable two-event shapes Gsg in G4.

The globality of 4-dimensional geometrical meta-objects L4(z) which,
in micro-physics, takes origin in the p—z duality, reminds one to some extent
of the concept of block universe [40]. For future purposes it is interesting
to point out the reason why macro-block-universe was brought into being.
Evidently, the coexistence of two physical entities must have an absolute
meaning imposed by the very measuring process in which we deal with
measured objects and measuring apparatus. Simultaneous existence of both
has lost the absolute meaning with the relativized time of eventism L.
The doubtful (in macro-physics) concept of block universe of all absolutely
coexisting events X would be a solution to a really fundamental problem
of the meaning of physical coexistence of different physical things. Einstein
was fully aware of this problem, which was also discussed later by Weyl [41]
and Goedel [42].

It is also worth emphasizing that the perturbation theory has intro-
duced the configuration spaces £4 ® L4 ® ... based on 4-space L4 These
spaces make room for L-absolute structures reconciling quantum nonlocal-
ity with symmetry L of S-matrix elements parametrized and measured in
the privileged p language of relativistic kinematics. Thus, configuration
spaces of perturbation theory make that the theory becomes similar to the
NR mechanics with its configuration spaces RS ® RS ® ... rather than
to the original field theory with fields spanned on the universal spacetime
background. Indeed, as we have seen from (8.14), 4-space L4(z) of L-form
invariant shapes G(z?) becomes contracted in the limit ¢ — oo to the 3-
space RS (y) of the G-form invariant shapes F(y?) because of the §(D(At)
factor which reflects the locality of Newtonian time. '

Finally, let us emphasize that 4-space L4(z), in spite of the fact that
it gives room for spacetime nonlocal two-event shapes G(z%) C Gsg(z)
(excluded by the locality of eventism L4), does not realize the philosophy of
relationism. Indeed, z = X3 — X1 — so z is secondary to events X; 2, while
relationism would have this order reversed. Events must represent limiting
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relations, where the corresponding limit would be conditioned by suitable
physical situation, created — for instance — by heavy measuring devices.
In other words, directly observable events X must be analyzable in terms
of more elementary, directly unobservable relations y.

In the Galilean spacetime G4, coexisting with the G-absolute relational
space R?, the problem of priority of relationism over eventism is physi-
cally empty, while the absolute simultaneity of Newtonian time solves the
problem concerning the absolute coexistence of different physical things.
Together with this, the opposition objectism—-eventism becomes physically
empty too, although one should remember that physics has started with nat-
ural objectism of corpuscular matter in space, while the dimension of time
was added to space in order to account for the category of change reflected
in the motion of corpuscles in space. The problem of priority of objectism
over eventism and/or of relationism over eventism and vice versa becomes
of physical importance in the (true) spacetime L4 of measurement, because
the eventism L4 excludes its coexistence with any L-absolute 3-space R3
which would extend Rg; to physics of finite universal constant h/c.

10. Interpretation of form factor G

Let us review a fundamental difficulty of eventism L4 which is con-
nected with interpretation of the form factor G. We shall illustrate this
problem by the example of an ultra-relativistic elastic electron—proton colli-
sion which discloses the proton structure G. We start with a general remark
concerning the reason of the privileged position of the p language with re-
spect to the z one, keeping in mind that asymptotic four-momenta Py of
particles Ay which participate in an elementary collision process can be
measured with — in principle — arbitrarily high precision without affect-
ing the quantum collision process of the stage II. This fact, as we know it
well, has its consequences in the § matrix theory parametrized by sharply
defined Mandelstam variables sy (cf. (2.3)).

On the other hand, direct z measurements of micro-structures must
consist in registering suitable z-coincidences which, according to the p-
z duality, result in uncontrollable disturbances of the state of measured
object due to uncontrollable amounts of the energy-momentum transfer
between the measured object and the measuring one. The privileged posi-
tion of the p language consists in controllable energy—-momentum transfers
as well as in the fact that the energy—momentum conservation laws work
on the quantum-potential level of each individual micro-process. In con-
sequence, the p—z duality translates the measured p-extensions into their
z-representations which proves the completeness of the quantum descrip-
tion of micro-objects together with their p—z nature. Of course, according
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to the same p—z duality, determination of a repeatable observable (e.g. a
structure) requires a suitable statistics of individual micro-events which ac-
tualize quantum propensity (potentiality) which is being carried by each
individual system M.

The presented briefly ontologization of the quantum-potential level of
micro-system M conflicts with the Bohr complementarity principle which
reduces quantum physics to its epistemological aspect only. According to
Bohr’s philosophy, a physical reality is attached to observable actualizations
only if the obtained knowledge about the z and p aspects of the reality is
subject to the incertitude relations. Thus, the p and z aspects of micro-
objects are encumbered with unavoidable errors éz and ép, with ézép > h,
and both aspects are necessary in order to get a full knowledge of a micro-
system M, similarly as in the actualized classical physics with CCINF’s.
Bohr’s defense of the completeness of quantum mechanics resorts to the
experimental possibilities restricted by incertitude relations which cannot
be surmounted by quantumn predictions.

This purely epistemological philosophy of quantum physics questions
the very possibility of exact (in principle) measurement of some property of
micro-world M, reflected implicitly in the popular opinion that — according
to quantum physics — the very measurement affects the measured object.
If this were a rule without exceptions it would exclude the very quantitative
experimental micro-physics. Indeed, all quantitative data would reflect some
undefined states of the measured and measuring objects. However, in spite
of the ontologization of the quantum-potential level of micro-system M with
its p—z duality and in spite of the experimentally privileged position of the p
language, the geometrical structure of p-z duality based on eventism Ly is
encumbered with the dilemma of how to interpret properly the form factors
G of M. We are going to discuss this dilemma with an example of the
elastic electron—proton collision and, next, we will show that this dilemma
can be eliminated by the hypothesis of L-absolute relational space R3.

The Rosenbluth cross-section [43] for elastic electron-proton collision,
obtained from the phenomenological perturbation theory [44], deals with
L-form invariant form factors which are accessible to experimental determi-
nation. After some theoretical work we are left with a single form factor G,
whose p-representation, determined experimentally, is well approximated by
the so-called dipole fit [45]

2

-2
Gp* =1t)= (1 + o%i') , pP=1{= (P - P (10.1)

Here, P; and Py denote the initial and final asymptotic four-momentum of
proton (or that of electron) given in the (GeV/c) units, respectively. The
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dilemma starts with the fact that the same four-momenta p (conjugate with
the relative four-coordinate ) which parametrize G(p?) measure simulta-
neously the recoil of proton which carries the measured form factor G, as
p? = f. Let us consider the two possible geometrical natures of G that
result from the (phenomenological) perturbation theory on one side and,
on the other side, from the corresponding L-invariant equations of motion
which should determine the analytic structure of G¥(z). According to the
first approach G = G(z?) (or, interchangeably, G(p?)) and it belongs to
the class of separable two-event shapes Ggg(z) so it suffers no relativistic
distortions which might be due to the recoil of proton. In the standard
interpretation of (10.1) [44] one resorts to the extra symmetry of elastic col-
lisions which says that — in the zero-momentum reference frame §* of the
colliding particles — there is no energy transfer between them and there-
fore all four-momentum transfers p in §* take the form p* = (p;0). Thus
t = p*? and one may define a static and spherically symmetric z-shape in
S5* which is called the charge density distribution of proton and is equal to

o) = e(zam)™ [ 5 G = Dexp [£6%27)| (" = lal), (102)
where e is the elementary charge of proton and

/dsm* p(r*)=e.

This interpretation of p cannot be justified within the eventism L4. Firstly,
because p(r*), similarly as G(z?2), represents a two-event shape while charge
distribution in L4 must be given by an event shape. Secondly, it is quite
obscure why the proton structure should be spherically symmetric in the
§* frame which depends on the relative motion of electron and proton. Of
course, the third possibility — that of a direct interpretation of G(z?) as the
“usual” spacetime shape of proton — is out of question, because G(z?) is
a distribution and it remains constant on Minkowski’s spheres z? = const.
which occupy the whole L4(z).

Now, let us consider the second possibility when G = GL(z) belongs
to the second class of non-separable shapes Gns(z), because its analytic
form depends on the proton four-momenta P; ; which do not belong to
the configuration subspace £4. This leads — as we already know it — to
relativistic distortions of the proton structure which are inherent in the very
determination of the structure, as £ = (P; — Pf)z. Thus, defining the proper
shape of proton as equal to



1594 Z. CHYLINSKI

GLl(z) = Gl(z; P, = P;)  (3)
or

Gr(p) = GE(ps Pi=Pf)  (id) (10.3)

(as there exists a proton rest-frame in which P; = Py = (0; Myc) we see
that the measured form factor (10.1) does not coincide with equation (10.3)
in which P; = Py and t disappears. In consequence, the proper shape of
proton is not accessible to experiment.

The conclusion may be formed as follows: in spite of the fact that the
p language is privileged, in both cases — namely for

G = G(2?) C Gsg(z) (i)
and

G =Gl (z) c Gns(z) (i) (10.4)

— the geometry of eventism L4 results in an inconsistent picture of what
can be perceived as a stable extension of M embedded in L4. The problem
is not an academic one for high-energy collisions (like the one discussed
above) in which the dipole fit may be tested up to the values of the f/(M;cz)
variable equal to about 30. In such situations the recoils of protons are ultra-
relativistic and for G = GL the relativistic distortions of the form factor will
be significant.

11. Two kinds of geometrical shapes

The quantum p-z duality is formally based on mathematics of the
Fourier analysis which is much older than quantum physics. However, from
the physical point of view (represented especially by quantum mechanics)
there is a fundamental difference between the mathematical — say k-z —
duality of the Fourier analysis and the p—z duality, the latter being strictly
connected with the dimensional Planck constant k. In particular, Fourier
analysis results in the uncertainty relation

bz 6k > 1 (11.1)

known in the classical field theory which has little in common with the true
(p — z)-uncertainty relations of quantum physics. A synthesis of mathe-
matical symmetry of Fourier analysis with reality of micro-physics has been



Relationism of Quantum Physics 1595

developed by Einstein and de Broglie who have put forward the relation-
ships between the wave-frequency language of four-vector (k;w/c) and the
four-momentum (p; E/c) of an individual quantum (atom) in the form

p=hk and F = hw, (11.2)

where k denotes the wave vector. From now on we can speak of the wave-
corpuscular (p — z) duality of an individual object M and equation (11.1)
multiplied by & transforms into Heisenberg’s uncertainty relation

bz ép > h. (11.3)

Note, that owing to the dimensionality of h, micro-extensions measured
in momentum-energy units may acquire — via the p—z duality — their
corresponding z-representations measured in metres and seconds.

Our intention is to show that the mathematical treatment of classical
extensions within the k—z duality provides one with two different types of
space extensions. This difference reveals itself in the analytic forms of these
space extensions, when the same extensions are represented in Euclidean
spaces E,, of different dimensions n.

We begin with an n-dimensional Euclidean space E,, parametrized by an

orthogonal Cartesian reference frame §,, where X = XJ(n), (7=1,2,...,7n)
represents a point in E,,. In order to simplify the notation, we omit the su-
perscript n in the vector notation of X, as the context shall indicate clearly
the dimension of E,,. Let us consider a simple problem of determination of
the event shape (point shape) u(™(X), (n = 1,2, 3) of electrostatic poten-
tial, extended over the whole space E,, and free of any boundary conditions
in finite region of E,, determined by a given point shape of the charge
density distribution p(*)(X). The translation and rotation symmetries of
the space E, make the corresponding Green’s functions to be two-event
(two-point) shapes, O(™)-form invariant, so one has

2 2
GM(z) = G (zg") +o 2™ ) , =X, - X;. (11.4)

Let us emphasize an essential difference which exists between point
shapes parametrized by X subject to translations and two-point shapes par-
ametrized by # without translation subgroup which makes a two-point shape
unlocalized in E,,. A more philosophical remark will be also instructive for
further considerations, namely that our concept of dimensionality of E,
spaces (n = 1,2,3) takes its origin in the point shapes of our everyday
experience. It is therefore justified to say that the F, spaces give room
to point shapes or that the very point shapes spaces generate E,’s. From
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this point of view, Euclidean space of the points z = X3 — X; subject to
rotation symmetry only, is distinctly different from that of the points X
whose representations X are sensitive to translation symmetry of En(X).
In the case of two-point shapes, our imagination resorts automatically to
imagining point shapes f(X) or points X alone.

The Green’s functions of the discussed problem take the following ana-
lytic form in the z and k representations

ey -4 4.

2
G(z)(z) = -ﬁm(zg” +28 ) . ()

1 3 3)2 52\ /2
GO(z) = w(g)+() g))
and

-1
o = (K7°)
- 2 2\ !
c@m) = (K" ) L @)
. 2 2 2\ 7!
GO(k) = (kf‘” + kY +k§3)) . (11.5)

Unlike the point shapes u(™)(X) and p("™)(X) which represent the corre-
sponding properties attached to points X in the E, spaces, the Green’s
functions of the same (linear) differential equation account, in E,’s of dif-
ferent dimensions n, for the same relation given by the two-point shapes
G™)(z) (n = 1,2,3) from (11.5 i) which — being such shapes — are not
localized in E,(X).

The example of Green’s functions inclines one to distinguish between
two-point shapes and other shapes which we shall label relational shapes.
This distinction is a consequence of the two different meanings of the same-
ness of two-point shapes and relational shapes in the spaces of different

dimensions n.
Definition:

G(™) represents a relational shape if its k-representations in Euclidean
spaces of different dimensions n are all determined by an n-independent
function G(k?) of non-negative argument k% € [0, 00). Thus the rela-
tional shapes determine their sameness when represented in Euclidean
spaces of different dimensions n by the relation
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- . 2 2
G(k) = G (k2 = k™M e ) . (11.6)

In the example of Green’s functions from (11.5), G(k?) takes the form

x 1

G(k?) = R (11.7)
As seen from (11.5 i), the sameness of a relational property G in the z-
representation takes, in E,, spaces of different n’s, quite different analytic
forms which describe two-point shapes G(™)(z).

Much like the point shapes f(X) originate the Cartesian spaces E,,
let the relational shapes determine the relational spaces R, which are also
Euclidean. The globality and indivisibility of relational spaces Ry, strictly
connected with the k—z duality, justifies calling R,’s the geometrical meta-
objects and distinguishing their p and z aspects as R,(k) and R, (=) spaces,
respectively. From this double p—z-aspect of a relational space R, follows
that the z-representations of the same relational shapes G(”)(a:) take the
form

G™(z) = (27)~" / &k GO (k)ei(ke)
2
=G (2§n)2 o+ zi ) . (11.8)

Let the equality with dot express the sameness of a relational property G
represented in R,1; and R,

G HD(E) = ¢M(K), G D(2) = G(2), (11.9)

with ; )
GV(k) = G(k?).

Of course, the question arises of the translation of relational shapes be-
tween spaces of different dimensions in the case when the relational shapes
transgress the class of rotation invariant shapes. This question will be dis-
cussed after introduction of the (physical) hypothesis of relational space
R;.

As the integrals (11.8) must be well-defined, the k—z duality of relatio-
nal properties G restricts their class. For example, the Euclidean metrics
of relational spaces R, (in their z and k aspects) represents a relational
property G, but it must be introduced indirectly, because if given directly
it has the form

GM(k) = kﬁ“)z Tk (11.10)
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in R,(k) and
2 2
M) =M ...+ (11.11)

in R,(x). However, the integrals which determine Gscn)(m) and/or é&")(k)
are strongly divergent and the metrics of R, go beyond the acceptable
relational properties G.

In order to emphasize the difference between the relational shapes
G(™) () and the two-point shapes in the standard Cartesian z-space E,.(X),

let us consider an also O(")-form invariant two-point shape G(")(zgn)z—}-

— :c%")z) whose analytic form in the space E,, of a definite dimension

n can coincide with the relational shape. We already know what does the
sameness of a relational shape G(™) mean (when G is translated from
R, to R,11); this sameness is represented by an equality with dot. Sup-

pose now that G() (zgn)z +...+ zgtn)z) is a standard two-point shape and
that we want to express the same two-point shape in the E, 11 space. We

add to n axes of S, the (n + 1)-th O—zggil)-axis of the reference frame
Sn41 (which parametrizes F,11). The new axis is perpendicular to all n

axes of §,. The fact that G(™) (mgnp + ...+ :cSLn)Z) has no extension in

the O-zslr_l‘_tl)—dimension of £, 1 space makes that the same two-point shape

G("'H), when represented in the subclass of reference frames S, 41 in E, 41,
has the form

G )(z) = g (,,gnﬂ)"’ I zgn+1)2) 5(1) (z;’fl‘)) . (11.12)

We have assumed G(™)(z)d™z to be dimensionless quantities, because this
corresponds to the most interesting case in considerations which follow, but
the essential point is that the same two-point shape breaks the rotation
symmetry O(n+1) of E, 1 when represented in E,41. As it can be seen

from (11.12), the same two-point shape in E, 4 introduces a geometrical

direction u("*1) parallel to the O-zEL’f:ll)-axis of our subclass of reference

frames S,41 in which G{("t1)() takes the form (11.12).

Thus, in contrast with relational shapes, the sameness of two-point
shapes in E,, and E,,;; makes the space E,, to be relativized to the space
E, 11 as a geometrical direction @, 41 must be introduced. The sameness of
relational shapes in the relational spaces R,, and R, does not introduce
any geometrical direction in R,41. Therefore, relational spaces which give
room to relational shapes remain self-dependent, i.e. the space R, is not
relativized to the R,y one. Although, within the Euclidean spaces E,,



Relationism of Quantum Physics 1599

any distinction between two-point shapes and relational shapes is imma-
terial and any differentiation of shapes into two-point ones and relational
ones looks “artificially”. We shall see, from Section 13 onward, that the
situation changes radically when practical geometry of pseudo-Euclidean
Minkowskian spacetime L4 comes into the play.

12. Some properties of relational spaces R,

In order to make a clear distinction between Cartesian (E,) and relatio-
nal spaces (R,), let # — y and k — g denote henceforth the points of
relational space R, in its z and p aspects, respectively. Together with
this change of notation, we shall also introduce the Planck constant so
the classical k~z duality will convert into the true quantum p-z duality
represented by y and q coordinates.

The self-dependence of relational spaces R,, due to the fact that rela-
tional shapes G(")(yz) in express R, the same relational property G (un-
der different analytic forms of its representations in R, of different dimen-
sions n), results in the following fundamental property. A relational shape
G(n)(yz) in R, represents obviously an explicitly 0(®)-form invariant func-
tion for k < n, because in this case O(¥) is a subgroup of the rotation group
O0("). However — and here is the essential point — G(™(y?) remains,
although implicitly, also O(®)form invariant for k > n, in particular for
k = n + 1. Indeed, the same relational property G in R, takes the form
G(m)(y2) (= G(™)(y?)) which is explicitly O("*1)-form invariant.

Before formulating some important identities, let us point out that the
directions of axes of a reference frame §,, parametrizing some space, do not

introduce any geometrical direction u{™). Thus, if we impose, in R,y1(q)
and onto relational shape G("“H)(q), the constraint qg_fil) = 0 we do not

introduce into R, any geometrical direction like uw(mt1) According to
the definition (11.6) we get the following identity

. 2 2
Gt (q§”+1) ot gt = qz)
. 2 2
=G (q§n) +...+ qgt ) = q2) . (12.1)

According to the p—z duality, the same identity takes the form in z repre-
sentation
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+o0
/dyffﬁ” elSan <y§ BRIE SRS A )
—00

2 2
= g™ (y§n> +o gyt ), (12.2)

where, similarly as in R,41(q), the integration over the yf[f:il) variable

introduces no geometrical direction in R,41(y). Of course, identities (12.1)
and (12.2) connect the same Green’s functions from (11.5).

Relational spaces R,, with their dual p-z aspects have been introduced
with the help of relational properties G which reveal their quantitative as-
pects in the corresponding functions G(g?), i.e. when exposed in the p lan-
guage. Consequently, the relationship between analytic representations of
the same property G in relational spaces R,, of different dimensions n given
by the equality with dot is restricted — so far — to O(™)-form invariant
functions in the R, spaces. In accordance with the physical concept of
configuration space, a relational space R,, of definite dimension n induces
the corresponding configuration spaces R,(y;) ® Rn(y;) ® ... in which
the relational shapes G(")(yl, Y5, ...) are embedded. The extension of the
translation G(™) into the language of R,, spaces with m # n follows the
rule presented for the elementary configuration space R,(y) provided that
G is also O(™)-form invariant.

However, the question arises of the translation of relational shapes from
an R, to an R,, space in the case when G(")(y) breaks the O(™) symmetry.
Seeking some help in physical intuition, let us suppose that R,(y) gives
room to the parametrization of the y degrees of freedom of some system
M which are entirely separated from the other degrees of freedom of the
system. Let us suppose, moreover, that no geometrical directions are given
inside the relational space R,. Such a situation corresponds to the one
in which we have to deal with the y degrees of freedom of a micro-world
M in a bound state of M composed of spin-less constituents. In such a

case neither directions of (relational) momenta g nor directions n (onto
which spins could be projected) are given and the only “building stuff” of
relational shapes in R,(y) (here n = 3) is provided by the coordinates y;
of the points y of R,(y) or, interchangeably, by the coordinates g; of the
points g of R,(q). The geometrical meta-object R, restricts then the class
of relational shapes to tensor fields of the form

T, (1) = )™ . M (s5=1,...,n) (12.3)

. SK
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or, interchangeably, to analogous tensors in the qgn) variables if 7(™) is

represented in the p language. Of course, tensors T(™) do break the O(™)-
form invariance and the question arises of the translation of these tensors
from the R,, space to an R,, space, the latter having the dimension m # n.
Again, the equality with dot must be used

T(M(y) = T(™)(y). (12.4)

This question will be solved in Section 14 in connection with the physically
essential problem of the relationship which exists between the geometrical
objects embedded in 4-space L4(p) accessible to measurement and those
embedded in the hidden L-absolute relational space Rj3.

13. Hypothesis of relational space R;

We return to physics and, following the philosophy of relationism, we
take for granted that metrical relations of micro-systems M are initiated
inside the very systems and not in the external spacetime of measurement
as in the present physics based on eventism. This philosophy stands in
agreement with von Weizsaecker’s opinion [15] that: “Spacetime is not the
background but a surface aspect of reality”. Note that the main idea of
relationism, namely that according to which physics takes its origin inside
micro-worlds M is consistent with the two most successful theories: NR
quantum mechanics and relativistic perturbation theory. Although both
theories start with eventism, their success is due — in the first place — to
the separability of the external degrees of freedom of an isolated system M
from the external ones. This is a necessary condition if the hypothesis of
relationism is to be put forward. In NR quantum mechanics, apart from
OR +£ 0C, the (G-absolute) relational space Rg; coexists with eventism Gy,
while the relativistic perturbation theory introduces implicitly the geomet-
rical meta-object of 4-space L4 which goes beyond the locality of classical
eventism L4 by realizing the mentioned separability of degrees of freedom.
Thus, the two theories, without explicitly renouncing eventism, make a step
towards relationism.

According to relationism, an elementary micro-world M must be com-
posed of two hypothetical components. From this follows that the one-body
problem of eventism must become a limiting case of the two-body problem.
At the same time, an event X must become a limiting notion of the more
elementary relation y. Now if one assumes, in order to deal with metrical
extensions of M = A; + Aj, the existence of two hypothetical constituents
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Aq and A, there is no reason whatever for declaring that each of these con-
stituents pre-exists separately in metrical continuum (spacetime) of mea-
surement. Such implication would follow from eventism which is obligatory
for classical physics only (in which & = 0) with its CCINF’s.

The following assumptions stand at the basis of the hypothesis of (L-
absolute) internal space-and-time I which extends IS (cf. (4.13)) to
physics of finite universal constant i /c: (1) the quantum p—z duality which
accounts for atomism and for wave—corpuscular duality of matter; (2) sym-
metry L of relativistic kinematics of the asymptotic zone of measurement.
The third assumption, which is connected with the separability of the in-
ternal and external degrees of freedom of a micro-world M, brings into
being the relational space R3 and it may be formulated as follows: (3) the
hypothesis of relationism recognizes that micro-physical symmetries follow
the analogy which exists between the Euclidean relational space R4 and the
pseudo-Euclidean 4-space L4.

Let us remember that absolute relational properties G given by o).
form invariant relational shapes G(4)(y2) determine the same absolute prop-
erties G embedded — by definition -— in relational space R3 and given by

GONg) = GW(g%), GP(¥?) = GW(). (13.1)

Moreover, and here is the point, relational shapes G®) which are 03)-
form invariant explicitly are also O(4)-form invariant implicitly. In other
words, the 6-parameter rotation symmetry O(4) of 4-space R4 keeps the
analytic form of relational shapes G(3)(y?) (and, interchangeably, G(™(g?))
unchanged. This is due to the fact that Rj is not relativized to R4, because
the sameness of relational shapes in R3 and R4 does not introduce any
geometrical direction u(4). In the case of Cartesian point shapes in Ej
extended to B4 — cf. (11.12) — the sameness of the corresponding point
shapes makes Ej relativized to E4 by introducing the direction u®) in Es.

According to assumption (3), the hypothesis of relationism replaces R4
with £4. However, the indefinite metrics of £4 and the definite one of R3
restricts the 4-space L4(p) to the region of its space-like four-momenta p.
Thus we begin with absolute relational properties G expressed in L4(p) by
L-form invariant functions G(p?) which, in the L-absolute relational space
R3(q), take the form

F(@®)=G(p*=q"2>0). (13.2)

We say that F, embedded in Rj, expresses the same relational prop-
erty of the system M from its inside as G does from its outside in £4 and
accessible to measurement in the privileged language p, i.e. in L4(p). The
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p— duality of geometrical meta-objects R; and £4 determines the corre-
sponding z-representations of relational shapes F and G as being equal to

F(y?) = (2nh)~3 / g F(g?)e/ ™M), (i)

(13.3)

G(z?) = (2rh)~* / d*p G(p?)e'MP=) | (i7)
Note that the p—z duality restricts — in principle — the class of relational
properties G to those for which the integrals (13.3) are well-defined.

However, if we start with relational shapes F in R3 and we want to
get the corresponding relational shapes G in L4, a general problem arises
of the extension of F(g?) over the negative values of g> which correspond
to the time-like four-momenta p. This extension is given directly, in several
important problems mentioned in Appendix A, by the very analytic form of
F(q?). Assuming that the problem of extension of F'(g?) over the negative
values of g% can be solved, F(q?) determines the same relational shape
G(p?) in the whole 4-space L4(p) and

G(p*) = F(q® =p* 2 0). (13.4)

Once again we may see the singularity of the semi-group G according
to which G4 coexists with relationism RS (apart from OF # 0G). As we
know from Section 8, NR physics eliminates the counterparts of time-like
four-momenta p and, hence — without explicitly resorting to the hypothesis
of relationism — we obtain a one—to-one correspondence between the G-
form invariant two-event shapes G(z) from (5.6) and the (explicitly) G-form
invariant relational shapes F(y?) embedded in R{. We see also that the
NR limits (8.9) and (8.14) of the L-form invariant two-event shapes G(z?)
convert into G-form invariant shapes G(z) from (5.6).

The pseudo-Euclidean character of 4-space L4 does not violate the iden-
tities (12.1) and (12.2) which result now from the constraint pp = 0 and
integration over the z variable. The only difference between R4 (with def-
inite metrics) and L4 (with indefinite metrics) consists in the fact that the
directions which are perpendicular to the hyper-plane py = 0 and the di-
rection of the 0-zg-axis of some reference frame S in L4 are not arbitrary
ones (as in R4), but must be of the time-like character. Thus, according to
the definition (13.2), the constraint pop = 0 results, in any reference frame
S parametrizing Ly and Ly, in an identity analogous to that from (12.1)

G’ =p*-py=p"=¢ >0)=F(¢g*). (13.5)
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The z-counterpart of (13.5) corresponding to (12.2) takes the form

+ oo
/ dzo G(2? = 2% — 22) = F(2? = y?), (13.6)

- 00

which is valid in any reference frame §.

Since equality (13.6) is valid in any reference frame S, the identification
of the numerical value of the space-interval square #? with the L-absolute
interval square y? in R3(y) expresses the fact that the proper lengths of unit
rods of all reference bodies S are the same. In the NR limit, as can be seen
from (8.15 G), the identity % = y? follows directly from the coexistence of
G4 with R:? or, in other words, from the equalized balance of geometry G4.

Note, that the self-dependence of the R,, spaces, much like that of R3
and L4, means that the geometrical directions u®) in R3 and u(4) in L4 are
a priori independent. This results automatically in an inequality analogous
to that from (4.10), with G4 replaced by L4

05 # 0%, (13.7)

where 05 is the space rotation included in the L-symmetry group. In Sec-

tion 18 we show that the connection between some u(®) and u(4) directions
is established a posterior: and one should expect that in the case of fully

isolated micro-worlds M this connection will concern the 3-momentum 5 of

R3(q) and the four-momentum P of L4(p) which characterize the scattering
states of M.

The separability of the internal degrees of freedom of an M embedded
in the corresponding configuration space R3(y1) ® R3(y2) ® ... from the
external ones in L4(X ), does indeed conflict with eventism Ly. Therefore, a
hierarchic description of any state of the composite system M must be used.
First one has to determine the c-number, ( L-)absolute characteristics of M
in the corresponding (mechanical) configuration space induced by relational
space R3 and next to translate them (if necessary) into the language of the
corresponding configuration space induced by 4-space L4 whose p aspects
are accessible to measurement. Of course, this translation is given by the
equalities with dot which relate the corresponding relational shapes in R3
to the two-event shapes in £4.

The extension of relational shapes F(y) (functions), obtained from me-
chanical equations based on geometry, to the same two-event shapes G(z)
(distributions) embedded in L£4(z) shows that the hypothesis of relationism
Rj3 eliminates the relativistic redundancy of degrees of freedom [30]. At the
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same time, the relational variables ¥ and g regain the character of dynami-
cal variables of NR physics free of the relativistic redundancy of degrees of
freedom because of the G-absoluteness of the Newtonian time.

Relational origin of metrical physics and its p—z duality are also strongly
supported by non-local quantum EPR-like correlations [9] which break Bell’s
inequalities [10] in perfect agreement with quantum predictions [11] and in
full conflict with Einstein’s classical reality [9] based on eventism. Thus,
two practical geometries, namely that of hidden relational spaces R3 and
that of spacetime of directly observable events X would disclose the two-
level nature of physical reality which must be extended over the quantum
potentiality of 1 -states. We would deal with the quantum-potential level of
reality which exhibits quantum propensity of an individual micro-object M
and the classical actualized level of measurement which is being performed
by classical macro-devices registering some irreversible tracks [5]. As rightly
pointed out by Messiah [46], the gap between potential and actual levels
of reality does not necessarily mean that the macro-objects avoid the p-z
duality. The only point is that the large masses of extremely “involved”
macro-objects justify one to ascribe to such an object a relatively sharp
localization X and velocity V' at each instant ¢ — cf. (3.12) — when the
wave-aspect of such object ceases to be detectable. Therefore, first the
classical mechanics and next the whole classical physics have (tacitly) taken
for granted the one-level physics, actualized a priori on the background of
a pre-existing metrical spacetime of measurement (eventism).

Thus, let us emphasize, as this will be important in considerations which
follow, that according to relationism, an infinitely heavy reference body §
must stand behind reference frames §, if relations referred to S are to be-
come isomorphic with events. In classical physics (A = 0) with CCINF’s
we can abstract from reality of reference bodies § which remain behind
reference frames S, so classical physics is condemned to eventism. Conse-
quently, physical existence of any entity means its actualized existence on
the background of spacetime and there is no room left for quantum-potential
existence which is symbolized by .

14. Translation of relational shapes into two-event shapes

By virtue of definition we know how to translate the O(3)-form inva-
riant relational shapes F(y?) of R3 into the same two-event shapes G(z?)
of L4 which are L-form invariant. However, this translation, represented
by an equality with dot, requires an extension onto M’s composed of N
constituents, i.e. when M = A; +...+ Ax (N > 2) and, moreover, when
relational shapes describing the structure of M cease to be 0®)-form in-
variant. In both cases we must distinguish between M’s in bound states
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and in scattering ones, because in scattering states we deal with fragments
of M which reach, each of them separately, the asymptotic zone of relativis-
tic kinematics subject to the symmetry L of measurement. In this section
we shall treat the case of bound structures of spin-less particles, whereas in
Section 18 we shall proceed with the problem of scattering states.
Remaining still within the frame of the O(3)-form invariant form factors,
let us show that the equality with dot of the corresponding form factors
F and G, G = F, of an M composed of several constituents obeys the
same rule as in the case of the elementary two-body M, M = 4; + A,.
For this purpose it is sufficient to consider the three-body problem of an
M = A; + Ay + A3 whose structures G are embedded in the corresponding
6-dimensional configuration space R3(y12) ® R3(y13), with A; taken (quite
arbitrarily) as the origin of the reference frame §3 which parametrizes R3(y).
The corresponding L-form invariant form factors G embedded in the 8-
dimensional configuration space L4(z12) ® L4(z13) take the form

G = G(21y,273,235), @23 = 213 — 212, (14.1)

where z;; = X} — X;. Following the same rule as in (13.2), the L-absolute
relational shape F is determined in the p language as

F(qu,qﬂ, qga) = C3(1’?2 = qu’Pg.'s = queasp%:s = ‘1%3) (14-2)

with q?k > 0.

Much like in (13.2), this projection of 8-dimensional configuration space
L4(p12)®L4(p13) onto 6-dimensional configuration space R3(q12)®R3(q13),
where ¢23 = @13 — q12 and p23 = p13 — p12, restricts four-momenta p12,
P13, P23 to space-like ones only. Thus the determination of G by means of
F, in the whole configuration space L£4(p12) ® L4(p13), requires a proper
extension of F(qlz,qm) for the case of negative values of q3,, ¢%;, qzs.
Besides, the p—z duality restricts the class of relational properties F = G to
those for which the corresponding Fourier integrals are defined. This fact
may be of physical importance (¢f. Appendix A). As these problems have
the same nature for N = 2 and for N > 3, it is also sufficient to discuss the
question of the equality with dot, which links F and G when they break
the symmetries O(3) and L, respectively, in the example of the elementary
two-body problem with M = A, + A,.

Similarly as it has been signalized in Section 12 (¢f. (12.3)) for bound
states of M = A, + A, under discussion, the very geometry of meta-objects
in B3 and in L4 restricts the building stuff of geometrical objects in R3(y)
and in L4(z) to the coordinates y of R3(y) and to the coordinates z =
(z4,29) of the points z of L4(z). According to the p—z duality, the same
can be formulated — interchangeably — in the p language of the R3(g) and
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L4(p) spaces. Thus, in analogy to (12.3), the most general relational shapes
in R3(y) and two-event shapes in L4(z) take the form of tensors

Tsl...sK(y) = F(yz)ysl s Ysk (SJ =1, 2,3) (14'3)
and

Ooy..ox(2) = G(zH)20, .. .26, (07 =0,1,2,3). (14.4)

The determination of the equality with dot between the corresponding
relational shapes T and two-event shapes @ will be based on the already
established equality with dot, which links the form invariant shapes in the
R3; and L4 spaces, and on the identities

Fo)ve =} (5 )OO,

G(z?) 2, = 1 (a%) GM(2?). (4)

[

(14.5)

Here F(¥)(z) and G(*)(z) denote the k-fold integrals of F(z) = F(%)(z) and
G(z) = G(°)(z), respectively, hence

i {oom}={ad} o 146)

FO)(y2) = GO (22). (i)

with

Let us remember that OF # Of and therefore the orientations of the
space axes of reference frame in R3 and those of reference frame § in L4
are independent a priori. Consequently, partial derivatives of F(y?) with

. respect to y, and those of G(z?%) with respect to z, do not introduce any
connection between the orientations of R3 space and E3 space of some § —
a fact which is consistent with (13.7).

Let us start with a four-vector field of tensor T from (14.4) where

0.(z) = G(z?)z, . (14.7)
The identity
+o0
/ dzo G(x? — 23)z9 = 0 (14.8)

— o0

makes that the time component @¢(z) of @,(z) has no residuum in Rj3
which leads to
Oo(z) = G(x% —22)zg = 0. (14.9)



1608 Z. CHYLINSKI
From identity (13.6) one gets
BOs(z) = G(:cz)z, = F(yz)y, =Ts(y) (s=1,2,3) (14.10)

which, together with (14.9), determine the equality with dot between the
four-vector field @,(z) in L4(z) and the vector field Ts(y) in R3(y).

Following the same rules, the equality with dot between 2-rank tensors
@, and T,; has the form

@sl(z) = G(zz)zszl = F(yz)yayl = Tsl(y)s
O,0(z) = Ogs(z) = G(z?)zy = 0,
Ooo(z) = G(2%)z§ = FFI(yP). (14.11)

As @gg(z) is an even function (distribution) of zy, its R3-counterpart does
not vanish but it is equal to 1, F(})(y?). Equivalent equalities with dot
could be obtained starting with the p representations of tensors T and 6.
Exactly in the same way one can establish the equalities with dot be-
tween tensors T and @ of an arbitrary rank; the same concerns structures
M composed of N constituents N > 2 when the corresponding tensors are

spanned on 3(N — 1) and 4(N — 1) variables of the configuration spaces
N-1 N-1

'Rg ®...8 R; and 2:4 ®...Q L;, respectively.

Let us emphasize that in absence of any internal direction u®) in L4
which characterizes bound structures of M, the symmetry L of geometrical
meta-object L4 excludes all two-event structures G(z), like e.g. @(z) ten-
sors, which, in some reference frame § parametrizing L4 (hence also L4)
would be independent of the relative time variable zg = cAt. This very
fact makes that the spacetime two-event shapes G(z) are essentially dif-
ferent from an event shape f(X). Indeed, there exist event shapes which
become independent of the time variable Xy = ct in some reference frames
S of Ly. However, these Cartesian shapes f(X) seen in the perspective of
4-dimensional spacetime L4 can be perceived as 4-dimensional structures
rolled along the time axis of the reference frames § in which f becomes
independent of time. Thus, the very translation symmetry of such shapes
introduces a geometrical direction u{*) parallel to that of 0-X,-axis. Two-
event shapes G(z) in question are never rolled along the 0-zo-axis of some
reference frame S in £4(z), which makes the 4-space L4(z) essentially dif-
ferent from the 4-spacetime L4 with its Cartesian event shapes f(X) which
have found “on their own” the picture of the space-and-time that we adopt.

The restricted class of the relational shapes T and corresponding two-
event shapes G (or @) is strictly connected with the quantum p-z duality
giving rise to the dual p and z aspects of geometrical meta-objects RHj3
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and £4 which give room to quantum nonlocality. In consequence, relational
geometry R3 and its Lorentz limit discussed in Section 16 admit laws of mo-
tion which are in position to originate, starting from (hypothetical) point
constituents of M, some extended and stable structures (plena) which de-
scribe the measuring rods and are particular solutions of these laws. These
structures, based on the quantum p-z duality, remain at the same time
consistent with the symmetry L of measurement. Thus, the R3 relation-
ism makes room for a closed theory that reconstructs measuring rods as
the objects which found our metrical spacetime. Let us remember that
eventism which follows the Cartesian philosophy of a pre-existing z-space
cannot avoid the old paradox of labyrinth due to the fundamental opposi-
tion which exists between structure-less point particles and continuum. NR
quantum mechanics surmounts this paradox with the help of eventism G4
only because G4 coexists with relationism Rg;.

In Section 21 we show also that the p~z duality of the first practical
geometry Rz of relations — even the flat one — breaks the Thales simi-
larity of small and large objects inherent in the Cartesian (flat) spacetime
(eventism). In consequence, a declaration that some real object is small
and/or large attains an absolute meaning which is alien to eventism.

15. Internal time and internal spacetime I, of micro-objects

As we remember, it was time which, when added to 3-space, has dis-
closed the Galilean symmetry G relativizing 3-space to G4. In spite of
that, the G-absolute 3-space R:.)G(y) and the equally G-absolute Newtonian
time make eventism G4 coexist with internal space-and-time continuum
I. Contrary to Gy, I§ is a Cartesian product of RS (y) and TC(7) (cf.
(4.13)). Thus I reminds one of the Aristotelian space and time. Still
within the frame of classical physics (k = 0), this situation becomes radi-
cally changed by STR which restricts the velocities of CCINF’s introducing
a universal constant ¢. The CCINF’s do maintain the eventism of Cartesian
z-space (time), but the very fact that any intercommunication interferes
with the symmetry (L) of pre-existing spacetime L4 shakes the faith in the
eventism with time rates being referred to space scaffolds.

Another aspect of classical physics which also favours the objectism of
relational origin of metrical physics is connected with additional symme-
tries of an isolated system M. Indeed, a complete description of an isolated
M resorts to the Hamiltonian and/or Lagrangean formalisms. In conse-
quence, the very formalism responsible for disclosing the fundamental p—z
canonical symmetry excludes dissipative systems which become described
incompletely. This leads to the well known and still challenging problems of
statistical physics connected with the notion of irreversibility. In quantum
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physics, this problem appears in the irreversibility of the actualization pro-
cesses of quantum potentiality ¢ called the reduction of the wave packet [5].

Following the quantum relationism R3 and its p—z duality, we start
with an isolated micro-world M on its elementary quantum-potential level.
Thus, an M composed of N constituents A s is embedded in the 3(N — 1)-

N-1

dimensional configuration space R3 ® ... R3 induced by the R3 space. In
accordance with the idea of indivisibility of quantum states, we attach to this
configuration space the a priori L-absolute internal time 7 of the continuum
Tr(7). The L-absolute time continuum 7js(7) enhances then the philos-
ophy of relationism according to which a fully isolated system M creates
a self-dependent micro-world M. In the NR limit (¢ — oo) the internal-
time continuum 7ps converts into a G-absolute internal-time continuum
TC. (The subscript M may be omitted because of the G-absoluteness of
the Newtonian time.) However, a synchronization of internal times 7z
corresponding to different, independent M’s remains, even in G4, a prior:
undetermined. We shall show in Sections 22 and 23 that the rates of inter-
nal times Tz, as they depend on M, account for the time dilatation effect
on the quantum-potential level of M.

The hierarchic description of the states of M imposed by relationism
R3 starts with the Schrédinger equation in the R3®...® R3 @ Tas spacetime
and the p—z duality of R3 is realized in the Schrédinger z-representation by
putting

0

Yi =Y, = —th— (7=1,...,N —-1). 15.1
Jj 7 q; 8yj (.7 ) ( )

Let the internal Of-form invariant Hamiltonian % of M be a sum of internal
kinetic energy (operator) W) and internal potential V, hence

h=W® (g, ,an_1) + V(w15 yN-1)- (15.2)

This form of % shows explicitly that y and q are dynamical variables, simi-
larly as in NR mechanics.

The 3-symmetry of relational space R3; makes that the V interaction
describes action—at-a-distance in B3 ® ... ® R3 ® Tas, which results in the
third Newtonian law, while the L-absolute limits



Relationism of Quantum Physics 1611

determine the corresponding asymptotic zone of M without resorting to the
adiabatic hypothesis, i.e. treating scattering states and bound states in the
same way. Let us remark that, similarly as in NR mechanics, action—-at—a—
distance does not introduce any additional degrees of freedom into M. This
solves the problem of stability of bound structures of M in physics of finite
universal constant i/c.

The L-absolute internal kinetic energy operator W(¥) must be consis-
tent with the assumed relativistic kinematics of the asymptotic zone of mea-
surement. Therefore, the analytic form of W(¥) must coincide with that of
the relativistic kinetic energy E(¥), represented in the zero-momentum ref-
erence frame in which P* = 0. However, contrary to the conclusions which
result from the wrong semi-relativistic equations [31-33] based on eventism
L4, the analytic coincidence of W{(¥) with E(®)* occurs on two different
geometrical backgrounds of these two quantities. W(¥) is an L-absolute

N-1
object, embedded in B3 ® ... ® R3, whereas E(F)* is embedded in L4 and,
moreover, it must resort to the c-number condition P* = 0. The same con-
cerns the a priori L-absolute interaction V(yi,...,yn—1) which becomes
independent of the reference frame S parametrizing external spacetime L4
of free motion of M as a whole.

Finally, in one of different possible parametrizations of the configuration

N-1

prm——— o~
space R3 ® ...® R3, W(*) takes the form

W =c [(m3c + @)1 + ...+ (mdy g + F1)/?

+ (mhe® + (=@ -~ Av))V (15.4)
where
an=-(@:1+3q:+---+3qn_1)- (15.5)

The point is that the sum of all relational momenta g; referred to the
constituent A; vanishes identically being a g-number

@ +a@+..-+qn_1+an =0. (15.6)

The hierarchy of description of the state of M, which follows from rela-
tionism R3, makes that M (viewed as a whole) may be, in L4, in an external
state superposed of different momenta P when the rest-frame S* does not
exist but, nevertheless, this does not affect identity (15.6) embedded in Rj.

The L-absolute internal Hamiltonian h acts as a generator of infinitesimal
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translation of internal time 737 of M which leads to the Schrodinger equa-

tion o9
ih o = Rep(yr, -y UN—15 M) - (15.7)
Otm
Note, that according to (15.6), the numerical coincidence of A7y with the
time interval At* of the rest frame $* of M (if such a frame does exist)
takes place a posteriori.
The internal time 7ps (being a c-number parameter) is essentially dif-
ferent from the relational degrees of freedom y;. In particular, as seen from
(15.7), Tar has the 1-parameter translation symmetry

™ =T™ + ToMm - (15.8)

If, omitting the subscript M, we confine ourselves to the elementary two-
body system, then the internal spacetime of M = A; + Ag, t.e. spacetime
I4, composed of R3(y) and 7(7), has the 3-parameter rotation symmetry
of R3 and the 1-parameter translation symmetry (15.8). In consequence, I4
has a 4-parameter symmetry R, the same as R3G has, and — much like as
in the NR limit — we have

Iy = R3(’y) ® T(T) . (15.9)

For stationary states when

¥ = $w(ys,, yv—1)exp (*g WTM) (15.10)

equation (15.7) leads to the eigenproblem of h

Rpw = Wow(¥1s- -, YN—-1) (15.11)

where W = Mc? denotes the a prior: L-absolute total internal energy W
(and mass M) of M in the eigenstate ¢y of h. Thus, different bound

eigenstates of h determine different composite particles M,, , because they
have different invariant masses M,,.

In spite of the fact that a far-going analogy exists between equation
(15.11) and its NR limit (in which Iy — I$), let us strongly emphasize that
the NR framework (1/c = 0) is unable to account for the (perfectly well
known and proven) mass defect of composite structures. Indeed, if m; is
the mass of J-th constituent A ; of M, then

cC— 00

N
My pom=)Y my (15.12)
J=1
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which means that all particles M,, synthetised mechanically are of the same
mass M, = m determined by the masses my. Thus, the fundamental fact
known from nuclear physics, chemistry, etc., i.e. existence of a spectrum
of masses M, for each of composite particles M,, (built of the same con-
stituents and interacting via the same forces), cannot be explained on the
ground of the NR theory. As the binding energies ¢, of loosely bound
systems are determined by the NR Schrédinger equation, we obtain the
corresponding mass defects dividing €, by ¢2 — AM,, = €,/c?, as it follows
from the relativistic energy—-mass relation. This very fact shows clearly that
NR Schrodinger equation must be recognized as the NR approximation of
(15.11) accounting for finite universal constant %/c. However, according
to relationism one has to resort to the hypothesis of the R3-space which
explicitly goes beyond eventism L.

16. Some consequences of relationism R3

Direct unobservability of the points (y; 7) of Iy makes that the Iy ge-
ometry has to deal with two L-absolute intervals

r= |yl and ArT. (16.1)

Thus, in opposition to eventism L, with negative balance of geometry Ly,
the metrical physics based on primordial nature of relations admits a closed
theory which would reproduce the dynamical structure of measuring rods.
According to relationism I4, the true spacetime L4 of measurement is not
a manifestation of eventism but it represents the limiting case of geometry
I4 conditioned by physical situation created by classical, heavy measuring
devices. In consequence, mathematical reference frames § parametrizing L4
cannot abstract from reality of (infinitely heavy) reference bodies §.

The hierarchic description of the state of M, which is inherent in the
two-level relational physics, starts — as we know it — with determination
of the structure of composite particle M,, and of its all internal L-absolute
characteristics like mass M,, and spin embedded in the configuration space

N-1
e e—

R3 ®...Q® R3. In the next step only we attach the corresponding L4 geom-
etry to these c-number characteristics. In particular, we attach to M, (as
a whole) the overall four-coordinate X,, and the conjugate four-momentum
P,,, where

P2 = _M2c2. (16.2)

Suppose that 1y, »(y) are the bound states, normalized to unity, of the
Hermitian operator of internal Hamiltonian A of the elementary two-body
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system M = Aj + A;. Actually, these states describe two different particles
M, and M,,, as we assume that M,, # M,. Thus

Frm(y) = $7(y)¥m(y) (16.3)

represents a relational shape of the form factor between the internal states
Ym and Y,. Since Wi, # Wy, (Mm,n = Wi n/c?), the orthonormality of
states ¥, n(y) takes the form

/d3y Frn(¥) = 6mn - (16.4)

As the collisions of M with another object M’ disclose F in the struc-
ture of the corresponding cross-sections (in the privileged p language), we
must deal with the same relational property F represented in 4-space L4.
Hence we get

Gnm(z) = an(y) . (16'5)
Similarly as in (13.6), Gnm(z) leads to the identity

+ oo
/ dzg Gpm(2,20) = Fam(2), (16.6)

-0

hence the orthonormality condition (16.4) takes a manifestly L-invariant
form

/ 42 Crm(2) = Brrm (16.7)

Let us remember that the relativistic wave functions deduced on the basis of
eventism result, due to the non-separability of internal and external degrees
of freedom of M, in relativistic distortions of GZ_(z) which destroy the
orthogonality relation of the initial proper wave functions of M.

The separability of internal and external degrees of freedom of M which
follows from relationism solves the dilemma connected with physical inter-
pretation of the proton form factor discussed in Section 10. Let us re-
member that for elastic scattering the four-momentum transfers p take, in
the zero-momentum reference frame S* of the colliding particles, the form:
p* = (p*;0), hence p} = 0 and { = p? = p*2. However, as follows from iden-
tities (13.5) and (13.6), the charge density distribution of proton defined in
(10.2) coincides with the L-absolute relational shape p(r) with r* — r = |y|.
Thus, without distinguishing any reference frame in L4, p(r) represents the
L-absolute relational structure of proton (composed of some constituents)
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which remains hidden a priori in R3;. Elastic collisions of proton and point-
like particles make this structure to appear on the surface of measurement
and hence, the same form factor represented in L4 takes the form

eG(z%) = p(r)  (r=l]). (16.8)

From the a posteriori equality (16.2) follows that the total energy E,
of an isolated particle M, being in the eigenstate of total momentum P is
equal to

E, = (W2 4+ P32 W, =M,>. (16.9)
Consequently, one can speak of the rest frame S* of M,, in which

E;,=W,, (7)
At* = AT. (37) (16.10)

Note that these c-number equalities do not distinguish §* in a way which
would conflict with Einstein’s principle of relativity as they are inherent in
the relativistic kinematics.

However, taking into account quantum superposition of states, the de-
termination of the mass M,, as an L-invariant quantity equal to M, =
(—P2/c?)1/2 is more general than that of the rest mass equal to M, =
E}/c?, because in the first case M can be in a state superposed of different
momenta P for which no rest frame S* exists. This distinction becomes
relevant in determining the mean life-times of unstable particles M,, from
the corresponding energy uncertainties — cf. Section 24.

Another consequence of relationism R3 concerns the already mentioned
problem of direct interaction V(y?) (relational shape) at-a-distance in I4
which obeys the third Newtonian principle. Thus, an interaction-at—a—
distance in I4 avoids the wave zone of signalization which is intimately
connected with the locality of Ly geometry and which destroys the stabil-
ity of relativistic composite systems. The wave zone of relativistic fields
introduces its own degrees of freedom and the best-known example of the
dilemma of stability of composite systems interacting by means of local
relativistic fields is the Bremsstrahlung of classical atoms. On the other
hand, the two-level physics based on relationism remains consistent with
the L symmetry of measurement, because the same relational property V
expressed in £4 takes a manifestly L-form invariant two-event shape U. The
corresponding equalities with dot take the form (in Ly and G4)

V(y®) = U(2?), (L)
V(y?) = V(=?)s(at).  (G) (16.11)
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It must be remembered that U(z2) (much like G(22)) although being con-
sistent with symmetry L goes beyond the locality of eventism L4. Therefore
interaction U(z2) results in quantum correlations of finite space-like four-
intervals 2 (22 > 0) conflicting with Einstein’s classical reality [9]. In
particular, Feynman propagators of relativistic perturbation theory are ex-
amples of such interaction U(z%). In agreement with general discussion
from Section 9, this proves that perturbation theory goes implicitly beyond
the eventism L4 with its locality.

Finally, let us consider the relational velocity v in Iy which points to the
discontinuity of the Lorentz limit of Iy discussed in greater detail in the next
section. In the elementary two-body systems with internal Hamiltonian as
from (15.2) for N = 2, relational velocity is defined in a standard manner
as equal to

_dy oh
T dr dq’

The point is that v takes an account of the mutual (relational) motion of
both constituents A; and As of M and determines the relation y as, in
accordance with (15.2) and (16.12), we obtain

q2 —]/2 qz —1/2
v=gq (mf + —;) + (mg + ;5—) . (16.13)

In consequence, if |g| — oo velocity v = |v| tends to 2¢ instead of ¢. Re-
lationism I4 accounts automatically for the recoil of both interacting con-
stituents of M = A; + A,.

As one might expect, if we assume that in the limit of an infinitely
heavy A1 (m; — )

(16.12)

2

lim —2 =0, (16.14)
mp— o0 mlc

which means that A; suffers no recoil (like Bohr’s basis of measuring appa-
ratus [47]), then v from (16.13) converts into

—_q_.__.._ —_—
Jmitarje T

Thus, in the limit (16.14) the maximal velocity v falls from 2c to ¢, where the
latter value represents the maximal velocity of a signal referred to infinitely
heavy reference bodies S of geometry Ly. This justifies to regard (16.14) as
the condition for the Lorentz limit of I4.

v= c. (16.15)
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The Lorentz limit of I is then characterized by the discontinuity be-
tween vl(,Qx = 2¢ and vi,{;), = ¢ — such a discontinuity is alien to symmetry
G and points to different natures of relationism and eventism, resulting
from the coexistence of ], f’ and G4. This coexistence reveals itself here in
the equally infinite values of 2c and ¢ of the NR limit (¢ — o) which makes

that the discontinuity disappears.

17. Lorentz limit of I,

The double-faced nature of symmetry L of measurement reveals itself in
the following: On the one hand the symmetry L of measurement (asymp-
totic zone) determines the absoluteness of relations y but, on the other
hand — if one insists on having a self-consistent hypothesis — the inter-
nal space-and-time Iy must convert into L4 under some conditions which,
in particular, accompany any measuring process. The hypothesis of rela-
tionism promotes this double-faced character of symmetry L by introducing
3-space R3 different from 3-space E3 of any reference frame S parametrizing
spacetime L4 of measurement.

The double role of classical physics of measurement in quantum the-
ory was strongly emphasized by Landau [48] without, however, renouncing
eventism. Actualizations that constitute any measurement are in reality
induced by classical macro-devices [7] which provide us with physical tezt
[13] of quantum predictions.

Let us not forget that symmetry G which amalgamates the 3-space
with time, so the G4 spacetime ceases to be a Cartesian product of 3-
space and time of Aristotelian physics, is a consequence of the symmetry of
the Newtonian equations of motion. Similarly, symmetry L of Minkowski’s
spacetime results from the symmetry of the Maxwell equations. Thus, the
symmetry of the first physical background is always strictly connected with
the symmetry of the basic equations of motion which form the basis for
quantitative physics. In the case of I; continuum its symmetry R is also an
internal symmetry of equation (15.7). So, in the case when the symmetry R
of equation (15.7) changes — in a consequence of some particular situation
which might build up in I4 — into a “broader” symmetry L, one may say
that relationism I transforms, in an appropriate configuration space, into
relationism of L4 spacetime.

It follows from the preceding considerations that, according to relation-
ism I4, the existence of a metric outer world which constitutes the space-
time of measurement calls for one of the constituents of the micro-world
M = A; + A; to be infinitely heavy (cf. (16.14)). Let us emphasize that
the limit m; — oo differs essentially from the limits A — 0 and ¢ — o©
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which are responsible for the old paradigms. Those two limits are of a for-
mal character as both % and ¢ are universal constants. On the other hand,
the limit (16.14) depicts a situation of M = A; + A, which may, or may
not, occur, as m; is not a universal constant, and it may take on different
possible values.

In a region without interaction (V(y*) = 0), the condition (16.14) may
be always fulfilled by referring a non-interacting A, particle to an A; of
infinite inertia. The absolute character of R3 space makes that the asymp-
totic region where V(y?) = 0 is specified also in an absolute manner. Any
modifications which might follow from the dynamics of relationism I4 can
only concern the description of bound states (structures) of finite inertia.

Let us consider a two-body Hamiltonian & of the two-body system M =
Aj+ A2 in the zero-momentum reference frame S*. (The limit (16.14) means
that the infinitely heavy A, suffers no recoil and becomes a good reference
body S.) In order to deal with finite quantities we subtract the term m;c?
from Hamiltonian A and then take the limit for m; — oo. Taking into
account (16.14), we obtain

H= lim [iz—mlcz]

m]—ro0
= lim ¢ [(m?c2 + @)Y + (mic? + q2)1/2] + V(y?) - myc?
my—o0
1/2
=c (m%c2 +q ) +V(y?). (17.1)
For our purposes it is sufficient to consider the simplest scalar equation

which may be obtained by replacing A in (15.7) with H from (17.1) and
squaring both terms. Equation (15.7) transforms into

{ [zh-g— - V(¥ )] —mict — %q } P(y,7)=0. (17.2)

Introducing new variables
y:X;’ CT:XétO? X; :(X;;XEO)’ (17'3)

and defining four new functions U*(X;) of the form

U*(X3) = (0,0,0’;}@;_?3@) , (17.4)
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equation (17.2) can be rewritten in an explicitly L covariant form

-2 _ux i =
[—z ax; ( 2)} + m3c” P Y(X2) =0, (17.5)

with X7 denoting the four-coordinate of X event in the zero-momentum
reference frame S* of the infinitely heavy A;, and U* representing four-
potential U in §*. Indeed, equation (17.5) viewed in S* takes on the very
form of equation (17.2).

An infinitely heavy A; does nor enter equation (17.5), so it remains
hidden, but the 4-parameter symmetry R of the points (y;cr) of I4 gains
a J-parameter freedom of translation in B3 and another, also 3-parameter,
freedom of boost. In consequence, the (4 + 6 = 10)-parameter symmetry L
of (y; ct) makes I isomorphic with Ly. At the same time, the L-absolute
relational shape V (y?) becomes isomorphic with the event shape U(X) em-
bedded in L4 which — as can be seen from (17.5) — plays the role of an
external dynamical field. In spite of that, the L covariant equation (17.5)
is not L-form invariant or, in other words, symmetry L is not its internal
symmetry group. The same happens to the Maxwell equations with exter-
nal event shape of current density j(X) as well, as to the Dirac equation
with external electromagnetic field U(X) etc., as no event shape (except
from U(X) = constant in the whole L) is L-form invariant. Nevertheless,
equation (17.5) remains consistent with STR which requires the passive in-
terpretation of symmetry only and this is guaranteed by the L-covariance
of (17.5).

Equation (17.5) becomes L-form invariant when U(X) = 0 which stays
in agreement with the hypothesis of R3 based on relativistic kinematics of
the asymptotic zone of measurement. Thus, the relativistic kinematics can
also be regarded as a limiting case of the two-body problem elementary in
the I4 relationism. In this case, however, the infinitely heavy term A; of
initial relation y is hidden in the asymptotic zone. This would complete the
relational origin of the spacetime of measurement which ceases to reflect
the eventism, 7.e. the pre-existing background of metrical spacetime, but
follows the relationism of Iy continuum.

The absence of an infinitely heavy A; in (17.5) results in the notion of
an external world of A, characterized by its metric and symmetry L which
are essential for the theory of measurement. The point is that symmetry
L creates a dichotomy of all physical characteristics of the measured object
M dividing them into L-absolute and L-relative ones. Such a dichotomy is
induced by (infinitely) heavy measuring devices imposing automatically the
Lorentz limit of I4. As a consequence — which is crucial for measurement
itself — we obtain possibility of deciding which observable represents an



1620 Z. CHYLINSKI

internal absolute property of M factored out from physics of measuring
tools. For example, the measurement of the L-relative momentum P and
energy E = cP; of a free M enables one to determine its L-absolute mass
M= (Pz/cz)l/z_

On the quantum-potential level of reality, micro-worlds M are a prior:
hidden from measurement (observation) and, hence subject to symmetry
R of I4 much weaker than symmetry L of Ly. This enlarges the class
of dynamical models of M as compared with the case of the extremely
restrictive symmetry L of eventism L4 [16-19]. As can be seen from (16.11),
the L-absolute interaction V(y?) in I4 is consistent with symmetry L, while
in the Lorentz limit of I it transforms into the event shape U(X) of (17.4).
Note that V(y?) and U(X) are described by functions, whereas U(z2)(=
V(y?)) represents a distribution, i.e. a two-event shape in L£4(z). This is
why equation (17.5) is a good L covariant equation of the one-body problem
in L4, while the two-body equations of motion encounter, in the same limit
m; — oo, fundamental difficulties [49].

Indeed, according to eventism, a full isolation of M = Ay + A, requires
the equations of motion of M to be L-form invariant, because otherwise
they would distinguish between different reference frames S. Therefore
these equations can only accept an interaction given by L-form invariant
two-event shapes U(z2) of distributions. The Bethe-Salpeter equation, for
instance, illustrates the mentioned class of two-body equations of fully iso-
lated M = A; + A;. It deals with the L-form invariant interaction U(z?)
and, at the same time, suffers from relativistic redundancy of degrees of
freedom [30] which, in the two-body problem, concerns the relative time
variable g = cAt. We see then that, if one starts with the L4 eventism, the
limit m; — oo cannot eliminate the redundant z¢ degree of freedom which
enters U(z2). Consequently, we cannot regain a good, L covariant one-body
equation like that from (17.5) obtained on the basis of relationism Iy and
free of relativistic redundancy of degrees of freedom of M.

The identification of y with X* (as in (17.3)) attaches automatically to
an infinitely heavy A; the classical world-line which has been (arbitrarily)
identified with the 0-t*-axis of the rest frame §* of A;. Thus, in the Lorentz
limit of one of the constituents of a composite M, the rotation symmetry OF
of R3 coincides with the rotation symmetry OL of 3-space E3 of reference
frame S*.

The most puzzling consequence of the Lorentz limit of I4 is that equa-
tion (17.5) remains L covariant even if U(X ) — unlike as in (17.4) — repre-
sents an almost arbitrary event shape. This implies that the Lorentz limit
my — oo allows implicitly 4; to become an extended object in L4, deprived
of the space-rotation symmetry in EJ as well, as of the time-translation in-
variance. The same concerns L covariant Maxwell equations with (almost
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arbitrary) event shape of charge—density current j(X). Owing to that, we
can shape the external fields like U(X) or/and j(X) and, in consequence,
prepare the spacetime organization of the stages I and III of a micro-collision
process. The very process occurs during the stage II during which micro-
world M + M is inaccessible to any external action of an observer. Such
an action would have to resort to external fields and boundary conditions in
classical — hence divisible — spacetime L4, opposed to indivisible and in-
finite (quantum) geometrical meta-objects R3 and L4 in which the stage II
of the collision process takes place on its quantum-potential level and being
subject to the p-z duality. Note that the freedom of this “shaping” of the
external event shapes U(X) or/and j(X) of the stages I and III is strictly
connected with the Lorentz limit of I; resulting in the success of relativistic
dynamics of the one-body problem. In particular, the whole industry of
ultra-relativistic accelerators proves the correctness of relativistic dynamics
of the one-body problem.

The variety of event shapes that can accompany the Lorentz limit of I4 is
a consequence of atomism. Indeed, any increase of the mass m; of 4; would
be accompanied by an increase of 4’s extension and complexity, resulting
in an increase of the number of A;’s degrees of freedom. Consequently, the
majority of energy gaps which separate the stationary quantum states of A
must tend to zero and, as pointed out by Landau [50], the complete quantum
description of A; becomes broken by an arbitrarily small perturbation of
A;. The state of isolation of A; becomes fictitious and A; acquires the
property of a classical object (described incompletely [5]) and capable of
getting information (actualizations) about reality external with respect to
A;. As a matter fact, this coexistence of physical reality on its two levels:
the quantum-potential one and the classical-actual one, is responsible for
our physics.

In Appendix B we analyze the Lorentz limit of a 3-body system where
two independent Lorentz limits are possible, as two independent relational
coordinates y;2 and y;3 parametrize the internal configuration space
R3(y12) ®R3(y13) of M = A1+ A2+ A3. The Lorentz limit can concern in-
dependently the subspaces R3(yi12) and R3(y13). This clearly exhibits the
fact that our spacetime L4 of measurement is intimately connected with
one-body problem of the Lorentz limit of Iy4.

18. Bound and scattering states

In Section 6 a fundamental difference was shown which exists between
bound and scattering states of composite systems and which is strictly con-
nected with the 4-symmetry L alien to symmetry G. The point is that for
the bound states of M = Aj + A,, the relative four-momentum p has 4
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degrees of freedom, whereas for the scattering ones, when each of the M
constituents reaches the asymptotic zone, the constraint (6.11) (Pp = 0)
restricts p to a 3-parameter freedom (p; = 0). In consequence, bound
structures of M can be described by L-form invariant form factors é(pz)
(or, interchangeably, G(z?)) entirely separated from the external states of
their carriers M. As we know, this fact is crucial for the hypothesis of
relational space R3. Now, after introducing R3, it is necessary to look at
the difference between bound and scattering states from the point of view
of relationism.

Let us begin with bound states of M = A4; + A2 in R3, assuming that
interaction V(y?) between A; and A tends to zero when r = |y| — oo

V(y?) =20, r=ly|. (18.1)

Unlike in NR mechanics, the energy-mass relation makes the normalization
of V an absolute one hence, in the asymptotic zone given by (18.1), the
L-absolute mass M, of a bound state of M, with M,, < m = my + mg, can
be written in the form

k2 1/2 kz 1/2
M, = (m"l7 - —c-zﬁ) + (m% - c—;) <m=m;+my. (18.2)

Thus, a bound state ¥,(y) takes, in the asymptotic zone, the form

k.7

) = Ma(@,g)ex (227 (18.3)

where the angles § and ¢ determine some internal direction in R3(y). Thus,
if M, is to be a stable particle with a real mass M,,, physics of finite fi/c
imposes an upper limit onto k% and, at the same time, a lower limit onto
M,

(18.4)

0< k2/c?< Imn(mg,mg)
hence,

}m% —m%ll/2 < M, <m=my+ ma,.

In consequence, a massless particle A, (m; = 0) cannot be bound mechan-
ically to A4;.

By virtue of (18.2), relations (M 2)n = (m1,2 — k2c?)1/? may be rec-
ognized as the effective masses of A; ; in the bound state 1 and, therefore,
we assume that the undefined weight a from (6.5) becomes dependent —
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much like in the case of scattering states (6.14) — of the mass of M and,
hence equal to

2

m2 -m
=1 [1 + IT%?] = a(M,). (18.5)

Ml'n.
M,

a=an=

Similarly as in (6.14), a,, tends — in the NR limit — to the universal NR

weight a®, as

ma G

an = a(My) = a(m) = —o=a. (18.6)

C—r OO

By virtue of (6.5) the overall four-coordinate X of M,,, when expressed by

four-coordinates X; 2 of the constituents A; 3, becomes dependent of the
state of M via the weight a,, as

Xn=a,X1+(1-an)X2, PZ=-M32:2. (18.7)

Note that the 4-parameter freedom of Fermi four-momenta p, which

parameterize bound states 1, in their p-representations embedded in L4(p),

leaves the four-momenta (Pj3), of the A;; constituents undetermined.
Indeed, the relations

(Pl)n:anPn““p, (Pz)nz (1—Gn)Pn—p (18.8)

with the 4-freedom of p make that the lengths of (P; 2), are undetermined,

even if p? is fixed and equal to ¢* (p* = ¢?), as we get
(P3)n = —anMZ2c? 4 @ + 2a, My cp}, (18.9)
(Pi)n=—(1—an)®M2c? + q* — 2(1 — an)Myucp}, )

where S* is the rest frame of M,,. The time component of space-like Fermi
momentum p (represented in $*) plays the role of an arbitrary parameter
— it is a consequence of the 4-parameter freedom of p. Note that with p?
being a fixed value

PP=p"-pi=q"20 (18.10)

the determination of the space components (p) of p can be done also up to
an arbitrary parameter pj. The quantities which are well-defined in Rj3 are
the Fermi 3-momenta q.

In scattering states of M, the constraint Pp = 0 results in p* = 0 which
restricts p’s to a 3-parameter freedom. Moreover, if we take for the scatter-
ing states the weight a(M) from (6.14), the equalities (18.9) transform into
two constraints (6.2)

P}, = -mi,c?, (18.11)
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as it could be expected. It is remarkable that the indetermination of pj and
hence, of (Plz,z)n from (18.9), concerns arbitrarily loosely-bound NR states.
This shows, once again, the difference between the NR approximation (1/¢ #
0) and the NR framework (1/¢ = 0). In the NR framework the very notion
of four-momentum disappears and, in the limit ¢ — oo, equations (18.9)
and (18.11) lead to

P2,

c2 mi,. (18.12)

C—0Q )
Let us remember that in the NR limit the pg component of a space-like
p vanishes identically (cf. (8.3)) and p? = ¢* in agreement with the NR
meaning of Fermi momentum of M.

Besides the mathematical limit of the NR framework (¢ — o0), the
dependence of the weight a,, on the internal state of M vanishes also in the
realistic Lorentz limit (m; — 0o0) when

M
—= —__1 hence, lim a,=1. (18.13)

my ™ my— 00

The Lorentz limit of I, is realized automatically under this form when, for
instance, the one-body Dirac equation of electron in the external field of
nucleus is regarded as the model of hydrogen-like atoms [51]. Indeed, this
makes the Coulomb interaction V(y?) = —Ze?/r; (r = |y| in R3(y)) to
become identified with an event shape of external field generated by an
infinitely heavy nucleus, as stated in (17.4). From the point of view of the
NR framework, in which RaG coexists with G4, this means that the reduced
mass p of electron and nucleus is replaced by the electron mass m,.. Thus,
the NR corrections due to p < m, are extremely significant, so the Lorentz
limit of the relativistic one-body approximation is quite unjustified.

Let us consider now a scattering state of M = A; + A;. In the asymp-
totic zone of R3, where V = 0, internal states of M can be taken in the form
of plane waves which are the eigenstates of g belonging to some arbitrary

eigenvalue q. Thus

i

o

B(y; ) = Aexp ( (qy - vi’fr)) , (18.14)

[/] o

W= Mc?=c [(mgcz + 52)1/2 + (m2e? +52)1/2] :

and the plane-wave solution of asymptotic equation (15.7) introduces ex-
plicitly an internal direction a in R3. As we still have OF # OL, it does
not mean that q determines a space direction in some reference frame S in
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L4. Relational momentum a becomes an extra building stuff for geometri-
cal objects in R3 which may undergo a translation into the corresponding
L4-geometry objects by means of the equality with dot. In the case of the
relational shape (18.14) this concerns the relational shape F(y) = (qy) of
the internal L-absolute phase ¢ of 1.

Following the p— duality of R; and £4 geometries, we attach to 3-mo-

mentum q a space-like four-momentum P of the same length as that of q

o
(p?2 = 32) and the same L-absolute scalar property ¢ represented in Rj
and in £4 takes now the form

ho = F(y) = (qu) = (Pz) = G(z), P2=q’. (18.15)

Let us emphasize that the same phase represented in R3 and in L4 (F(y)
= G(z)) has the same dimensions in both cases, whereas the same form
factors of bound structures M are of different dimensions, as F(y) is given
by a function, while G(z) = F(y) by a distribution.

Equality with dot (18.15) solves the problem of representation of inter-
nal state of a free M = A; + A, in L4. There still remains an analogous
problem with external state of M determined by the L-absolute external
phase = — V‘{/T/h of ¢ from (18.14) embedded initially in I4. Note that the
translation symmetry of internal time 7 (¢f. (15.8)) belonging to symmetry
R of I, much like the translation symmetry of external time ¢t belonging
to symmetry L of L4, determine & up to an unessential additive constant
which can be neglected.

It is worth emphasizing that the translation of ¢ into a manifestly L-
invariant form reminds one of the way in which de Broglie has introduced the
wave of matter ¥, following the old, Hamilton’s analogy between mechanics
and optics. De Broglie has adopted Bohr’s concept of stationary energy
levels and has attached to the energy E an (external) phase § = — Et /R
However, in order to satisfy symmetry L of STR, he has identified E with

o o o
the time component of four-momentum P = (P;E /c) of the system M
(atom) treated as a whole, regarding M as a free particle. In consequence,

de Broglie has replaced & = — loet/ h by a manifestly L-invariant phase
= (Ic; X /h) obtaining the wave of matter ¥
1

V= Aexp( h(Ig/'T)) = Aexp (—;;(ﬁX))

= Aexp (%(f»x - _i’;t)) (18.16)
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with o . o

E= (W2 + 62P2)1/2-
Let us not forget that the external phase & (in I and L4) admits, in con-
tradistinction to the internal phase ¢, an arbitrary additional constant con-
nected with the inhomogeneous symmetry group L of events X and the

translation symmetry of internal time in Iy which belongs to symmetry R
of I4.

Although de Broglie took the phase & = — Et /h from Bohr’s concept
of stationary energy levels of atoms, i.e. of many-body systems, his rela-

tivized phase ¢ = PX /h concerned atom M as a whole, i.e. as a one-body
problem M. In consequence, de Broglie’s wave of matter 1 describes a
one-body problem embedded in spacetime L4, as if ¢ were a classical wave
embedded — by its very nature — in spacetime and not in configuration
spaces of quantum mechanics. As it was always pointed out by Heisenberg
(4], with the p—z duality of QM resulting in the wave—corpuscular duality
of the whole configuration space of M composed of many constituents, the
waves in configuration spaces have little in common with classical waves in
spacetime. A one-body problem represents a singularity when its configura-
tion (external) space coincides with space Ej3 of some (arbitrary) reference
frame § parametrizing Ls4.

Finally, the equality with dot from (18.15) and that of de Broglie (18.16)
complete the translation of the L-absolute state 3 from (18.14) embedded
in I4 into a manifestly L-invariant two-body state ¥

W) = dexp (5Gv - n)

i

= Aexp (h(§z+ng)) 7. (18.17)

According to (6.5), which is equivalent to identity (6.4), ¥ from (18.17) can
be rewritten in the form

1 0 o
¥ = Aexp (E(P:c + PX))
1 o o
= Aexp (-ﬁ(P 1X1 + P2X2)) . (18.18)

Of course, four-momenta Ig 1,2 and 13, ;' are subject to the constraints
(6.2) and (6.11), (6.12), respectively, because the constituents A; 3 of M =
A; + Aj reach, each of them separately, the asymptotic zone of relativistic
kinematics.
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[+ o [e]
The space components of four-momenta P12 as well, as of P, P de-
termine space directions in 3-space E3 of each reference frame S in the
L4-spacetime a posteriori, i.e. after translating ¢ embedded in I4 into the

same state ¥ in Ly (¢ = ¥). The quantities q and y determine, a prior;,
L-absolute internal directions in R3 which have nothing in common with
any space direction in E3’s — a fact which is consistent with OF £ oL.
The equality with dot (18.17) shows that the hypothesis of relation-
ism I4 does not introduce any modification in the description of asymptotic
scattering states of M which had been adequately described in L4. This
could have been expected, as each constituent A; ; reaches the asymptotic
zone of relativistic kinematics. The I4-effects become apparent when one
starts to analyze the bound states and bound structures of M. The ade-
quacy of the L4 eventism in describing scattering states is responsible for
the fact that the §-matrix theory parametrized by Mandelstam variables
remains consistent with the hypothesis of relationism. The essential point
is that both the §-matrix theory and relationism Rj take for granted the
objectism of a real system M rather than the eventism of local field theory.

19. Two mechanisms of creation—annihilation of particles

There are two different mechanisms of creation-annihilation of particles
which are both backed by a solid experimental evidence. The first consists in
a mechanical synthesis of particles M,, composed of more elementary con-
stituents and it is here that NR quantum mechanics may claim its greatest
success. This success of the NR framework is, however, accompanied by the
theory’s fundamental imperfection, namely the theory does not explain the
mass defect of bound particles M, known best from chemistry and nuclear
physics. In consequence, it is the hypothesis of relationism Rj; that may
justify regarding the NR Schrodinger equation as an approximation of the
L-absolute Schrodinger equation (15.7) accounting for finite h/c and hence,
capable of explaining the mass defect of M,’s.

The second, field mechanism of creation—annihilation processes results
from relativistic local field theory which made its appearance for the first
time with the Maxwell equations in vacuum. In contradistinction to the NR
framework, the propagation (in L4) of a discontinuity of field, i.e. of a signal,
is limited by the universal constant ¢. This leads to creation of a wave-
zone of classical fields carrying finite amounts of energy and momentum
represented by time-like four-momenta P. In quantum physics, this classical
wave-zone of field converts into the field mechanism of creation—-annihilation
of the corresponding quanta (particles).

As far as the form factor structures of particles (quanta) of local (rel-
ativistic) field theory are concerned, let us not forget that these structures
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are given by the universal form factor §(+)(z) in L4(z). Its p representa-
tion is equal to G(*)(p) = const = 1 in the whole 4-space L4 admitting
space-like and time-like four-momenta p. In consequence, point—particles of
local fields admit the field mechanism of creation—annihilation of particles
excluded by form factors G(p) vanishing for time-like p which occurs —
as a rule — in the NR framework (1/¢ = 0). Thus the field mechanism
of creation—annihilation of particles is intimately connected with physics of
finite ¢ and of the energy-mass relation.

As far as we remain within mechanical systems based on relational 3-
space K3, the field mechanism of creation—-annihilation of particles is similar
to that in the NR framework, because the form factors F(q) are obtained for
q*> > 0 and, consequently (cf. (13.4)), they determine form factors G(p?)
for space-like four-momenta p only (p? = g% > 0). However, unlike as in the
case of NR framework, the sameness of a relational property F in R3 and
in L4 given by G = F requires G(p) to be extended over the time-like p’s
and, in general, the form factor G(p) determined in this way in the whole
4-space L4(p) does not vanish for time-like p. This fact, taken together
with the phenomenological perturbation theory, enable one to regard both
mechanisms of creation—annihilation of particles within the framework of
one theory which, however, must resort to the hierarchic description of the
state of a composite M undergoing the (quantum) collision.

Let us remark that the universal form factor 6(3)(y) describes the point—
particles in R3(y), hence its p-representation in R3(q) is given by F(3)(g) =
constant = 1in the whole space R3(q). Consequently, the analytic extension
of F(a)(q) onto imaginary q, with g? = p? < 0, determining the same point—
particle form factor in the whole 4-space £4 results in

F®)(g) = GW(p) and §®)(y) = §¥)(a). (19.1)

We regain thus the L-form invariant form factor 6(4)(:1:) of point—particles
of relativistic (local) field theory. The energy—mass relation makes that the
mechanical synthesis of composite particles M, in B3 ® R3 @ ... results in
a whole spectrum of different particles M,,. Indeed, the same constituents
and the same internal forces acting between them may create particles M,
of different masses My, and/or of different spins. In the framework of field
theory based on eventism L4, we must attach to each such particle M,
a separate (local) field operator &,(X) restricting M,,’s to point particles
[25].

As the limitation (by c) of the velocity of relativistic local fields prop-
agation leads to creation of the wave zone with its degrees of freedom, the
general problem arises of instability of any composite object M. Unlike asin
the case of action-at-a-distance admitted by (coexisting with RS') eventism
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G4 as well as by hidden continuum I4, the spacetime locality of eventism
L4 results in the wave zone carrying out internal energy of M and, conse-
quently, making M unstable. This dilemma is best known from the model
of atom; the constituents of atom interact by means of relativistic (local)
electromagnetic forces which results in Bremsstrahlung and hence, in the
collapse of the very atom. Note that the same Bremsstrahlung mechanism
could be used for the description of multiple production of mesons or other
field-quanta {52, 53] in high-energy collision of hadrons, as its origin goes
as deep as eventism L4 itself. Consequently, in order to avoid dilemma of
instability of composite structures we must call for the non-local relationism
I4 which precedes events of spacetime of measurement. Then, action-at—a—
distance in Iy is given by relational shape V(y?) which does not introduce
any additional degree of freedom of M and is given, as the same relational
property represented in L4(z), by two-event shape U(z?) = V(y?), consis-
tently with symmetry L of measurement.

In the present, one-level physics based on eventism L4, interaction
U(z?) which, in general, does not vanish on space-like intervals (zZ > 0)
looks as a spooky action-at-a-distance, employing the very expression Ein-
stein used for describing nonlocal quantum correlations conflicting with his
classical reality [9] based on eventism.

Let us summarize our present situation which insists on eventism: In
high-energy physics, where symmetry L must be respected, creation-anni-
hilation processes are treated in the framework of field mechanism. The
price to be paid for this is the particle’s loss of any internal structure,
because the locality of relativistic fields admits point—particles only. On the
other hand, low-energy physics resorts to eventism G4 (1/c = 0) consistent
with mechanical synthesis of extended particles M; however, an energy-
mass relation does not necessarily exclude field mechanism. Nevertheless,
the energy-mass relation concerns both low-energy physics and high-energy
one. Similarly, the discontinuity between the negative balance of geometry
L4 and the equalized balance of geometry G4 does not follow from the low-
energy physics but from mathematical limit (¢ — oo) which converts the
L symmetry into a G one. One usually ignores this fundamental difference
between the NR framework (which ”neglects” finite ¢ (1/¢ = 0)) and the
NR approximation of the characteristics of an individual state of M. The
net conclusion is that, within the one-level physics based on eventism, no
theory exists that would reconcile the two mechanisms.

This gap between the NR mechanical synthesis of M and the relativistic
field mechanism of creation of M is eliminated by the two-level relational
physics which accounts for finite i /c and which is condemned to abandoning
eventism. It is remarkable that both mechanisms of creation—-annihilation



1630 Z. CHYLINSKI

of particles occur simultaneously in the most popular process of emission—
absorption of light quanta accompanying deexcitation—excitation of an atom
M. Indeed, the very energy-momentum conservation in this process makes
that we must resort to relationism R3. In order to prove this let us consider
two internal energy levels of an atom M in the excited internal state 1, of
internal energy W,, which returns to the ground state 1y of internal energy
Wo < W,,. The two different masses of AM: Mo = Wn,o/c2 make that we
are dealing with two different particles: M, and M.

Electromagnetic interaction between the atom electrons and atom nu-
cleus gives rise to a field mechanism of photon production in the deexcitation
process of M,,. Photon, which is only virtually present in M, passes on its
mass-shell p? = 0 owing to the interaction of M with an infinite vacuum.
On the other hand, the M atom is synthetised mechanically of electrons
and of a nucleus, hence the deexcitation of M,, is an example of two-body
reaction

My — Mo + ho, (19.2)

that deals with both mechanisms of creation of the new particles: My
and hv,.

Let S* be the rest frame (laboratory system) of excited atom M, and
let v, denote the photon frequency in §*. From the energy-momentum
conservation law one obtains

_ B AW,
Vn = VUn (1 - W) 3 (19.3)
B — —A—?, AW, = W, — W,.

Here I/S,B) denotes the standard Bohr’s frequency, hence (19.3) shows that
vy, is less than ugB), as in v, an account is taken of the recoil of atom M,,.
The dimensionless correction term responsible for inequality v, # yﬁ,B) is
equal to

AW,

2M,c?

In atomic physics this term is very small — of the order of 1072 or less.
Such a small term can be neglected if one considers the achievable accuracy
of measurement. However, apart from the fact that an analogous correction
term in nuclear physics is about 10° times greater, a fact of far greater im-
portance is that small numerical corrections may conceal a deep theoretical
foundation. The text-book example of a small effect, i.e. the hypothesis
of ether-wind negated by the Michelson-Morley experiments, is the best
illustration to the above statement.

(19.4)
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The correction term from (19.4) vanishes in two cases: The first of them
might be called realistic; it is when M, becomes infinitely heavy realizing
the Lorentz limit of I4. The second has a purely mathematical character;
it is when ¢ — oo and L4 converts into G4. The Lorentz limit is always
assumed in the standard radiation theory of atoms [54] by the very fact
that atomic wave functions are parametrized by z-coordinates of the lab-
system S*, which ignores atom recoils accompanying radiation processes.
The second case — NR limit (¢ — o0) — is implicitly assumed by the
Bohr theory with the correction (19.4) neglected in the ugbB) in spite of the
fact that real atoms are of finite inertia. As a matter of fact, the limit
¢ — oo is self-consistent, because it excludes any massless particles like
photon. Indeed, the photon momentum is equal to hvy/c and it vanishes
in the limit ¢ — oo. Thus, since ¢ < oo and the masses M, of real atoms
are finite, the internal L-absolute structure of atoms must be embedded in
the corresponding configuration space R3 ® R3 ® ... induced by relational
space Rj.

20. Symmetry L and NR quantum mechanics

The separation of internal (relational) and external (eventistic) degrees
of freedom of an isolated micro-world M makes that the external energy of
M, either low, or high, is entirely independent of the internal structure of
M. This separability, which calls for two-level relational physics, explains
the success of NR quantum mechanics just because eventism G4 coexists
with R?. In order to exhibit more fully this singularity of NR quantum
mechanics, let us start with a composite system M = A; +...+ A, em-

N-1
bedded in the L-absolute configuration space R3 ® R3 ® ..., taking thus an
account of finite universal constant A /c.

Let h be the internal Hamiltonian of M and let us assume that M is

in a loosely-bound state. We may then split & into two L-absolute parts

N
h=mc® +h, m:EmJ (20.1)
J=1

and, with the phase of v renormalized accordingly to ¥ = 1 xexp[i/h(mc?7)],
equations (15.7) and (15.11) take the form

zhg_"‘f = ;_;")Z’ z"zn = wnd_’n P wy, = Wy, — m02 . (20.2)
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For simplicity, let us consider a two-body system M = A; + A, assum-
ing that it is loosely bound. This means that almost all Fermi relational
momenta g parametrizing 1, in the p-representation satisfy the strong, L-

absolute inequality
2

‘:—2 < min(m?,m3). (20.3)

In the NR limit (¢ — o), inequality (20.3) is satisfied perfectly as the left
member of (20.3) tends to zero which — from the point of view of physics
of finite ¢ — means that in the NR framework we always deal with loosely
bound systems.

In true physics — that of finite ¢ — inequality (20.3) determines the
NR approximation. As the p-representations of NR bound states 1,0,? have
to deal with g% € [0, c0), the NR approximation assumes that the fraction of

q’s which might break strong inequality (20.3) is negligible. Consequently,
=(k)

kinetic energy W~ = W(*) — mc2? which enters h will be approximated by
a local operator
W(k) _ [(mzcz +az)l/z + (mzcz +62)1/2] —me? = @i §= mims
1 2 2/‘, m )
(20.4)
resulting in an L-absolute internal Hamiltonian % of the form
h=— 20.5
L v (205)

and equations (20.2) coincide with the NR Schrédinger equations (5.15) and
(5.16) (for N = 2).

In the NR approximation (1/¢ # 0), equations (20.2) do not follow
from the symmetry G of G4 but rather from the assumption (20.3) which
corresponds to the notion of loosely bound structures of M embedded in the
L-absolute relational space R3. For bound structures F in R3, the difference
between the true spacetime of measurement (L4) and the wrong one (G4)
reveals itself in the corresponding equalities with dot which take the forms
in Ly and G4, respectively

F(y) = G(=), (L)
F(y) = F(z)§M(At).  (G) (20.6)

At the same time, equation (20.2) with h given by (20.5) determines
the L-absolute internal energy levels w,, in the NR approximation — let us
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denote them wg@ — which approximate well the L-absolute internal energy
eigenvalues W, of h, as

G
Wy ~ me? + w8, Mn:m+w?;—‘—, w8 < 0. (20.7)

Thus w$ represents a characteristic of M which is simultaneously L-abso-
lute and G-absolute one. However, in opposition to the NR framework
(1/¢ = 0), the NR approximation (20.3) of loosely bound structures explains
the relativistic mass defect. Note, that the NR approximation of internal
structures of atoms and their internal energy levels was used in paper [55]
in which some Rj-effects, mentioned in Appendix B, are analyzed.

The success of NR quantum mechanics under the form of the NR ap-
proximation of the L-absolute relationism throws new light on the non-
eventistic nature of quantum-potential motion in low-energy physics men-
tioned in Section 6. According to relationism I, transport phenomena
(26, 27], similarly as the NR motion of electrons inside atoms [28, 29], take
place on the background of internal space-and-time I4 and not on the back-
ground of Galilean spacetime G. It must be remembered that today G can
be used as a helpful mathematical model but the true spacetime of mea-
surement is the space L4. Thus, as shown in (20.6 L), even in low-energy
(NR) physics the spacetime structure of form factors G(z) = F(y) exhibits
a spacetime nonlocality which, in general, conflicts with the locality of even-
tism Lg4.

21. Dilatation symmetry

The fundamental property of geometrical meta-objects R3 and Ly is
that they include the p—z duality. Thus R3(y) and R3(q) give room for
the z- and p-representations of the same Hilbert vector |F) and, similarly,
L4(z) and L4(p) give room for the z- and p-representations of the same
Hilbert vector |G). Note, that the p-z duality of 4-space L4 does not call
explicitly for a new practical geometry, because ¢ = X, — X; and events X
of Cartesian z-space L4(X) span the z-aspect L4(z) of L4. Similarly, the
p—z duality of 3-space Rg; does not need a new practical geometry, because,
as before: z = X3 — X; and (simultaneous) events X of G4 span 3-space
R? in its z-aspect Rf(y). The hypothesis of a new practical geometry is
required when one intends to extend the G-absolute relational 3-space R?
to L-absolute relational 3-space R3. Only then one has to resort explicitly
to the privileged p language and, consequently, to the p—z duality of the
first physical (practical) geometry.
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Thus the p—z duality of the first metrical background Rj3 of (quantita-
tive) physics abandons the Cartesian philosophy of an external z-continuum
preceding any physical extensions and imposing onto them a measure of its
own. Of course, eventisms G4 and L4 follow the Cartesian philosophy thus
transferred onto the actual quantum physics. Therefore, the p—2 duality of
the present quantum theory may be perceived as the symmetry of quantum
laws which leaves the classical Cartesian spacetime background unaffected.
To some extent, such situation reminds of the one which existed before Ein-
stein’s STR hypothesis, when the Galilean spacetime G4 was regarded as if
it were given a priori. At that time some hypotheses ad hoc were needed in
order to reconcile the symmetry G of G4 with the symmetry L of Maxwell
equations of motion ( electrodynamical laws).

Dilatation symmetry D is inherent in the flat Cartesian z-space, hence
in the spacetimes L4 and G4, provided that the dilatation factor D is com-
mon to all four coordinates (X ;; Xo),

X -X=DX, D#0. (21.1)

Indeed, symmetries L and G remain D-form invariant. The space aspect
of dilatation symmetry D results in the Thales similarity of all small and
large objects embedded in Ly and G4. Therefore, according to Boscovich
and Euler, the unanalyzable atoms of Newtonian atomism must be point—
particles, as their point structure remains invariant under dilatation sym-
metry D. However, within the Cartesian eventism of the G4 as well as
of the L4 spacetime, point—particles cannot form up any extended object
which would found the metrical geometry of eventism. The p—z duality of
the very first metrical continuum Rj3 changes radically this situation. Our
present aim is to show that the breaking of the dilatation symmetry of
practical (physical) geometry, which enables one to surmount the labyrinth
paradoz of the Cartesian continuum, is strictly connected with the existence
of universal constants %, c and M. Here M denotes the mass of some stable
micro-particles which symbolize atomism.

Although the Bohr radius of atom rg = h%/(m.e?) makes use of the
dynamical coupling constant e?, it constitutes by itself a universal constant
of the dimension of length without indicating any real atom. Thus the
assertion that a real object measured in rg-units is large or small acquires
an absolute meaning expressed by dimensionless numbers larger or smaller
than unity. In the classical framework (k = 0) »g = 0 and, according to the
Thales similarity, the statement that some real extension is large or small
has a relative meaning only and calls for introducing some real measuring
rods which could be recognized as a unit length. In macro-physics this
manifests itself in the purely conventional character of the units of e.g.
metre and second.
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Nevertheless, the breaking of the Thales similarity by planetary atom
and the planetary system can still be regarded as a consequence of different
laws determining those structures which are both embedded in the same
Cartesian space of spacetime. The question arises whether such opinion may
be extrapolated onto micro-physics (as it happens in the case of eventism),
with three super-facts characterized by the three universal constants: £,
c and M. The first super-fact is the quantum p—z symmetry discovered
with finite h, the second concerns the symmetry L of relativistic kinematics
(1/c # 0) and the third accounts for atomism (1/M # 0).

The point is that these three constants determine natural units of the
dimensions of metre and second

h
= Mo’ loJ=m, 1t = I:0= —A—;—lc—z, [to] = sec., (21.2)
already on the elementary level of kinematics. Therefore, the breaking of
the Thales similarity occurring on the most elementary physical level of
kinematics suggests strongly that metrical physics cannot be based of the
(Cartesian) eventism with its dilatation symmetry D. In other words, the p—
z duality (A # 0) must be inherent in the first physical (practical) geometry,
as it is realized by geometrical meta-objects R3 and L4. Similarly, the
universal constant ¢ cannot be added to the Galilean spacetime G4 just in
order-to reconcile it with the symmetry L of Maxwell equations.

The self-consistency of relational space R3 and 4-space L4 with finite
universal constant A/c and, simultaneously, with dilatation symmetry D
imposes D-invariance of the L-absolute internal phase ¢ which, in the ele-
mentary two-body problem, takes the form

h¢=qy=pz, p*=¢°. (21.3)

Thus, the dilatation symmetry D in R3 and in L4 and the D-invariance of
¢ in R3 and L4 require the following relations to be fulfilled

lp

yi — 9 =Dyj, ¢~ =D""g;, (R) (21.4)
z—Z= Dz, p—p=D"1p. (L)

There still remains the third super-fact of atomism characterized by finite-
ness of M. This super-fact must be interpreted in the following way: Atom-
ism provides us with a definite spectrum of masses M 4 of micro-particles
and should these masses be referred to a single mass M (of one of these par-
ticles) then atomism would be characterized by the existence of a definite
set of dimensionless numbers

M4
= — = cee 21.5
XA M ) A 1, 29 ( )
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In other words, atomism declares that the set of y 4 numbers is absolute
and no real physical symmetry can change the values of these numbers.

Before analysing the third super-fact let us recall the ambiguity which
arises at interpreting such point transformations as O(™), L and G and also
the dilatation symmetry D from (21.4). In order to avoid the ambiguity
connected with the passive and the active interpretation of transformation
D and be able to speak of its active interpretation only, we assume that
the universal constant ly = ii/Mc is finite and we introduce dimensionless z
and p coordinates. Then the space and time extensions of any real object-
process acquire dimensionless characteristics, while the dilatation transfor-
mation gets the active interpretation relevant for the physical meaning of
terms large and small. Thus we put

z P
= = —— 21.
z I and u ) ( 6)

keeping in mind that the universal constant /g remains unchanged under
dilatation transformation D. We do not introduce any dimensionless coor-
dination of R3 as the relationship existing between atomism and symmetry
D will be viewed in L4.

It is interesting to point out that the Planck constant does not appear
in the dimensionless p language but it enters the z-language only, as [y =
h/Mc # 0 provided that A # 0. This reflects the privileged position of the
language p of measuring process and stays in agreement with the Thales
similarity of macro-(classical-)measuring devices. The p—z duality enables
one to translate the measured p extensions into z extensions measured in
metres and seconds of the spacetime of measurement.

The L-absoluteness of the phase ¢, which accounts also for the first two
super-facts (h/c # 0), remains also D-invariant as, by virtue of (21.6) we
get

¢ — ¢=1uz=(D"'u)(Dz) =uz = ¢. (21.7)

Note that the equality 2 = D~ !u must concern space-like and time-like four-
momenta u, because a difference of two space-like four-momenta can create
a time-like four-mentum and vice versa. If u, is the four-momentum of a
free atom A with mass M4, then uzA = —x? and the dilatation symmetry
D from (21.6) results in

ui = _X2 — 1734 = D—zuz = —D_zsz (21.8)
and
XA — XA = (21.9)
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The net conclusion is that all three super-facts are in conflict with
symmetry D, because the absoluteness of the set of x4 numbers imposes
the constraint

D=1 (21.10)

eliminating symmetry D.

Note that the universal constant ly # 0 vanishes in the mathematical
limit & — 0 of the classical framework which was to be expected as classi-
cal physics (theory) is condemned to eventism with its symmetry D. Also,
lp — 0 in the NR limit (¢ — oo) which is consistent with the coexistence
of relationism Rf and eventism G4. The third realistic case when [y also
vanishes corresponds to the Lorentz limit of Iy when M — oo. This is
consistent with symmetry L of measurement and the Thales similarity of
macro-measuring—devices. We may then conclude that in all these three
cases lp = 0 and physics indeed is condemned to the Cartesian philoso-
phy of an external z-space preceding any real entity (eventism). However,
the inequality lg # O enables one to abandon eventism in the favour of a
relational origin of metrical physics.

One has to emphasize that the relational origin of metrical physics based
on the objectism of elementary two-body system M = A; + Az works in
favour of the Leibniz philosophy of spacetime [56]. Let us remember that
according to this philosophy, the metrical spacetime disappears together
with the reality of M. In opposition to such view, Clarke (Newton) argued
in favour of pre-existing absolute space and time continua. Since at the time
of the argument none of the three super-facts was known — so the equality
lo = 0 was automatically presumed — the Leibniz-Clarke dispute was won
by the Clarke-Newton team.

There still remains a realistic limiting case when, unlike as in the case
of Lorentz limit of I, Iy tends to infinity because M — 0

3

o= 31~ 20

o0 . (21.11)
Here one regains also the symmetry D of eventism, because an infinite nat-
ural unit gives no absolute normalization of real, extended object—process.
Thus, it was no accident that the classical eventistic physics could “dis-
cover” Maxwell equations. In consequence, the Maxwell equations open the
way to both the new symmetry L of eventism L4 and the quantum wave-
corpuscular (p — ) duality of light. Both facts were recognized by Einstein
who put forward the hypotheses of STR and of light quanta which could
be admitted by the classical Maxwell equations just because of the massless
nature of photon, i.e. Mpy, = 0, resulting from (21.11).
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In consequence, the spacetime—wave of electromagnetic fields of Maxwell
equations accounts for the wave aspect of corpuscular photon without ex-
plicitly calling for a new notion of the wave function 4. However, some
twenty years later, when de Broglie extended the wave—corpuscular (p — z)
duality onto mass—particles with finite Compton wavelengths (in accordance
with Iy = h/Mc), he was forced to introduce a new notion of the wave of
matter 1. Again, Einstein was the first to be aware of the fundamental
character of de Broglie’s hypothesis and the equally fundamental contro-
versy between the classical eventism with its symmetry D and the quantum-
potentiality characterized by .

It is not quite true that Einstein did not accept quantum mechanics as
a fundamental theory of micro-physics because of its indeterministic nature
conflicting with the deterministic nature of the classical field theory regarded
by Einstein as a perfect theory. The point is that, following the tradition,
Einstein regarded physics as a system reflecting the ontology of nature and
not only as the best tool for predicting registrable actualizations. Note that
Einstein, much like his all adversaries, believed in eventism giving room
to any possible physical entity. In consequence, Einstein-realist could not
agree with the positivistic trend recognizing quantum mechanics (based on
eventism!) as a complete ool which could be used for statistical predictions
of all possible observables; Einstein-realist—and-eventist could not accept
this purely epistemological philosophy of micro-physics which neglected the
micro-physics ontology.

One must agree with Bohr’s opinion that classical measuring devices
and their possibilities constitute always the language of experimental physics,
independently of the degree of abstraction of the theory. However, from this
inspiring a priori of physics does not necessarily follow that a physical reality
cannot go beyond the surface of directly observable phenomena. For exam-
ple, NR quantum mechanics determines the form factors Fp,,(y) of hydro-
gen atom initially hidden in R?( y). These form factors are measurable, but
only indirectly, in the p language of the corresponding cross-sections which
describe collisions of hydrogen atom with other particles M. In contradis-
tinction to the positivistic philosophy, F,,,,’s represent registrable realities,
although their measurement does not consist in measuring the localization
of electron by proton or that of proton by electron. Any measurement must
be connected with an irreversible and registrable actualization, whereas an
atom represents a priori an isolated indivisible micro-world M. It is because
of these impossibilities of any experiment that there is a place left for the
hypothesis of hidden relational space R3 and hence, for extension of physical
reality onto quantum-potential structures such as form factors F, .

The point is that the notion of physical reality is not a priori given. Di-
rectly unobservable forces — first of all, forces acting—at—a—distance — did
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not belong to the physical reality of Democritean and/or Cartesian physics.
They became real in the Newtonian physics although their observation is
always an indirect one and based on the motion of a wvisible particle M.
Without ¢nvisible forces of hypothetical structure the Newtonian physics
would not have made its appearance. As a matter of fact, it has been the
tnuisible action—at-a—distance which has initiated the concept of an external
spacetime as a holder of everything that might (physically) exist.

Nowadays, after numerous experiments which attest to the quantum
nonlocality of EPR-like correlations and after “welcher Weg” experiments
[11], we know that Einstein’s concept of classical reality [9] based on even-
tism has collapsed. Thus, in full agreement with the opinion of Clauser and
Shimony [12], physical realism “ ... must dramatically revise our concept
of spacetime”. It is author’s opinion that quantum propensity (potentiality)
forces one to extend the notion of physical reality, at the price — this time
— of abandoning classical eventism in favour of quantum relationism.

If one takes into account, together with the most fundamental constants
h,c, M, the dimensionless dynamical coupling constant a = €2 /hc = 1/137
which appears in the Bohr radius rg = h%/(mce?), the breaking of the
Thales similarity occurs already in: (i) the classical-relativistic model (h =
0,1/c = 0) and (%) NR quantum mechanics (k # 0, 1/¢ = 0), although the
natural length Iy = h/Mc vanishes in both these models. Thus, the two
models are condemned to eventism with its dilatation symmetry D, but —
at the same time — these very models break this symmetry. Indeed, within
these models we deal with finite units of length and duration

] ez ! ez

h=alo=—=, t4 =7, (9
l ]‘7’;’; Me (21.12)
0 ..

lg:Z:M—ez, tg:(). (’L'L)

For M = me,, I} coincides with the classical radius of electron re, and I
with the Bohr radius of atom.

A finite Iy attests to the self-inconsistency of classical electrodynamics,
as it excludes existence of any charged point-particle i.e. of the only atom
consistent with eventism and its symmetry D. This inconsistency is strictly
connected with the one-body problem of eventism and, most of all, with the
notion of event shape f(X) of a field. Indeed, a charged point-atom would
carry an infinite amount of internal (electromagnetic) energy and, according
to the relativistic energy-mass relation (1/c # 0), an infinite mass. Thus,
a finite r. results from the identification of the electromagnetic mass of
electron with its experimental value m,.
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The second model (77) of NR quantum mechanics is a self-consistent
one. This is due to the coexistence of classical eventism G4 and quantum
relationism R?. Of course, the model excludes the energy-mass relation
and leads to t' = 0 which reflects the locality of the Newtonian time or, in
other words, infinite velocity of signals admitted by the symmetry G of G4.

Finally, let us emphasize that the existence of natural units lp and %
(c¢f. (21.2)) which are responsible for the breaking of dilatation symmetry
topped by the hypothesis of relational space R3; does not mean that an
elementary lattice must exist. On one hand such a lattice would conflict
with the practical differential manifold while, on the other hand, it would
preserve the Cartesian philosophy of z-localization against the fundamental
p—z duality which — in author’s opinion — stands at the very foundation
of metrical physics.

22. Time dilatation effect of classical and quantum clocks

In classical, eventistic physics, the time dilatation effect of a moving

clock 1
T=ITy, I'=———-—— (22.1)

Jiovia

represents a one-body, relative effect. Indeed, the 7 seconds (proper sec-
onds) of a single clock measured in the clock’s reference frame §* correspond
to the T seconds in the reference frame § in which the clock moves with the
velocity V. Thus the dilatation effect is a relative one and — as we know —
realization of a clock is, much like the realization of mathematical reference
frames § by reference bodies §, immaterial within the classical framework
(R =0).

However, a measure of time intervals is also supplied by quantum clocks
represented by unstable micro-particles and metastable states of mechan-
ically synthetised composite particles M. Indeed, micro-worlds are mani-
festly subject to the p—z duality of the first practical geometry of relations
and hence, besides direct z-measurement of T, a second kind of indirect
measurements opens based on the uncertainty relation between time ¢t and
energy E of M. Thus, we shall resort to the standard Gamov’s phenomenol-
ogy and we shall attach to an unstable particle M a complex value of the
L-absolute, internal energy W together with a complex “mass” M

0 w o M W
W=w-ib—, M=M-i6—=—. 22.2
wW-ib—-, M—ib— = — (22.2)
Consequently, the stationary states of M (if M is a stable particle §W =
éM = 0) convert into metastable states which are subject to the one-
exponential (OE) decay law. Conversely, if the uncertainty §W (hence § M)
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is well defined, M undergoes the OE decay with the L-absolute (proper)
mean life-time Ty equal to

h h

To= s = smz

(22.3)

Virtually, the two L-absolute p-characteristics of an unstable particle M,

i.e. ]31 and § M make the description of M to transgress the limits of rel-
ativistic kinematics, as the latter deals with a unique L-invariant length of
real four-momentum P. The same conclusion follows also from the canon-
ical representation of ten generators of Lie algebra of Poincaré group L
realized by free particles A ;. This representation requires sharply defined
real masses m; of Ay (§my = 0), i.e. it requires the particles to be sta-
ble. Using a more intuitive approach, one might also say that an unstable
particle M cannot reach the asymptotic zone of relativistic kinematics.

In opposition to eventism L4, the I4 relationism admits unstable parti-
cles, because geometry I4 deals with two a priori L-absolute p-characteristics:
g? and W which are the counterparts of the two L-absolute z-characteristics
y? and Ar. Our intention is to show that symmetry L resulting from (22.1)
will result, if viewed in the perspective of relationism I4 (instead of that of
eventism L4), in a self-consistent description of the dilatation effect (22.1) of
M on the quantum-potential level of existence of M in I4. In consequence,
an analysis of decay process of M (quantum clock) must call for an elemen-
tary — in Iy — two-body system M + A where the reality of the second,
stable body A would further coincide with the reality of its rest frame § if
one assumes A to be infinitely heavy. We shall show that the replacement
of a real § by a mathematical reference frame § may be justified provided,
however, that we have to deal with pure kinematics of stable particles, free
of the time characteristics T'.

The internal, L-absolute mean life-time Ty of an unstable M coincides
then with the L-absolute internal time interval At of internal space-and-
time I, of the two-body micro-world M + A if the relational momentum
q of this system vanishes (g = 0) and A is stable. Thus Ty from (22.3)
(based on the p—z duality) represents an internal L-absolute property of an
individual micro-object M + A (g = 0) on its quantum-potential level of
existence in I4. Let us emphasize that any experimental determination of
To based on the determination of §M must resort to a suitable statistics
of actualized decay processes of identical particles M. Moreover, Tg, as a
statistically repeatable observable, must respect symmetry L of measure-
ment. The point is that according to relationism, there is no possibility of
such replacing of the reference body A (§) (even an infinitely heavy one) by
mathematical reference frames S that would result in the one-body problem
of eventism L,.
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Before going to relationism I let us remark that the momentum oper-
ator P = —thd/0X of M which realizes the p—z duality is ¢ priori inde-
pendent of the mass of particle M. Hence, 1o matter whether M is stable
or not, we can speak of the eigenstates of P with definite real eigenvalues
P in some arbitrary reference frame S in Ly. Let S be the rest frame §*
of M in the eigenstate of P with eigenvalue P* = 0. Thus, a posteriors,
AT coincides numerically with the time interval in §*, i.e. AT = At* and
hence, the conditional probability IT(¢*|0) (¢* > 0) that M exists in $* at
the instant t* > 0, if it existed at t* = 0 is equal to

II(t*]0) = exp (—Tt(:) , t*>0. (22.4)

Note that the probabilistic language of quantum physics, in particular
that used in the interpretation of IT(t*|0), resorts directly to actualizations
(measurements) which are subject to the sharp alternative: exists — does
not exist, i.e. to a 0 — 1 alternative. This agrees well with eventism and,
without any doubt, it is crucial for the relationship between theory and
experiment; however, it ignores the fact that the quantum propensity ¥
precedes the probabilistic language of actualizations. All quantum interfer-
ence effects follow from the structure of the directly unobservable quantity
% which, in turn, determines the probability language of measurement. This
justifies fully one to speak of neo-realism of fractional-potential-ezistence
of an individual micro-object M in I4.

Of course, atomism together with the spacetime globality of ¢ (embed-
ded a priori in relational space-and-time) must, if testified experimentally,
call usually for a decent statistics of actualizations of quantum potentialities
. An operationalist would than maintain that ontologization of fractional-
potential existence is illegitimate physically, because the language of direct
measurement may concern actualizations only. It would be, however, abso-
lutely wrong to accept such an ascetic programme of physics restricting its
notions to directly measurable ones. If we were to adopt such restriction, we
would be forced to eliminate the notion of field of forces f{ X,t) of classical
physics, because even if we detect some trajectories of M we never do de-
tect the whole field of forces. Any theoretical knowledge of empirical world
must introduce some hypothetical, directly unobservable entities which ex-
plain the observable surface of the (never self-depending) empirical world.
Of course, the whole model must be self-consistent and must predict all
possible experimental facts (actualizations). Only then the ontologization
of force f as well as that of ¢ are fully justified; they enlarge the world of
physical reality.

The dependence of IT on time only (c¢f. (22.4)) suggests strongly a
relational rather than eventistic origin of this quantity. Indeed, we may
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attach an analogous probability IT to the same M described in the reference
frame S in which S* moves with a velocity V. This probability has the form

Ito)y=e"T, T =rT,, (t>0) (22.5)

which accounts for the dilatation of the mean life-time T of M in S.

The actualizations which make possible direct measurements of T are
not realized automatically (as in the classical framework with CCINF’s) but
call for an appropriate detector with the time resolution power 1/6t much
larger than 1/T. According to the p—z duality we have

1 6F

E S —h— h———ZO o0, (22.6)
where § E is the uncertainty of the energy transfer between M and detector.
Thus, direct measurement of T requires

1 1
— — . 22.7
5 > T or T > 6t ( )

As the resolution power 1/t tends, in the classical limit (A — 0), to infinity
for any, even arbitrarily small, value of §E, the strong inequality (22.7) is
satisfied ideally and the direct z-measurement of T is the only possible one.
Indeed, in the classical limit, the quantum p-z duality vanishes, hence no
room exists for any indirect determination of T'; formally, limy_,o{To =
R/§W} = 0.

However, strong inequality (22.7) is satisfied even by quantum clocks
like u-meson with very large Tp = 2 x 1076 sec. (¢Tp = 600m). Thus,
the direct z-determination of dilatation effect of the mean life-time T of
muon was a spectacular success of STR which regards muon as if it were
a classical wandering clock. Indeed, a muon created at a height of about
40 kms (= 70 cTp), if it had not been subject to the dilatation effect it
would have never (practically) reached the Earth surface (the probability
of a muon reaching the Earth surface would have amounted to 4 x 10731).
Thus the presence of muons at the Earth surface is due to the muon’s large
dilatation factor I' resulting in T 3> Ty. Nevertheless, a quantitative proof
of dilatation effect requires a large ensemble of identical unstable particles
M — let us call it Z(Ny, V) — with Ng 3> 1, where all M’s have the same
velocity V = | V]| in some lab-system S and, consequently, they all have the
same value of dilatation factor I'.

Let T(") (r = 1,..., Ng) be the life time of the r-th muon in the en-
semble Z(Np, V). The globality of the mean life-times T' of muons manifests
itself in the fact that an individual actualized value of the decay instant (")
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of the r-th muon represents no repeatable observable. A repeatable observ-
able would require the whole ensemble Z(Np, V') to be an infinite one as

1 Yo
T= lim — S T, 22.8
3 (22.)

Np— o0

An observable given by quantum-potential predictions must be given by
a suitable statistics, because actualizations of individual micro-events are
relatively well localized (in spacetime) , whereas quantum-potentiality
occupies a very large spacetime region. The point is that — in opposition
to eventism which is characterized by an infinite resolution power of space-
and time-intervals of all processes — micro-objects and macro-devices have
to deal with their own finite resolution powers of space and time intervals.
It is here that the origin of indeterministic nature of quantum predictions
lies, due to relational rather than eventistic nature of metrical physics.

23. Quantum-relativistic puzzle of indirect measurements of T'

For very short-living particles, an indirect determination of their mean
life-times is the only way of measurement. Thus, equation (22.3) determines
indirectly the proper mean-life time Ty of M and, having in mind the di-
latation effect and the quantum p—« duality, it is reasonable to expect that
the equality .

= @

(23.1)
would determine indirectly T in any lab-system §. By §E(™) we mean
that part of the uncertainty of energy E of M which is due solely to the
uncertainty of the M’s internal energy W. Assuming that §E(™/E <« 1
and §E(*¥)/E « 1, let us put

§E = §EUW) 4 gE(x), (23.2)

where §E(eX) is the uncertainty of E due solely to the fluctuating external
motion of M as a whole (in §). One should expect that 7', as determined
by (23.1), should by subject to the dilatation effect: T' = I'Ty. However,
symmetry L of eventism L4 combined with the quantum p—z duality results
in a puzzle which can be solved only if one abandons the L4 eventism in
favour of relationism Ig4. '

The first aspect of this quantum-relativistic puzzle concerns the differ-
ence between the quantum language p and the relativistic velocity language
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v. The second aspect consists in an essential difference between the de-
termination of T on the quantum-potential level of description of decay
process of M and the measurement of T which requires a suitable ensemble
of actualized decay events which may serve for determining the repeatable
observable T. In order to determine T from (23.1) let us consider the de-
cay processes of an unstable (free) particle M which decays always into the
same n stable particles Ay (J = 1,...,n) with sharply defined masses mj.
It is the sharpness of all theses masses which attests to the stability of these
particles (§m; = 0).

We can attach, to each particle and in the asymptotic zone of the decay
event, a four-momentum Py where P3 = —m_z,cz and hence, the cluster of
all decay-products Ay gets also a well defined four-momentum P, where

- 2 2.2 w2
P=}21PJ, P?= M’ = -—, (23.3)

and M denotes the L-invariant mass of the cluster, i.e. a mass which is
independent of the reference frame § in which P;’s are represented. As
the energy-momentum conservation law must be valid on the quantum-
potential level of each individual decay-event of M, P and M from (23.3)
denote also the four-momentum and L-invariant mass of M, respectively,
at the moment of M’s decay. Therefore, even if the masses M{(™) of the
unstable particle M fluctuate (r enumerates the decay—events: r = 1,...,
No > 1), the energy E of M in a fixed reference frame S (reference body )
takes the same analytic form as if M were stable, i.e.

E=+yW?2 {+c2P2, W =Mc. (23.4)

After collecting a large sample Z(Ng) (No > 1) of decay-events of

M(")’s, a trustworthy average value ]{2‘ of masses M(™) and the dispersion
(<]

§M of M(™)’s around 1\04 determine the mass (M) of M and the proper

mean life-time Ty of M, as To = h/(§Mc?) — cf. (22.3). The L-invariance

of masses M(™) makes T, independent of momenta P(™) of M(") in the fixed

lab-system §. Using equality (23.4), we introduce the velocity language v,

where SE P

oP VM? + P22
denotes the velocity of M in the same reference frame S (S) in which P
and E are represented. In the classical v language, F and P take the form

1 p?

Jivija VT

E=TW, P=MIV, I'= (23.6)
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From the v-expression of P, P = MI'V, follows the equality

6P _
or
§P = MI3sV (i) (23.7)

relating the uncertainties § P and §V. It is the very inequality which exhibits
an essential difference between the v and p languages. Indeed, let us assume
that § P is practically limited by a small, but finite, space interval [ in §, as
one has 5

h
6P...5X_ ; < 00. (23.8)
From (23.7 1) and (23.8) follows that the fluctuation (uncertainty) of velocity
V tends to zero when M — oo which means that — within the accuracy [
of the space localization of M — M follows a classical trajectory.
According to the quantum symmetry @ which has not been yet con-
fronted with symmetry L, we can assume that, in the same §, the unstable

particle M is in the eigenstate v p of P= —1hd/8X with an eigenvalue P
and hence
§P? =0. (23.9)

The superscripts Q and L will denote, from now on, the corresponding
symmetries of the languages p and v, respectively. From (23.5) we may see
that both languages p and v indicate the same rest frame $* in which

P*=V*=0. (23.10)

Thus, with M being at rest in $* which in turn moves in S with a sharply
defined velocity V (dictated by symmetry L), we obtain

sVl = 0. (23.11)

The p- and v-representations of energy F from (23.4) and (23.6) lead
to

SEQ(W,P) = -11:6W + VoV, (Q) } (23.12)

§EL(W,V) = T'6W + MI*V6V. (L)
Under constraints (23.9) and (23.11) we get

SEO2 = 5w, (Q)
§EGML = rsw , (L) (23.13)
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which, according to (23.1), result in

T° =TTy, (Q)
t_To
T = 7. (L) (23.14)
Thus,
T £TL (r>1) (23.15)

tops the quantum-relativistic puzzle.

The classical v language of symmetry L combined with the quantum
symmetry () of the p—z duality in determining T lead immediately to a
wrong contraction effect of T. On the other hand, T9 determined on the
quantum-potential level of M coincides with the correct dilatation effect;
however, so far we have been ignoring the relationship between the con-
straint (23.9) and symmetry L. The point is that the constraint §P? = 0
disagrees with symmetry L of eventism L4, because such a constraint distin-
guishes the initial reference frame in which § P9 is represented. The reason
for this conflict is that the four numbers: (P; E) attached (in S) to an un-
stable particle M do not constitute any four-vector as in the case of a stable
particle M. In consequence, if (P; E/c) is recognized — in agreement with
symmetry I — as the four-momentum of M, then the finite uncertainty
§E(™) in § results in § P9’ # 0 in an S' moving in §. This shows that
the quantum constraint (23.9) in S is not an L-absolute one and we end up

with a wrong value of T in §'.

The correct value of T obtained on the quantum-potential level of
description of M inclines one to abandon symmetry L as a symmetry im-
posed by eventism L4 and to recognize T9 as an L-absolute characteristic
of the (elementary in I4) two-body problem M + A. Let us emphasize that
the L-symmetry breaking takes place on the quantum-potential level of the
two-body system M + A, but the symmetry L cannot be violated on the
level of measuring actualizations which determine T', because this would
mean a violation of the (classical) principle of relativity. Without restrict-
ing the generality of our considerations, we assume A to be a stable and
infinitely heavy object. Consequently, numerical value of relational momen-
tum square g of M + A coincides with momentum square of the momentum
P of M in the rest frame S of the infinitely heavy A. Then, instead of the
L-absolute constraint (23.9) we come to deal with an L-absolute constraint

§g=0. (23.16)

Thus we deal with internal space-and-time Iy of M + A where the uncer-
tainty §W of the total internal energy W of M + A is due solely to the
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uncertainty of the L-absolute mass M of the constituent M of M + A. One
obtains immediately

5 —16 q2 P2

which results in the L-absolute proper mean life-time of M + A determined
indirectly as equal to

h
Y

and coinciding numerically with 79 from (23.14 Q).

The instability of the system M + A is due to the instability of its
constituent M only, while Ty = A7 represents the L-absolute mean life-
time of M 4 A coinciding (numerically) with the time-interval At of the
rest frame § of A. Thus, in spite of the correct dilatation of 70: T° =
T? = I'Ty, the quantity T° ceases to be a relative characteristics of the
two-body problem M + A embedded in Iy. Therefore, on the quantum-
potential level of relationism, even if A is infinitely heavy it cannot be
replaced by mathematical reference frame §. If, performing a Gedanken
ezperiment, we replace A by a similar A' which moves with respect to A4,
then we obtain T%' = I'"Tj in agreement with the dilatation effect of M in
the rest frame (S') of A’ but again, we deal with an L-absolute two-body
characteristic of M + A'.

Thus, the L-absolute relationism of internal space—and-time I explains
the kinematic dilatation effect on the quantum-potential level of system
M+ A, but it does not mean that an indirect (p) measurement of T° = I'T,
is possible. The point is that our two-body systems M + A, M + A4', ...
are not bound and therefore, the L-symmetry breaking which is connected
with the determination of T° and which must accompany the indirect mea-
surement of 7% = T9 would mean the breaking of L-symmetry on the level
of measurement. However, it turns out that measuring posstbilities admit
indirect determination of T only, when the conflict (23.15) vanishes with
I' = 1. In the next section we shall show that indirect measurement can
determine Tj only and the determined quantity will remain consistent with
symmetry @ of the p—z duality as well as with symmetry L of measurement.

T° =IT, (23.18)

24. Indirect measurements of T

It has been said that the quantum-potential predictions given by non-
local observables such as || or/and T require a suitable statistics of (lo-
cally) actualized micro-events. Therefore, neither single mark left by elec-
tron on the screen in the vicinity of a point X, nor single instant (") of
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decay—events of M(") represents a repeatable observable. A repeatable ob-
servable requires an adequate statistics. A quite contrary situation happens
in the classical theory (kA = 0) based on the Cartesian z-space free of the
p—¢ duality of relational geometry R3. Here the localization of an individual
particle M at a point X represents a repeatable observable if we maintain
the same dynamics together with the same p and z initial conditions which
remain under our control.

Both constraints (23.9) and (23.11) imposed on the state of M — i.e.
on the quantum-potential level on its existence — disagree with the symme-
try L of measurement which conflicts also with the (classical) principle of
relativity. Therefore, even if the relationism I4 of two-body systems M + 4
accounts properly for the dilatation effect of T determined indirectly by
relation (23.1), an indirect measurement of T, T = I'Ty (I" > 1), will con-
flict with the symmetry L of measurement. However, it turns out that the
symmetry L cannot be threatened by any experiment, because the ensem-
bles Z(Ng, P) and Z(Ng, V) necessary for detecting the conflict (23.15) are
unrealistic ones. Here Z(Ny, P) and Z(Ny, V) are large ensembles of M’s
having, in some fixed lab-system §, the same momentum P = |P| and the
same velocity V = |V].

Thus, the ezperimental possibilities keep the conflict T9 # TL (I > 1)
from being disclosed by an experiment. The limited ezperimental possibili-
ties are inherent in the p—z duality. This makes that in a fixed lab-system S
we deal with M’s of different momenta and energies and, what is even more
important, the states ¥ of M’s are superposed of different momenta Pps.
Thus the four-momenta P{") of M(")’s become sharply defined a posteriori,
whereas the ensembles Z( Ny, P) and Z( Ny, V') assume that these quantities
are sharply defined a priori and, moreover, that all M(™)’s have the same
P = |P|and V = |V]| in a fixed lab-system §. Such ensembles do not exist.

However, according to the L-invariance of masses M (7). as they are
equal to: M(") = (~P(")2/c2)1/2, the ensemble Z(Np) is a realistic ensem-
ble which determines the spectrum of masses M(™) and hence, the uncer-
tainty 6 M of M. This mass uncertainty determines indirectly the proper
mean life-time Ty of M as stated in (22.3). In this case, the quantum-—
relativistic conflict disappears, because Ty coincides numerically with the
proper mean life-time T* of M as, for I' = 1, we have

T* =Ty =T% =T* (I'=1). (24.1)

Thus the ezperimental possibilities rule out the quantum-relativistic contro-
versy and exclude, at the same time, possibility of indirect (p) measurement
of dilatation effect of T.
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The presented above controversy between the proper value of T = T
determined indirectly on the quantum-potential level of an individual micro-
object M and the impossibility of its detection (requiring an adequate
statistics) is strictly connected with the Redhead locality 5 (LOCs) [57].
In Appendix C a similar quantum-relativistic puzzle is presented. This new
puzzle is connected with the decay mode and mean life-time of the bound
system of a meso-atom whose instability is due to the instability of its me-
son component. It is shown there that such bound states and their decay
modes and mean life-times provide us with repeatable observables which
can help us in deciding whether it is the spacetime (L4) of measurement or
the relational space-and-time I which constitutes the true background of
internal motion of meson (electron) inside atom.

Appendix A
Relationism and confinement of the constituents of M

The more reliable becomes the quark model, the more fundamental
becomes one of the model’s great questions, namely that of the confinement
of quarks [58]. Therefore, it would be interesting to indicate a possible
reason of the confinement which is based on a geometrical argumentation
which results from the hypothesis of relationism. The point is that the
coexistence of eventism G4 and relationism R?’ makes that any relational
shape F(y?) of R3G determines automatically the same two-event shape in

G4 equal to F(2?)6(1)(At). Thus, from the above follows that NR quantum
mechanics imposes no restrictions onto the structure of composite particles
M. Quite a different situation occurs in physics of finite £/c.

The equality with dot which determines the sameness of the relational
shapes F(y?) in Rg; and two-event shapes G(z?) in Ly (£4) must explicitly
resort to the privileged position of the p language, hence a problem arises
of the existence of G(z?). The problem concerns the convergence of the
corresponding integrals (13.3 ) as well, as the extension of F(g?) over the
negative g* values, as G(p?) is to be determined in the whole 4-space L4(p).
In consequence, the hypothesis of relationism Rj3 accounting for finite h/c
creates additional constraints which may be responsible for the confinement.
Let us illustrate this problem by analysing of two classes of relational shapes.

Suppose that F(y?) represents the relational shape of Yukawa potential
corresponding to the exchanged particle M of mass M, hence

1 _xr
F(yz):me K s T:tyh K=—. (Al)
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In NR physics (G/c = 0) and for M = 0, F(y?) coincides with Coulomb
interaction in Rj (1nteract10n of two unit cha.rges) which, in agreement
with the dilatatlon symmetry D of eventism, is of infinite range. If one of
these charges is infinitely heavy (m; — o), equation (A.1) converts, in the
G4 and L4 spacetimes, into the event shape of static Coulomb field in the
rest frame of the infinitely heavy A;.

In the p representation F (q®) takes the form

1

F (@) = ——s—s A2
Fla) = yra o (4.2)
which determines, without any change of the form, G(p?) in the whole 4-
space L4(p)

1

GP*) =~ - A3
The singularity of G(p?) on the hyper-surface p> = —MZ%c? in L4 results
in the well known ambiguities in z-representations of G in L(z). These
ambiguities can be removed by indicating definite contours of integration

(C) in the complex pg—plane which leads to the Jost functions GO (),
G (z) = A9)(z; K). (A.4)

In particular, one of the contours determines the Feynman propagator —
AF)(z; K), i.e. the Green’s function (distribution) of the inhomogeneous
free Klein—-Gordon equation of the particle M.

Thus different Green’s functions (distributions) and their convolutions
occupying the whole 4-space L4(z) of the quantum-relativistic perturbation
theory provide us with the first class of relational shapes for which the same
two-event shapes are well defined. This would explain why the quantum-
relativistic perturbation theory reflects correctly relationism Rj3, without
explicitly abandoning eventism L4. There is, however, a second class of
relational shapes F(y?) in R; for which the same two-event shapes do not
exist, just because of the divergence of the corresponding integrals deter-
mining G(z2) = F(y?). Let us confine our attention to the relational shape
F(y?) whose analytic form is that of the NR wave function of harmonic
oscillator

o L 1 (¥
Fv) = oy s o™ (2122 ’

Py =em (-22) (A.5)

2h2
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Direct analytic continuation of ﬁ’(qz) onto negative g2 (like in the previous
example) results in

2h2

however, the time-like four-momenta p (p? < 0) result in a strong divergence
of integral (13.3 ii) making G(z?) = F(y?) (embedded in L4(z)) undefined.

This would mean that, in the p language of measurement, we can speak
of structures composed of some more elementary units (like quarks) which do
affect the corresponding § matrix elements, but which can never reach the
surface of relativistic kinematics. In other words, this means the confinement
of such structures. Such a confinement would have a purely relativistic origin
connected with the four-momentum notion which is alien to eventism Gjy.
Indeed, the corresponding two-event shape in G4 is well defined in the whole
4-space G4(z) and is equal to

G(p?) = exp (-Rzpz) , (A6)

2

1
G(z) = “(2wR2)3/2 exp (_2R2

) s (AT). (A.T)

Appendix B
Collisions of composite particles

The hypothesis of relationism R3 combined with the phenomenological
quantum perturbation theory enable one to account for creation and annihi-
lation of particles synthetized from more elementary ones or those obtained
via the field mechanism. This is due to the fact that the geometrical meta-
objects R3 and L4 with their p—z aspects make room for extended particles
consistent with the symmetry L of measurement, with dynamical structures
determined first in Iy. For the sake of illustration we shall evaluate (in the
lowest—order approximation) the § matrix element describing the collision
of a scalar and point-particle A3 with an extended particle M = A; + A2
composed of two hypothetical scalar and also point-like particles 4; and
A;. Moreover, we assume that Az interacts with M via the A; constituent
only and, therefore, the evaluated cross—section will detect the structure of
the corresponding form factor of M.

Let the initial and final states of M be the bound eigenstates 9; f(yz)
of h with L-absolute masses M; ¢, respectively (M; > M;). Spherical
symmetry of the states v, ¢ in R3 means that the composite particles M; ¢
are also scalar ones. According to (16.3), relationism R3 provides us with an
L-absolute form factor Fy; of M which will enter the corresponding matrix
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element S¢; Consequently, we must know the same form factor represented
in £4 which is realized by the equality with dot

Fyi(ylz) = ¢;(y%2)¢i(y%2) = Gyi(zl,). (B.1)

Here y;; denotes the relational coordinate of the constituents A; and A
in R3(y), while z;, = X}, — X; parametrizes the corresponding configura-
tion subspace £(z;x). In our three-body system, R3(y12) ® R3(y13) and
L4(z12) ® L4(z13) are the corresponding configuration spaces, with 4; be-
ing taken as the origin of the reference frame S3 parametrizing R3(y). Of
course, one can choose another parametrization of the above configuration
spaces provided that the same transformation concerns the y and the =z
variables.

Let V(y?;) be the relational shape of interaction between A3 and 4,
which — much like the form factor Ff,-(y%z) — becomes measurable in the
terms of cross-section and hence, it must also be expressed by the same
interaction U(z%;) in L4(z13), in accordance with

V(yis) = U(zly). (B-2)

This interaction can be of quite a different nature from the interaction
responsible for the structure of the form factor Fy; = Gjy; of M. The
lowest—order Born approximation, in which the matrix element S¢; will be
evaluated, concerns the interaction V from (B.2). Before putting forward
an analytic expressions for §¢; let us point out two reasons which make that
the relationism R3 results in some R3-effects alien to eventism L4. These
effects make the hypothesis of relationism R3 experimentally testable.

The first reason is the L-form invariance of G;(2%,) which becomes
thus separated from the external motion of its carrier M. This makes that
G#; suffers no relativistic distortions. However, as it is known from elastic
electron—proton collisions, any test of the ezxistence or non-ezistence of rela-
tivistic distortions requires very large (relativistic) momentum transfers —
cf. Section 10. Note that form factors F-’f,-(q) of loosely bound structures
found in the NR approximation cannot be used in the case of relativistic
Fermi momenta q.

There is, however, a second R3—-effect also mentioned in paper [55] which
should occur in relatively low-energy collisions of A3 and M = A; + A3 and
which is connected with the weight a. This weight depends on the mass of M
(cf. (18.5)). Consequently, inelastic collisions M; — My, with M; > M;,
take place with a jump of the centre-of-mass of M in accordance with

X,;:ain+b,~X2—+an1+be2:Xf#X,-, (B3)
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with b; y = 1 — a; 5. This results in the jump-effect mentioned above.
Note that the ]ump-e]fect much like the mass defect for bound structures,
vanishes in the NR framework (1/¢ = 0), because in the limit 1/c = 0 we get
a;=ay= a®. However, in the NR approximation which accounts for finite
universal constant k/c, the jump effect becomes crucial for the hypothesis
of relationism Rj.

Note that our simplifying assumption of A3 interacting solely with A is
a realistic one in (for instance) electron-atom collisions. From experiments
we know that the interaction between impinging electron and atom is very
well approximated by the sum of two interactions: that of (impinging) elec-
tron with atomic electrons and that of electron with atomic nucleus. Then,
for  large enough (£ > h? /r%), one can pick up from the electron-atom
cross—section the part which describes the electron-nucleus collision and,
at the same time, maintains the atom excited (M; — M) but still un-
fragmented. The cross-section for this exclusive reaction will be relevant in
analysis of the jump effect and the S, elements (evaluated further on) will
concern only this fraction of the electron—atom collision. We shall see that
in spite of £ > hz/r%), in evaluating S, it will be fully justified to use the
internal ¢; ; states of atom evaluated in the NR approximation. Indeed,
we shall see that the argument q° parametnzmg the p representation of the
form factor Ff,(q ) =Gy (p? = ¢?) fulfills the strong inequality (20.3).

In the assumed Born approximation, the initial and final 3-body states
¥; ¢ take the form

¥; = A;Az;exp {% (Pi(a; X1+ b;X2) + PsiXs]} Yi(y3y)
] (B.4)

(2
!pf = AfA3f exp {E [Pf(del + bez) + P3fX3] } d)f(yfz)

with
P,Lz’ :~—M12’f62, Pg,ngf:-—-mgcz.

In agreement with the relativistic kinematics of asymptotic zone, these
states separate the external (relative) degrees of freedom of A3 (electron)
and M as a whole (atom) embedded in L4 from the L-absolute (relational)
degrees of freedom parametrizing internal states of an M hidden a prioriin
R;.

This is due to the singularity of the NR framework (1/c = 0) in which
¢ic,"f(y§2) embedded in RS are, at the same time, embedded in the external

spacetime G4 of measurement, because R? coexists with G4. Therefore,
NR quantum mechanics can preserve the classical philosophy of equations
of motion according to which the states of system M under description
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evolve in all system’s degrees of freedom with continuously increasing pa-
rameter ¢ denoting the absolute Newtonian time. Consequently, in the Born
approximation, the §y; element takes the form

% = (#F |V (213)07) (B.5)
represented by a (9+1)-fold integral over the X 2 3 coordinates and the
single time variable.

The true principle of relativity expressed by symmetry L that must be
respected by all repeatable observables — in particular, by cross-section
deduced from S§f; — requires S¢; to be of an L covariant structure. Rela-
tionism R3 will satlsfy this requirement provided that: (i) the L-absolute
interaction V(ym) is replaced by the same L-form invariant interaction
U(z?,) = V(y?;), and (i) the form factor Fyi(y3,) is also replaced by the
same, explicitly L—form invariant form factor G fi(-”’?z) = Ff,-(ygz). As-
sumption (%) is realized by the quantum-relativistic perturbation theory of
local fields, as this theory provides us with L-form invariant propagators and
their convolutions over the whole 4-space L4(z) so the locality of eventism
L4 is overcome. An essential novum introduced with relationism R3 is the
nonlocality of the L-form invariant form factors G(z?), as local fields admit
point-particles only with their universal (local) L-form invariant form factor
§(4)(z). Consequently, in opposition to the form factor F ¢i(y3,) from (B.1),
the L-form invariant form factor G;(z3,) = Fy;(y3,) ceases to be factoriz-
able into initial and final states. In agreement with Landau’s opinion [38],
the presence of Gy;(z3,) in the integrand of S ¢i shows clearly that the §
matrix cannot be obtained from states evolving continuously with the time
parameter of any reference frame § in Ly as required by Moeller’s matrices.

The two above assumptions (i) and (4¢) result in the following form of S;

--(ATA,)(Asz3, /d Xl/d4X2/d4X3

X exp P;(a; X, +bX2)+P3zX3]}

;*ls

xexp{ ;l Pf anI +be2)+P3fX3]}

X Gg; [(X2 — X1)*] U [(X35 — X1)?)
=(A%4:)(A}  As:)(2mR) 6P, + P3; — Py — Pyy)

X Gg; [(b:P; — b5 Pf)?) U(), (B.6)
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where
t=(P; - Ps)? = (Psy — P3;)?.

In the privileged p language of S matrix, the jump-effect manifests itself
in the argument (b;P; — by Py)? of éfi, i.e. in the fact that the four-vector
(biP; — by Py) is not parallel to the four-momentum transfer (P; — Py) which
takes place between A3 and M. A

Equation (16.7) which expresses L-form invariantly the orthonormality
of states 9; f(yiz) for M; # My (inelastic collision) results in Gsi(0)=10
in the p language and hence, if

(biP; — bsPs)? =0 (B.7)
S7; and the corresponding cross-sections vanish. Assuming that
AM = My — M; = AW/c* < min(my, m3) (B.8)

which is fulfilled in the case of loosely bound atoms, equation (B.7) deter-

mines { = &g
2
(AW) . (B.9)

[

If my = AMp is the nucleus mass (M denotes the nucleon mass and A
is the mass number) and m; = m, (m; > my), tp is a positive quantity.
Taking AW equal to the difference between the internal energy levels of the
first excited state and the ground state of a hydrogen-like atom, we obtain
to equal to

- keV
fo = 3604222 [:—2} , (B.10)

where Z is the charge number of the nucleus.

Thus, the detection of the jump effect does not require impinging elec-
trons to be very high—energetic ones. A characteristic Fermi-momentum
square qg of hydrogen-like atom is equal to

keV]?
g5 ~137° [—i—] : (B.11)
hence £y is much greater than q%,

;1% ~ 30 A% (B.12)
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but it does not conflict with the NR approximation used in evaluating
Ff; = Gy;. Indeed, as it follows from (B.7), the jump effect manifests it-

self in the vicinity of £y which corresponds to the argument g? of Ff,-(qz)
being equal to
ma

2 — (b;P; — 2 - (bY2f— 1 G_._72 B.
q (,Pz bfPf) (b )(t to), b e — ( 13)

Thus even for £ = 2¢y the argument g% of F’fi(q2) takes the value

NN A%
@ = (69)%,) = (-TVV-) L 2m AW ~ g2 . (B.14)

Note that the jump effect affects a very small fraction of the total electron—
atom cross-section, namely it affects these cases when electron collides with
nucleus inducing an excitation of atom from the atom’s ground state to the
first excited one.

Of course, the jump effect disappears for elastic collisions when a; = af
and also for inelastic collisions with an M composed, like positronium, of
two particles of equal masses as in such case a; = ay = 1/, no matter
whether the collision is inelastic or elastic. As it has been said before and
can be seen from (B.9), the jump effect disappears in the NR limit (¢ — o0).
There is no room for it within the local field theory either, as it is strictly
connected with the structure of a particle M synthetized mechanically from
other more elementary particles.

Let us analyze two different Lorentz limits of S ¢;, namely the case when
A3 becomes infinitely heavy (m3 — oo0) and another case, when A; and,
consequently, M = A; + A; become infinitely heavy. As it has been shown
in Section 17, in the first case the configuration subspace R3(y13) becomes
isomorphic with the EJ space of the rest frame §* of infinitely heavy A3
embedded in L4. By identifying the world-line of infinitely heavy A; with
the time axis of §*, one can replace the relational coordinate y13 with X7
and the internal time 7 coincides (up to an additive constant) with the time
t* of §*.

The Lorentz limit of the configuration space R3(y13), however, does not
affect the relational nature of the second configuration subspace R3(y12) in
which relational shape Fy;(y?,) (= Gyi(x3,)) is embedded. This is the fact
which points to an essential difference between eventism L4 and relation-
ism R3. It should be noted that this aspect of relationism could not be
explicitly perceived in the Lorentz limit of the two-body problem discussed
in Section 17. Thus, an infinitely heavy A3 becomes the source of an exter-
nal dynamical field given by event shape U(X;) which, being such a shape,
ceases to represent the L-form invariant shape. Of course, the external field
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U(X1) breaks the L-form invariance of S¢; which reveals itself in the viola-
tion of the momentum conservation for the system M in §*. Nevertheless,
the L covariant expression of S¢; guarantees the described process to re-
main consistent with STR which requires only a passive interpretation of
symmetry L.

The infinitely heavy centre A3 ceases to participate in the motion of
M + A3 and freezes four degrees of freedom of the initially isolated system
M+ Ajz. Hence, S¢; is now given by an 8-fold integral over X ; coordinates
of Ly. The L-covariance of §; justifies to evaluate S¢; in §* where U(X;)
takes the form of a static event shape which leads to energy conservation of
M in §*. Thus we come to deal with

Sti :(A}A,-) / ax; / d*Xx;
X exp {% [Pi*(a,-Xi" + b,,X;) — Pf(anf + be;)]}

x Gy [(X3 - X7)*] U(XT?)
=(A}A:)(27Rh)§ (P, — PFy)G i [(8:P: - b5 P;)?] U(F). (B.15)

As it was to be expected, the jump effect survives the Lorentz limit m3 — oo
while the energy conservation of M in §* takes the form

E} = cy/M2c? + P?? = c1/MJ2Fc2 + Py = Ejf, (B.16)

t= (P; - Pf)2 = (P} - P})Z .

We are going to analyze the second Lorentz limit of S ¢; from (B.6), when
the constituent A; of M = A; + A, becomes infinitely heavy (mg — o0) but
A3 has still a finite mass m3. The configuration subspace R3(y12) becomes
now isomorphic with the E} space of the rest frame $* of A; (and, at
the same time, of M = A; + A;). Four degrees of freedom of A; become
frozen, as the infinitely heavy A, acquires a given classical world-line which
can be identified with the 0-t* axis of §*. Consequently, y;2 — X7 and
the L-absolute relational shape of form factor Fy;(y3;) converts into an L-
scalar event shape represented in S*, where it takes the form of a static and
spherically symmetric shape similarly as the interaction V(y?; = X32) in
the Lorentz limit of the previous example,

Fri(y2,) — Fpri(y?, = X12). (B.17)
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Again, the L covariant form of S¢; justifies one to evaluate §y; in §*
with the 8-fold integral taking the form

Sfi :(Angsz)/d4X;/d4X;
i * * * * *
X exp {E [(a,-Pi - afPf)Xl + (P3; — P3f)X3]}

x Fp; [(X1)*] U [(X7 - X3)7] . (B.18)
Although in the l_imit, m2 — M‘L,f — w, and hence

m2 _ m2
ai,_f = % [1 — —"21—\1?1] m_z':)—»oo 0, (B.lg)

the four-vectors (a;, P f) in the exponent in (B.18) do not vanish in the
limit ms — oo, because the quantities (Pi": f)o become infinitely large.
If we put
M,-,fzml —{-mg—AMi,f, AM:Mf—Mi:AMi—AMf, (B.?.O)
we find easily that
im a; P’y =(0,0,0;-cM; ;). (B.21)

mga— 00

Finally, after inserting (B.21) into (B.18), S, takes the form
Sg: = (2nR)(Ad 43:)6D [(P3:)o — (P5p)o — cAM]|
x Fy: [(P3; - P3| O(6). (B.22)

According to the energy conservation, the argument (P3; — P} f)2 of the
L-absolute form factor F'fi is equal to

(P3i- P37 =+ (AMe) = i+ (2

)2, t=(Ps;— P3s)®. (B.23)

Thus the energy gap AW between My and M; shifts the argument t of ﬁ’f,-
towards a larger value £ + (AW/c)? which is but very little different from £.
Nevertheless, this is also an Rj3—effect (h/c # 0) which vanishes in the NR
framework (1/c = 0), as lim¢;— oo (AW/c) = 0.

The two Lorentz limits (B.15) and (B.22), admitted by the 3-body
problem, of the § matrix element §; established in (B.6) show clearly the
reason for the priority of relationism R3 and its configuration spaces B3 ®
R3 ... over eventism L4, namely the fact that the universal spacetime L4 of
measurement induces a priort all possible configuration spaces L4 QL4 ®.. ..
Let us emphasize once more that the hypothesis of hidden relational space
is possible because of the finiteness of universal constant i /c and vice versa:
all R; effects follow from the finite value of this constant.

c
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Appendix C
Decay mode of meso-atom

The decay mode of a meso-atom in its ground state 19 and the value
of its proper mean life-time analyzed in paper [59] provide us with some
repeatable observables which can be used for deciding whether the internal
motion of the constituents of a composite bound structure M takes place
on the background of external spacetime L4 (eventism) or in the internal
relational space-and—time I induced by the elementary two-body system
(relationism) and vanishing together with M . We shall consider the ground
state 1p of a meso-atom whose instability is due uniquely to the instability
of the meson component.

Loosely bound atoms justify the use of NR approximation of the inter-
nal structure of meso-atom which results (by virtue of the p—z duality) in
internal motion of the constituents. According to STR, this motion should
result in dilatation of meson’s mean life-time and, consequently, of the mean
life-time of the meso-atom as a whole. In the assumed NR, approximation,
relational Fermi momenta q parametrizing internal state ¢ of meso-atom
in the p representation determine velocities »* of meson in the rest frame
S$* of meso-atom, as we have

*\ 2
v
v =1 7*:1+%<—) : (C.1)
m

Here, 7 is the mass of muon and 4* is the corresponding dilatation factor
(in the NR approximation). The spectrum of Fermi relational momentum
squares g? contained in 1/;0(q) results then in a spectrum of Lorentz factors
v* which should affect the life time and the decay mode of the meso-atom.

From experiments we know that a free muon decays according to the
one-exponential (OE) law. In Gamov’s phenomenological description of
meta-stable states or particles, the OE decay mode of such systems results
from the complex internal energy w which replaces the real internal energy

w corresponding to stable particles (stationary states). Thus

w:’ltl)]—-—z%:(’fgl—zé‘zm) Cz, (0.2)

where the well-defined uncertainty dw of internal energy results in the OE
decay mode of the state. The experimentally determined value of the proper
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mean life-time T of muon and hence, that of the internal energy uncertainty
dw, amounts to [60]

h
To = — = 2.19703 x 107 sec. (C.3)
dw
From (C.1) we obtain the velocity distribution of meson in §* given by

mo(v*) = m3|go(g = mv*)|?, (C.4)

which — according to eventism — determines the spectrum of Lorentz fac-
tors v*. Consequently, as the instability of meso-atom is due to the insta-
bility of muon only, the fractional-potential existence of meso-atom at the
instant t* > 0 is given by

I(t*;0) = /dsv ro(v*)e= (/T >0, (C.5)

T = 7*T0 ’

under assumption that the meso-atom existed at the instant t* = 0. Since
mo(v*) deals with different values of v*2, the dependence of II(t*; 0) deviates
from an exponential one which means that the eventistic picture results in
a violation of the OE decay mode of meso-atom.

The quantum-potential picture of the relational motion of meson and
nucleus in I4 leads to quite a different description of the decay mode of meso-
atom. This difference is strictly connected with the fundamental difference
between bound and scattering states of a composite system M = A; +
A analyzed in Section 18. Let us recall that, according to relationism,
four-momenta P; 2 are undefined — c¢f. (18.9) — which is due to the 4-

degree freedom of the relative four-momentum p. In consequence, v* =

q/ ™ cannot be interpreted as the velocity of meson in spacetime L4 and
represented in S*. Below we show that the quantum-potential motion of
meson inside atom maintains the OE decay mode of meso-atom, although
the proper mean life-time of meso-atom 7(%) is longer than Ty, attesting to
the fact that the meson is not at rest in the meso-atom. R

Let us remark that the bound eigenstates of internal Hamiltonian A in
R3 determine internal energy levels W,, = M,c* (M, < m = m; + m2)
of M = A; + A, which are well defined functions of: (%) masses mjy of
M’s constituents; (%) appropriate dynamical constants and (%) universal
constants & and c¢. Thus we have

Wy = Mn62 = Wn(mJ;ﬁ)’ (Cﬁ)
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where 3 symbolizes the dependence of W, on (ii) and (%ii). Let us assume
that— similarly as in the case of a meso-atom in its ground state ¥y —
the instability of a bound state 1),, of M,, is due to the instability of one
of the M, ’s constituents, say the A constituent. The A constituent is

characterized, when free, by a mass m and a mass uncertainty ém which
means, in accordance with Gamov’s phenomenology, that a free A has the
OE decay mode with a proper mean life-time Ty = k/(6m c?).

The point is that according to (C.6) the well-defined uncertainty ém,
which underlies the OE decay mode of free particle A, results in an also
well-defined uncertainty of mass M,, of M, as

W, = oW (6m) = 6M,, c*. (C.7)
om {2

Thus M, decays in an OE-mode with the proper mean life-time T(™) equal

to
h OM,\ ! h
(n) _ - n )} = 4O .
T W, ( om ) o (6wn) 7 0 (C.8)
(n) (BM")_I >1
77 Uom o )

The inequality 7(™) > 1, which can be proved quite generally, is illustrated
below on the example of a hydrogen-like atom.
Apart from the instability of meson, the ground state 1y of meso-atom

(]
deals with internal energy W of My which, in our NR approximation,
amounts to

]

W= M = [(My+m) - 2?22+ 0(?)]c?, (C.9)

where M, m denote the masses of nucleus and muon, respectively, p is

o
their reduced mass and M ; is the also L-absolute mass of meso-atom in
the ground state 1g. The term 0(a?) stands for all higher than second order
corrections of a = 1/137. These corrections transgress the boundaries of the
NR approximation used here. If instead of real mass ™ of muon we insert

m=m —18m/2, which would account for the muon’s OE decay mode, the
stationary ground state converts into an unstable one, leading — as it can
be seen from (C.8) — to the OE decay mode of My. Equation (C.9) is
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a particular case of equality (C.6), hence we end up with a proper mean
life-time T(°) of Mg which, by virtue of (C.8), is equal to

o272
TO = 4Oy, @O =74 2 57, (C.10)
m 2
(1+ 77;)

Thus, the quantum-relational picture, in opposition to the eventistic
one, promotes the OE decay mode of meso-atom as inherited from the con-
stituent muon, although 7% > T,. In paper [59] some measurable char-
acteristics have been presented which make possible to distinguish between
the OE decay mode of meso-atom predicted by quantum relationism and
the non-OE decay mode following from eventism L4. Of course, the estab-
lished geometrical background (I4 or L4) of the meson motion inside atom
would also be valid for the electron motion inside an ordinary atom.
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