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The results for the classical single-particle motion in the Woods—Saxon
potential with octupole deformation including the spin-orbit interaction
are reported. The dependence of the nucleonic dynamics on the potential
diffuseness and on the spin-orbit coupling is studied. The model is exam-
ined by means of qualitative (Poincaré sections) as well as quantitative
(Lyapunov exponents, power spectrum) methods. The transition from
order to chaos is observed When the spin-orbit coupling increases. The
role of the diffuseness of the potential in suppressing chaos is also shown.

PACS numbers: 03.65. Sq, 21.60. Cs, 47.52. +j

1. Introduction

In the last few years the growing interest of application of ideas of chaos
to the nuclear physics is observed. Since it has become apparent that the
character of collective nuclear dynamics could be related to a nature of
single-particle nucleon motion the latter has been studied in various nuclear
mean field potentials [1-10]. It has been shown [1, 2] in a simple model
that there is a correspondence between elastic or dissipative behaviour of
nucleus as a whole and integrability or non-integrability of equations of the
nucleonic single-particle motion. It indicates that for understanding col-
lective processes it is essential to find under what conditions the motion
becomes chaotic. The transition from order to chaos in single-particle mo-
tion in a mean field potential may be induced by changes of nuclear shapes
[1-10] as well as by increasing the spin-orbit interaction [5-8, 10]. Most
of investigations are at the classical level but some papers contain quan-
tal studies {3, 5, 11-13].

(1669)
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The purpose of the present paper is to present the influence of:
¢ the diffuseness of the mean field potential,
o the spin-orbit coupling
on the motion of a nucleon inside nucleus. All calculations presented below
are classical. The considered mean field potential is the deformed Woods-
Saxon potential. In order to achieve our goals and illustrate obtained results,
we concentrate our discussion on a particular family of nuclear shapes.

2. Model
2.1. Shape parametrization

In general, axially symmetric nuclear shapes may be described by means
of Legendre polynomials P,(cos )

R(Y) = —I%[l + aj Py(cos?) + Z anPp(cos¥)], (1)
n>1

where A denotes the normalizing factor ensuring the volume conservation.
The term a3 Pj(cosd), necessary only for nonzero odd n deformations, re-
stores the centre of mass to the origin of the coordinate system. Parameter
specifying the degree of deformation, a,, depends on n in the following

2—";—1 a in order to keep the same r.m.s. deviation of the

way ap =
deformed surface from a sphere for all multipolarities (for small ). Such
a parametrization of shape has been widely used in nuclear physics for
decades. It appeared to supply a good description of a big variety of nuclear
features and processes from nuclei in their ground states to fast rotating and
fissioning nuclei (see e.g. [14-16]).

In the case of the square well potential, the single-particle motion for
shapes with different order of Legendre polynomials n = 2, 3,4, 5, 6 has been
studied in [1, 2]. Our model can be treated as a generalization of this 3-
dimensional billiard in order to include a more realistic features of a nuclear
mean field. As we relate our results to those of 1, 2] let us briefly remind
some of them which are relevant for a further discussion. The character of
the motion was studied there for static shapes as well as for oscillating ones.
The main results, we refer to, are the following. The single-particle motion
undergoes a transition from order to chaos when deformation increases. For
the same energy trajectories with small projection of the angular momentum
on the symmetry axis become chaotic first than those with bigger projec-
tions. For higher multipole deformations the transition occurs earlier (z.e.
for smaller values of the deformation parameter). For example the dynamics
of motion with small projections of angular momentum on the symmetry
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axis for n > 3 and a, > 0.1 is already almost completely chaotic for the

3-dimensional billiard. The results of present paper refer to this type of
initial conditions and deformations.

2.2. Definition of potential

The single-particle Hamiltonian has the form
H=T+V+ Vs, (2)

where T denotes the kinetic energy and V is deformed Woods—Saxon po-
tential defined as follows,

Vo

Vind) =13 expld(r, 9)/a'(¥)]’

(3)

The symbol V, denotes the depth of the potential, d(r,¥) is the distance
from an arbitrary point » to the surface defined by (1)

d(r,9) = |r| - R(9), (4)

and a'(¥) is the diffuseness in r direction, calculated to keep the skin of the
potential in direction perpendicular to the surface approximately constant
(equal a). In other words o' = a/cos(a, a) as it is shown in Fig. 1. The 4 is
a polar angle in a coordinate space.

Fig. 1. Figure explaining the modification of the diffuseness of deformed potential
(3) in order to keep the nuclear skin approximately constant. The diffuseness a' in
the direction of position vector 7 is calculated to have the projection on direction
perpendicular to the surface, n, equal a.
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And finally, V,, in (2) denotes the spin-orbit interaction taken in the
conventional form,
VSOZI‘L(VVXP)'S, (5)

where & is the strength of the spin-orbit coupling. The ‘classical spin’ s is
assumed to be a vector of constant length (!> &) with direction defined by
polar angles ¢ and 6. Then the classical Hamiltonian has the same form
as the quantum one (2) and can be derived from the former applying the
time-dependent variational principle [6, 17, 18].

To make our discussion more general, we take into account only parti-
cles from Fermi surface. Because of the dependence of Fermi level on the
diffusion of the potential the relative units are used. Positions are expressed
in units of a radius Rp corresponding to Fermi energy and momenta — in
units of Fermi momentum pg. In these units the fundamental features of
the model do not depend on the particular choice of parameters of the po-
tential (e.g.depth of potential or radius parameter). So finally the classical
Hamiltonian (2) can be expressed by means of the dimensionless generalized
cartesian coordinates (z,y, z) and the spin angle (¢) and the related mo-
menta (pz, py,p,) with the spin momentum defined by py = %cos 6. The
coordinates and momenta span 8-dimensional phase space. However due to
the energy conservation and axial symmetry of the problem the number of
degrees of freedom is reduced to six. The Hamiltonian (2) is in general non-
integrable. It becomes integrable only for two particular cases: spherical
and spheroidal shapes with sharp-edged potential (.e. diffuseness going to
zero). The equations of motion are simply the Hamiltonian equations. In
our case they take the following form

z; =pi+ & (sx VV);, (6)
pi = —ViV — ker; Vi(ViV)pisj, (1)
¢=—k[((VV X p)zcos¢+ (VV X P)ysing)cotd — (VV x p).], (8)
6 = —k[(VV X p)zsing — (VV x p)ycos ] . (9)

We solve them numerically using an adaptive stepsize Runge-Kutta method.

3. Results

In the present paper we concentrate our presentation on a particular
case of the potential, such that the motion of the spinless particle in a 3-
dimensional billiard is almost fully chaotic. Then varying the diffuseness
parameter (a) and the spin-orbit coupling constant (k) we can examine
changes of the character of the dynamics introduced by the generalization
of the model. In this task we use again relative units, ag and kg, which
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correspond to the values adjusted within Woods—Saxon potential to repro-
duce known nuclear single-particle levels. We chose the octupole deformed
shape with a = 0.1. For other shapes (higher multipole deformations, or
in general a combination of several multipole deformations) the results are
qualitatively very similar when overall deformation is of the same order of
magnitude.

3.1. Poincaré sections

In order to show the dependence of the motion of a particle on the
diffuseness only, the spin-orbit coupling is taken to be equal zero (x = 0).
This simplification restricts the dimension of the phase space to 4, because
there is no motion in the spin subspace and the motion in ordinary subspace
becomes identical with the motion of a spinless particle. Let us start with
practical and often used qualitative test on chaos — the Poincaré sections
which are generated by recording the particle’s radial distance p from the
symmetry axis and the radial momentum p, each time the particle crosses
the equatorial plane z = 0, changing the sign of z-coordinate in the same
way (e.g. from z > 0 to z < 0). Each panel presented in Fig. 2 corresponds
to 10 trajectories starting from the points located at distances from the
centre of the potential equal to p; = &1:02 Pmaxs Where 1 = 1,2,...,10 and
Pmax denotes equatorial radius, with the momentum parallel to the Oz axis,
i.e. projection of the angular momentum on the symmetry axis [, = 0. For
every set of the control parameters for each trajectory over 2000 events has
been noted which gives 20000 points displayed on each panel of Figs 2 and 4.

Fig. 2a shows the Poincaré sections for the diffuseness a = 0.1 in units
of normal nuclear diffuseness ag. The points of section fill more or less
uniformly almost all approachable phase space except one region which re-
mains empty. The random swarm of the points indicates that the motion
is chaotic for most of initial conditions. Trajectories corresponding to this
type of section are not restricted to the invariant tori and can penetrate all
approachable phase space. The empty region is probably regular. One can
observe how it evolves on next panels of Fig. 2. Almost the same situa-
tion occurs for a = ag (Fig. 2b) but there appear two more regions which
are not visited by investigated trajectories at all and one closed curve cor-
responding to the trajectory of a particle started from the centre of the
shape. This two types of regions are well seen on next panel (Fig. 2c),
which refers to a = 1.5ag. The regular motion is observed for few more tra-
Jjectories (corresponding to the initial positions close to the symmetry axis
as well as the most distant ones) which points of section compose curves.
This means that some invariant tori are rebuilt due to the increase of the
diffusion of the potential. The motion is now a mixture of order and chaos.
The structure of phase space becomes more complex. It consists of both
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Fig. 2. Poincaré sections for 10 planar trajectories with zero projection of the
orbital angular momentum on the symmetry axis (I, = 0). The spin-orbit interac-
tion strength k=0 and the diffuseness : a) a = 0.lag, b) a = lag, ¢) a = 1.5ay,
d) a =2ag,e) a=25a9,f) a=3ao.

types of regions, chaotic and regular, which are very close each other. Next
figure (Fig. 2d) presents the Poincaré sections corresponding to the diffuse-
ness a = 2ag. In this case all examined trajectories are regular or almost
regular. And finally we show the sections for a = 2.5a9 and a = 3ay,
Fig. 2e and 2f, respectively. The trajectories with small initial positions be-
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come more chaotic again (dots corresponding to traces of the most external
curves) while trajectories started far from the symmetry axis are regular.
The role of diffuseness in suppressing chaos can be explained by a fact, that
for smaller values of a the change of nonlinear force during the ‘reflection’
from the surface is much more violent than in the case of bigger diffuse-
ness. The exemplary planar trajectories represented in the meridian plane
in (z, z) coordinates for a = 0.1ag and a = 3a¢ are displayed in Fig. 3. The
starting point is p = 1/2 pmax in both cases. It should be emphasized that
these are very short fragments of trajectories in question presented to show
the differences between them. For longer time of evolution they both cover
thickly the explored region. For smaller value of the diffuseness parameter
trajectory can penetrate wider part of the phase space. The trajectory is
similar to that one resulting from a sharp-walled billiard: it consists of the
points of reflection and straight lines between them. For larger a the tra-
jectory creates a regular pattern. It is smoother, the change of the force is
‘softer’, like in a deformed harmonic oscillator potential.

a=3.0 aQ
[ 1+
0.5 0.5
Z Z

0r 0
-0.5 -0.5

1t L -1 N .

-1 05 0 05 | -1 05 0 05 i

Fig. 3. Exemplary trajectories for a = 0.1ao (left panel) and a = 3ao (right panel).

In order to show the dependence of the nucleon motion on the spin-
orbit coupling, we use the previous results and examine what happens with
the motion in the case with partially regained regularity due to the increase
of the diffuseness of potential, namely a = 3ag, when the parameter x dif-
fers from zero. Just as in Fig. 2 the Poincaré sections have been obtained
for 10 trajectories with the same initial conditions. However, when the
spin-orbit interaction is switched on, the dimension of the phase space in-
creases to 6 (8 minus 2 constants of motion in involution). Therefore the
dimension of Poincaré sections increases to 4, and what we show are two 2-
dimensional projections of this sections on the ordinary (Fig. 4a, 4c, 4e) and
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Fig. 4. Poincaré sections for 10 trajectories with the same projection of the total
angular momentum on the symmetry axis. Left part (a, ¢, €) shows the projections
of the sections onto the ordinary subspace and right-hand one (b,d, f) — onto the
spin subspace. The diffuseness a = 3ao and the strength of the spin-orbit coupling:
a,b kK = 5kg, ¢,d kK = Ko, e,f Kk = 0.01ko.

spin (Fig. 4b, 4d, 4f) subspaces, in the same way as in [6-8]. The Poincaré
sections presented in Fig. 4e refers to £k = 0.01 k¢, where kg denotes nor-
mal value of the strength of the spin-orbit coupling. Comparing Fig. 2f
with Fig. 4e one sees that switching the spin-orbit interaction on with very
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a=3ap k=0.01xg

Fig. 5. Projection of the Poincaré section on the spin sphere. The single trajectory,
which other projection of the Poincaré section form the most inner curve in Fig. 4e,
is shown.

small intensity (1% of average nuclear value), leaves most of regular orbits
untouched. The degree of a nonlinearity introduced by this week coupling
is, in general, not sufficient to destroy these tori of regular motion. The
closer look reveals, however, that even such week coupling broadens areas
of chaotic motion. The complementary projection of the section on spin sub-
space, Fig. 4f, indicates a regular motion for this set of control parameters
and initial conditions. However, the concluding from the Poincaré section
for higher phase space dimension is not as obvious as for two-dimensional
one. The additional calculations of the Lyapunov exponents and the power
spectra show, that most of trajectories shown in Figs. 4e and 4f represent
indeed a regular motion. It could be also seen in Fig. 5, where the points
of section originating from the same trajectory as points forming the most
inner curve in Fig. 4e, presented in the spin space on the ‘spin sphere’ form
a very regular pattern. When the spin-orbit coupling reaches its normal
nuclear strength the sections show, Fig. 4c and 4d, that the tori of regular
motion are already destroyed. The sections in spin variables suggest the
complete chaoticity of the motion and these in ordinary variables show only
the traces of some of the most stable tori as the regions with higher density
of points. For unnaturally strong spin-orbit coupling, the loss of regularity
is complete in both subspaces, Fig. 4a and 4b. Even the most stable tori are
destroyed. Results shown in Fig. 4 are the same as conclusion of the papers
[5-8] that spin-orbit coupling is a source of chaos in classical dynamics of a
nucleon in the deformed potential.
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3.2. Lyapunov exponents

The above results can be confirmed by means of quantitative methods
of detecting chaos presented below. First one is the Lyapunov exponents
method which is a useful tool for an analysis of stability properties of trajec-
tories. The Lyapunov exponents measure the average ratio of an exponen-
tial divergence (or convergence) of trajectories with nearly identical initial
conditions in the limit when time, over which the averaging is performed,
tends to infinity and the difference between initial conditions tends to zero
[19]. Generally, in N-dimensional phase space there exists a spectrum of N
Lyapunov exponents. For a Hamiltonian system, as a consequence of the
phase space volume conservation, they must appear in pairs, A; = —AnN4+1—4
(A1 > A2 > ... > An). The motion is chaotic (for a given trajectory) if at
least one exponent is positive. Therefore, to detect chaos it is enough to
calculate the maximal Lyapunov exponent, which is much easier and less
time consuming task than calculating the whole spectrum.

We determine the largest Lyapunov exponent by the method of Ben-
netin et al. [20], which consists of evolving two trajectories initially sepa-
rated by dy for the time interval At, after which the magnitude of the dis-
tance between them (At) is rescaled back to dg. The procedure is repeated
k times. The maximal Lyapunov exponent is expressed in the following
form

i (10)

k
t} = lim lim
max( ) 0 k—oo kA Z_:
The metric used to calculate d is the cartesian one with a small modifica-
tion, namely A¢ is taken modulo 27 and together with py scaled to the
same range as other variables. In our calculations the renormalization time
interval At = /579, where 1y = %{1 is the unit of time.

Left panel in Fig. 6 shows the maximal Lyapunov exponents for k = 0
and three values of the diffuseness parameter a = 0.1ag, lag and 3ay and
right-hand one refers to a = 3agp and three values of the spin-orbit coupling
strength « = 0.01x¢, 19 and 5x9. The exponents are determined by 100
random trajectories in each case (nt in Fig. 6 denotes the serial number of
trajectory and have no special meaning). They are chosen to belong to the
same class as previously tested ones (trajectories of particles from Fermi
surface with the zero projection of the orbital angular momentum on the
symmetry axis). When the spin-orbit interaction is not taken into account
(k = 0) the largest values of the maximal exponent are obtained for the
smallest diffuseness. All trajectories for a = 0.1ap are more or less chaotic
— they lead to finite, positive values of Ay ax. Like in 3-dimensional billiard
[2] with the same initial conditions, Lyapunov exponents are substantially
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Fig. 6. The maximal Lyapunov exponents determined by 100 random trajectories
for each set of control parameters. Left: a = 0.1ag, 1ao, 329 and x = 0. Right:
a = 3ag and k = 0.01ko, 1Ko, Bko.

big. However, there also exist a few trajectories with small but finite Amax
(greater then 10~2). For a = ag, the maximal Lyapunov exponents also
indicate chaotic behaviour although the values of A, ax are smaller than in
the previous case, except a few of them which are nearly zero, suggesting
that some trajectories may be close to the rebuilt tori in phase space. For
the biggest considered value of the diffuseness parameter (a = 3ag) most
initial conditions lead to very small Apax (less then 1073). For such a case
it is very difficult to determine numerically the ‘true’ value of the exponent,
defined as limit over infinite time. The logarithmic plots suggest, however,
that this limit is rather zero, than a finite value. But even in this case there
are still trajectories for which finite Lyapunov exponents are obtained. The
above results confirm that motion becomes more regular with increase of
thickness of the potential skin for the considered class of initial conditions.
The regained regularity is destroyed by switching the spin-orbit interaction
on and increasing its strength. The right-hand panel of Fig. 6 illustrates that
when we start from a partially regular motion in a deformed potential, the
growing strength of the spin-orbit coupling increase chaoticity of the motion.
For k = 0.01x¢ there are some nonzero exponents, but already more, than
for £ = 0 and the same a (the most regular case in Fig. 6, left). For & = &o,
chaos is already developed, in spite of the large diffuseness, however some
trajectories are still regular. And finally for the strong coupling, x = by,
the Lyapunov exponents are big again.

In all papers, treating up to now nuclear models in classical terms, at
most one positive Lyapunov exponent (the maximal one) has been found
(1,2,5-9]. In our model, as it is shown in Fig. 7, there exist trajectories for
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Fig. 7. The spectra of Lyapunov exponents for different deformation types (a = 0.1
and n = 3,4,5,6) and spin-orbit couplings (left: x = ko; right: k = 5ko). All
results correspond to the same type of orbit (the same j3,).

which two positive exponents occur. In this figure we present only positive
Lyapunov exponents (negative exponents are symmetrical to the positive
ones due to the phase space volume conservation) calculated for the trajec-
tories belonging to the same class as previously tested ones. For all types
of considered deformation (n = 3,4, 5, 6) the initial conditions are chosen in
the same way as for the sixth trajectory displayed in Fig. 4. All presented
results correspond to the same deformation parameter a = 0.1 and normal
nuclear diffuseness (a = ag). The left part shows Lyapunov exponents for
the normal nuclear value of the spin-orbit coupling (x = ko), the right-
hand one those obtained for a strong coupling (k = 5k¢). The spectrum
of Lyapunov exponents has been determined by evolving in time a small
phase space volume and investigating rates of its expansion and contrac-
tion in the orthogonal directions [19]. The phase-space volume conservation
(Liouville’s theorem) served us also as a convenient test of a quality of the
numerical integration. The sum of all Lyapunov exponents was always zero,
with accuracy better than 1075, From Fig. 7 it is clear, that in our model,
the trajectories with two positive exponents exist. The case with increased
spin-orbit coupling confirm this conclusion doubtless. The trend, observed
in a model without spin [1, 2], that the degree of chaos increases with the
multipolarity of a deformation (n) is confirmed. In papers [6-8] we have
shown, that for deformations preserving the integrability of a potential, the
spin-orbit forces are a source of a chaotization of motion. In present model,
there is an additional source — the type of deformation making the potential
non-integrable (even for x = 0).
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3.3. The power spectrum

Another powerful, yet rather seldom used, method of investigation the
character of a dynamics is the Fourier analysis. After recording the phase
space coordinates in small equidistant time steps one is able to perform a
frequency analysis of the resulting time series. Let us show an example
of such an analysis for the same values of control parameters (diffuseness
and spin-orbit coupling strength) for which the Poincaré sections and the
Lyapunov exponents have been already presented. Let us consider a typical
trajectory, with initial conditions p = 1/2 pmax and only nonzero momentum
P (belonging to the same class of initial conditions as trajectories used to
calculate the Poincaré sections and the spectrum of Lyapunov exponents).

10? a=0.lag — ]
S :h.] ; a=3.0ay —
E £
8 8
@ w2
ot
4 )
2 5
2 2
& &
0 01 02 03 04 05 0 01 02 03 04 OS5
frequency frequency

Fig. 8. The power spectra of z(t) and p,(t) — time series for a = 0.lao (dashed
line) and a = 3ao (solid line).

In Fig. 8 we show power spectra of time series of z-coordinate and p,-
momentum for the diffuseness a = 0.1ap and a = 3ay, respectively. The
power spectra have been calculated using the maximum entropy method, as
described in [21]. For a small diffuseness the power of both coordinate and
momentum time series is distributed more or less uniformly in the whole
region of frequencies (which is limited by the length of recorded data). This
behaviour shows that there is no regular motion. In contrast, the power of
the corresponding signals obtained for the diffuse potential with the thick
skin is composed of a sequence of well distinguished peaks, corresponding
to characteristic frequencies. This is typical for regular motion on tori in a
multidimensional space. In Fig. 9 we display the power spectra for motion
with the spin-orbit coupling switched on. In this case, the dimension of the
phase space is higher and besides time series of the spatial variables one can
investigate time series of variables in the spin subspace. The former is shown
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Fig. 9. The power spectra of z(t), p.(t), ¢(t), ps(t) — time series for a = 3ao and
x = 0.01kp (solid line) and k = 5ko (dashed line).

in the upper part and the latter in the lower part of Fig. 9, for x = 0.01x¢
and k = 5x¢ and a = 3ay. Again, like in Fig. 8, we have two different types
of spectra, representing a regular motion for the weak coupling and chaotic
one for the strong coupling. The difference is particularly evident in the
power spectra connected to the signals from the spin subspace.

4. Conclusions

In the present paper we discuss some features of a single-particle motion
in a deformed, axially symmetric potential. The realistic nuclear potential
have been examined, and the dependence of the single-particle nucleonic
motion on a thickness of a nuclear skin and on a strength of the spin-orbit
coupling has been presented. The following conclusions can be drawn:

For well deformed shapes, when the single-particle motion is chaotic in
3-dimensional billiard case, an increase of the skin thickness within a wide



Chaos in Azially Symmetric Nuclear Potential... 1683

range of values leads towards restoration of regularity. This effect is due to
less rapid changes of forces acting at the surface in case of a diffuse potential
(both forces from the potential and from the spin-orbit interaction). One
should remember, however, that for a particular spherical and spheroidal
shapes, assuring integrable motion, the diffuseness, introducing nonlinear
terms to an integrable Hamiltonian acts in the opposite way [3, 4] (i.e. as a
source of a week chaos in the system).

The spin-orbit interaction, as a strongly nonlinear force, acts always as
a source of chaos in a single-particle dynamics. There was shown in [6-8]
that in an integrable deformed potential, the spin-orbit interaction only is
enough, for reasonable coupling strength, to make the dynamics chaotic.
Present investigations show that, for more realistic potentials, taking into
account a richer family of nuclear shapes, a classical motion of a particle
with spin could be chaotic for quite moderate deformations. The influence of
underlying chaotic dynamics on nuclear properties should be the strongest,
however, for shapes far from spherical symmetry.

For the reason of transparency and compactness, we illustrated our
investigations mostly with a particular choice of the octupole deforma-
tion. Qualitatively, we observe very similar influence of the diffuseness and
the spin-orbit coupling strength on the character of a dynamics also for
more complicated shapes (i.e. shapes described by a4, as,as and in gen-
eral shapes determined by several multipoles). In all cases, the spin-orbit
interaction enhances chaos observed already in simpler potentials [1, 2, 9].

Our study of the full spectrum of Lyapunov exponents shows, that
when a non-integrable deformation and spin-orbit coupling act together,
the degree of chaos increases. In this case a chaotic single-particle motion
characterized by two positive Lyapunov exponents is possible.

The authors are grateful to R. Arvieu, J. Blocki, W. Nérenberg and
A. Sobiczewski for helpful discussions and valuable comments.
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