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General approach to the problem of the operator ordering for the flat
phase space is given. It is shown how the operator ordering is determined
by some natural axioms. The Weyl, symmetric and the Born-Jordan
orderings are considered. The general form of the momentum operator in
curvilinear coordinates is found.

PACS numbers: 03.65. Ca

1. Introduction

The Weyl-Wigner—Moyal formalism provides us with a powerful link
between the classical and quantum physics {1-8]. The formalism has found
its application in many branches of quantum theory, as for example in sta-
tistical physics, quantum collision theory, quantum optics, semiclassical ap-
proximation etc. (See Refs [6] and [7] and the references cited therein).

Then, rather surprisingly, the Weyl-Wigner—Moyal formalism plays an
important role in self-dual gravity [9-11] and quantum groups [12]. Briefly
speaking this formalism describes the connection between the functions on
the phase space and the quantum objects. In most cases the phase space
is assumed to be Euclidean. However, some effort has been made to carry
over the Weyl-Wigner—Moyal formalism to the phase space of non-Euclidean
topology [13-16]. One can expect that it is possible to_generalize this for-
malism to any curved phase space. Such a generalization would provide us
with the natural method of quantization in general relativity.

The present paper is the first one in the series of our works devoted
to the Weyl-Wigner—-Moyal formalism in curved phase spaces. Here we are
concerned with the problem of operator ordering. This problem has been
considered by many authors [1-8], [17] and [18].
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Our intention is to derive the rule of the operator ordering from some
simple and “natural” assumptions. We hope that such an approach enable
us to establish the correspondence between the classical observables and the
operators in Hilbert space in the case of a curved phase space.

In Section 2 the assumptions are proposed which determine the operator
ordering for a monomial p™¢"™, m,n € N ( N stands for the set of natural
numbers). It is shown that this ordering is defined by a sequence of complex
numbers g(s, s, ), s > 0, satisfying some additional conditions (2.14) and
(2.21). We have not found the general solution of those conditions.

However, as it is shown in Section 3, if one makes the assumption defin-
ing the rule of extension of the prescription given in Section 2 to any (ana-
lytic) function on phase space then the Fourier representation method en-
ables us to find g(s, s, s) for any s > 0. Namely, the sequence (g(s, s,5)),cn
is defined according to the formula (3.17) by a complex valued function
f = f(z), = € R satisfying (3.15) and (3.16).

This agrees with the considerations of Refs {4-7, 17] and [18] but our
approach is different. (Especially the considerations of Ref. [18] are of a
great interest and in some aspect are similar to our treatment). At the
end of Section 3 we deal with the Weyl, symmetric and the Born-Jordan
orderings in some details.

Section 4 is devoted to the momentum operator in curvilinear coordi-
nates. Using our formalism we find the general form of the operator. This
generalizes the results of other authors [19] and [20]. In the next paper we
deal with the generalized Moyal bracket and related topics.

2. Operator ordering

In this section the problem of the operator ordering in quantum me-
chanics is considered. First we make some assumptions which seem to be
natural and then we find the general formulas for the operator ordering
which follow from those assumptions. For simplicity we mainly deal with
the flat 2-dimensional phase space I; = R x R! but it is a straightfor-
ward matter to generalize our results to the case of a flat 2n-dimensional
phase space I3, = R™ x R™. Moreover, we believe that the considerations
presented here can be quickly carried over to the case of any curved phase
space.

The problem of operator ordering can be stated as follows. Given the
flat 2-dimensional phase space I'; = R! x R! with the symplectic 2-formw =
dq A dp one looks for the rule which assigns to any classical observable 4 =
A(p, q) the selfadjoint operator A in Hilbert space. The map A(p,q) — 4
we denote by W, and call the generalized Weyl application {1-8]. We write

W, (A(p,q)) = 4 or simply W,(4) = A.
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Consider the family of classical observables of the form

Amn ™" mneN. (2.1)
We make the following assumptions
(i) The operator fim,n = Wy(Am,n) is selfadjont for every m,n € N and it
has the form of a polynomial with respect to the operators p and §. Moreover,
each term of fim’n is of the same unit as the classical observable A, 5. In
particular )
W,e(1) =1, (2.2)

where 1 is a constant dimensionless function and 1isan tdentity operator.
Let us make a new function A,, n(p,q) from the operator A, , by the
change:

p—op, §—4g, 1 1.
(ii) For everym,n € N

lim Amn(prq) = Am,n(p,9) - (2.3)

(iii) For everym,n€ N, m > 1,

“im-l n= m-la_{l‘r;ﬂ; (2'4)
, ap
for everym,ne N, n>1,
. A
Aoy =m0, (2.5)
where
afi:m,'n def 1. .
"TI-)_ ~ E[q7 m,n} )
aAm def 1., .
‘—6q.’*n é "'{fiip3 Am,n]- (2‘6)

(Compare with [1]).
Remarks
a) The operators p and § are the momentum and position operators, re-

spectively. In the general case of the flat phase space Iz, = R™ X R"
one deals with n momentum operators p, and n position operators
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gk, k = 1,...,n. They are selfadjoint operators satisfying the well
known commutation relations

[ékv@] =0,
[Z‘jk,ﬁl] = 0)
[ék,pl] = ih6kl 3 k,l = 1,. cey T (27)

b) Condition (7i) means that A, »(p, ¢) is the classical limit of the operator
Amon.

We now consider the consequences of the assumptions (), (i) and (%ii).
From (i) and the fact that we have at our disposal one universal pa-

rameter 2.e. Planck’s constant k which has the same dimension as pq or pg
(see (2.7)) it follows that

min(m,n)

Apon = Z g(m,n,s)R*p™m~7g" ", (2.8)

s=0
where g(m,n,s) are some complex numbers that should be chosen in such
a manner that the operator A, , defined by (2.8) be selfadjoint i.e.
A;’n = fim,n ) (2'9)

where, as usually, /i;,n denotes the operator adjoined to fim'n. Substituting
(2.8) into (2.9) and applying the formula (which can be immediately proved
by the induction)

min(j,k)
[ék9?J] = Z b(j,k,r)h"ﬁJ""Qk—“f"

r=1

b(j'k’r)dgir(i) (Irc)rz, r>1, (2.10)
one gets
min(m,n) min(m—s,n—3)
Z g"(m, n,s)h" Z b(m—- s,n—s, r)hrﬁm-—s—rdn—3~r
r=0 r=0
min(m,n)
- Z g(m,n,s)R°p™ 24", (2.11)
s=0

where b(j, k, 0) 471 and the star “*” stands for the complex conjugation.
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We conclude that
l

g(ma n, l) = Z g*(m, n73)b(m_ $n— s,l - s) (2'12)

8=0

or in another form
1 -1
Im[g(m,n,l)] = % Z g*(m,n, 8)b(m — s,n — 5,1 — s). (2.13)
s=0

As we will see in a moment the conditions (2.13) can be remarkably simpli-
fied if the remaining assumptions (i) and (ii1) are employed. Using (2.8)
one quickly finds that (%) leads to the following condition

g(m’n’o) = 1’ (2'14)

for every m,n € N.
Then we consider (%#t). From (2.4), (2.6) and (2.8) one gets

min(m—1,n)
Z g(m - 1,n, s)hsﬁm—l—sqan—s =
s=0
min(m,n)
m=t 3" (m - s)g(m,n, RPN, (2.15)

s=0

for every m,ne N, m > 1.

Hence
— 5

g(m—1, n,s) = = g(m, n,8), (2°16)

for every m,n,se N, m>s+1, n2>s.
Analogously (2.5), (2.6) and (2.8) yield

n—3s

g(man_ 1’3) = g(ma n’s)’ (2'17)

for every m,n,se Nym>s, n>s+1.
The relations (2.16) and (2.17) show that given s € N the coefficient
g(m,n,s) for any my,n€ N, m > s, n > s, is defined by g(s,s,s).
Indeed, from (2.16) and (2.17) we obtain for any m > s, n>s

g(m,n,s) = g((m—s)+s,(n—8) +s,5)
_(s+1)...m(s+1)...n s s
T 1l...(m-3s) 1...(n—s)g( %)

:<?)(g)¢&&@. (2.18)
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Then one easily finds the general formula

stmns)= () (2) alsrsi0), (219)

for every m,n,s € N, m > s, n > s. Concluding, the assumption (i)
leads to (2.14) and (%) yields (2.19).

Remark

From the formula (2.19) we infer that assuming g(0,0,0) = 1 one ob-
tains (2.14).

Consider the conditions (2.12) for m = n = [. Using also (2.19) one gets

g(m,m,m) = E g*(m,m,s)b(m — s,m — s,m — s)
s=0

= 82:: [(’:)rg*(s,s,s)b(m— s,m—s,m~—s). (2.20)

Finally, substituting into (2.20) b(m — s,m — s,m — s) as defined by (2.10)
and remembering that b(j, k,0) = 1 we obtain for each m € N

g(m,m,m) = sz ’(m—s)‘[( )]2 *(s,5,8), (2.21)

or, equivalently

Imfg(rm,my )] = %gim-’-l(m S [(M)] s o)

Now we prove an important proposition.

Proposition 2.1 The relations (2.21) (or, equivalently (2.22)) and (2.19)
imply (2.12) (or, equivalently (2.13)).
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Proof
gwumob“i“’(7)(7)gman

by(2:21) Z;:o (’7) (’;) ite (1 - ) [(i)r 9*(s,8,5)
l (n — s)!

B () (e o i

py(2:19) az;g*(m, n,s)i'"* (T::) (Tll—_ss) (F=)

i
by(2:10) Z g*(m,n,s)b(m - s,n —s,l—s).
s=0

(In the last step we also use the formula b(3j, k,0) = 1.) This completes the
proof. W

Gathering all that one concludes that the operator ordering satisfying
the azioms (i), (it) and (iii) is defined by the sequence of complez numbers
9(s,s,5), s € N, such that g(0,0,0) = 1 and (2.21) (or, equivalently (2.22))
holds. The remaining coefficients g(m,n,s) are determined by the formula
(2.19).

We have not succeeded in finding the general solution of (2.21). How-
ever, as it is shown in the next section, making some additional reasonable
assumption one can find the general form of g(m,n, s).

3. Generalized Weyl application and the Fourier transformation

The assumption we now make is in fact a definition of the generalized
Weyl application W,. Namely we assume
() The generalized Weyl application Wy is defined on a class of complez
functions on phase space by the C-linear extension of the mapping Ay n —

Amon.

Consider a complex function F = F(p, ¢) that has the Fourier representation

F=F(pq) = #/F(A,#)exp[i(Aer nq)ldrdp, (3.1)
R2

where F = F(), ) is the Fourier transform of F

P = PO = [ Fo,0)expl=i00p + u)dpda. (3.2)
Rz
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From the assumption (7v) it follows that
def 1 = .
FE Wy (F(pr0)) = s [ FOLW, (exliQp + w)) ddde. (3.3)
2

Define
Fo(A, 1) = Wy (expli(Ap + 1)) - (3.4)

Applying (iv) we get

oo iINE (i)t
Fo(Ap) = Wy ( > (:') (%)pqu)

k,l=0

o) . , kil
-y (@:')kﬁ_;:_)lwg(pk Iy Z (1)*) (#) Ay, (35)
k=0 ’ =0

where x‘ik,l is defined by (2.8). Substituting (2.8) into (3.5) and using also
(2.19) one finds

N 00 AL ; min(k,l) e
Bovm)= 2 ( k') e zv) S (k1 s) RopE0g
k,l:ﬁ . =0
) (i,\)m+a (iu)n+s -
mnz;—o (m+ )t (n +s)! g(m+s,n+3,8) K'p™q
=0 (3' s s
s! s!

* (m+s)t(n +3)19(5 8, 8) ()™ (ip) PG

(z<-n=<?;;)3 g(s,s,s)) (Z Qf—ﬂi—%”‘b) (Z ‘igg”qn)
s=0

m=0

— F(Auh) exp(ixp) exp(ipd) (3.6)

where

fOopun) & Z( 1)3()‘ o 9(s,3,5). (3.7)
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Employing the Baker-Campbell-Hausdorff formula
exp[i(Ap + pd)] = exp(iAp) exp(iug) exp {_5[2,\3;, Z#Q]}

o L iAph
= exp(iAp) exp(ipg) exp (—-g—)

.. . iAph
zexp(mq)exp(zkp)exp( ; ) (3.8)
one has

Fy(X, 1) = f(Auh) exp(ip) exp(ipg)
= founyesp (T2 ) explip )] (39)

Inserting (3.9) into (3.3) we obtain

F W, (F(p,q)) = / F(A, 1) F(Aih) exp(iXp) exp(ind) dAdp

(2r)?

-G / FAm) f(Auh)exp( 28 ) explihp + i)l drdie. (3.10)

The formula (3.10) has been considered in several works, [5, 17] and [18].
Here we have found it from some simple and natural axioms.
From (3.7) and (2.14) we get

F(O)=1. (3.11)
Consider a real function (an observable) 4 = A(p, ¢). Then

A=A* <= A*(\,p) = A(=\, —p). (3.12)

From our axioms (i) and () it follows that A def Wy (A(p, q)) is the self-
adjoint operator i.e., R )
At = 4. (3.13)

Consequently, (3.10), (3.12) and (3.13) lead to the condition on the function
f = f(Auh)

(f(Aph) exp( ,\,m)) = f(Auh) exp( ’\;‘h) (3.14)
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Equivalently, (3.14) can be written as follows

F(AuR) = a(Auh) exp (_"2“‘") : (3.15)
where a = a(Auh) is a real function, and by (3.11)
a(0)=1. (3.16)
Finally, using (3.7) one can find ¢(s, s, s) to be
9(s,s,5) = (=1)*s! £)(0). (3.17)

(Compare with [18]).
Now we consider some well known examples of the operator ordering
(compare with [17] and [18])

a) Weyl’s ordering.
Here a(Auh) = 1. Then one gets

4(s, 5,8) = (%)s' (3.18)

and by (2.19) and (2.10)

0| .

3
b
g(m,n,s) = ( ) (T) (2) s!:_(';_n2,sn_,s). (3.19)
b) Symmetric ordering

In this case a(Auh) = cos(z‘fzﬂ) . Then we quickly find

.8
9(0,0,0) =1 and g(s,s,s)= zEs! for s>1, (3.20)
and consequently

g(m,n,0) =1
and

;8
g(m,n,s) = «2-2- (m) (n) sl = b(m,n, 5) for s>1. (3.21)

s S 2
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¢) Ordering of Born and Jordan

sin( £k
Now a(Aph) = >(‘ ; ) Thus
2
i.’
g(s,s,38) = Py 13! (3.22)
and ’ B )
. ? m n Y m,n,s
= = 2
stmms) = 2oy () (1) =2 (3.25)

In order to generalize our formalism on the case of the 2n-dimensional flat
phase space I3, = R™ X R?™ endowed with the symplectic form w = dg; A
dpy + -+ + + dgn A dp, we make the following assumption:

(v) The generalized Weyl application Wy for Iy, = R™ X R®™ is defined
by the C-linear extension of the following formula

j k "u n — j k .n kﬂ
Wy(pitas .. .pirgk) = Wo(pllar) .. . W(piranm) .- (3.24)

From this assumption one implies that if F = F(p1,...,Pn,q1-.-qn) is a
function on Iz, then

~ def
F éW’g(-F(pl,---,P'rl.aQI ---Qn))

:———————(2:)2n / F(Ala ey An, Hlyeeoy #“n)f(Alﬂlh) e f()‘nﬂnh)
R2n

X exp(ix-[:f)exp(iﬁ- Q)dA1...dAndpy ... dpn (3.25)
where
F = F(Al,...,An,ﬂl,-.-,pn) = F(pl""’pn’ql "'qn)
2n

R
x exp[—i(X- B+ - Q)]dp1-..dpndgs . ..dpn  (3.26)
and X-p'déf A1p1 + .-+ Anpn, X-ﬁ'dﬁf Aip1 + ...+ AnPn, ... etc.

In the next section we show how the formalism presented here enables
us to define the generalized momentum operator.

4. The momentum operator in curvilinear coordinates

Consider 2n-dimensional flat phase space I, = R™ X R™. Let Ql, j=
1,..., n, be some curvilinear coordinates and denote by P;, 7 = 1,...,m,
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canonically conjugate momenta. Thus we have (here we use the symbol ¢’
instead of ¢;)

. . k
QJ = Qj(qk)’ J SQ Pk, J=1...,mn, (41)

where the Einstein summation convention is assumed. Then from (3.25)
one gets

P] = Wg(PJ) = 2n / P; (Al, Any B1, - ,,ltn)f(Al;l:]h) . f(An#nh)
R2n
X exp(iX - ) exp(ifi- §)dAz ... dAndpy ... dpn, (4.2)

where

P] :P](Ala ’\n,”lv",”'n)

a k
= gajpkexp[ iX-P+ - Q)dp1...dpndgt...dg"

R2n
=(2m)"i6(A1)...8' (i) ... 6(An)
a k
BQ exp( iﬁ- Q)dql .. .dqn (4'3)
R‘n

(Summation over k).
Substituting (4.3) into (4.2) and employing (3.11) and (3.8) we obtain

P = (%)nz / [/aQ] exp(—ifi- §)dg" . ]exp(iﬁ-é')

- Rntl
x 8' (M) f(Appih) exp(idppih) eXP(iAkﬁk)}dAkdm---dun- (4.4)

Then simple calculations show that in the Schrédinger representation (4.4)
leads to

. 9q* . a (0¢*
By = b= i+ 1) b o (585
3 k o l 32 k
— gt i+ PO B g st (4.5)

5}

where p;, = —th—-.
Dk 3qk
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Let ds? denotes the metric on the configuration space i.e.,
ds®> = dg' @ dg' + ...+ dg"™ ® dg™ = 7;,dQ’ ® dQ*. (4.6)

Then it is well known that the components I’}m of the connection with
respect to the coordinate system Q1,..., Q™ read [21]

l 2k
= S 5 (47)
J anaQ]
(Remember that the connection components with respect to the coordinate
system ¢!, ..., q™ vanish). Comparing (4.7) with (4.5) and using (3.17) and
the well known formula [21]

Oln e
F!l = TQ-\J/_E— s d_—f det(7]k) (4'8)
we get
- 0q k !
Pj = 307 7Pk — (1 — 9(1, 1, 1))RI
8q* : dln. /¥
OQ]pk"( —9(191)1))h 8Q-7 . (49)

This is our general formula for the momentum operator with respect to the
curvilinear coordinates Q7.
In particular assuming

g(1,1,1) = 2 (4.10)

one obtains for (4.9) the form considered in Refs {19, 20]

03P ~ Qi

P = 00— in 2T (4.11)

Notice that the relation (4.10) is satisfied if and only if

Wy(pg) = 3(pd + dp) - (4.12)

From (3.18), (3.20) and (3.22) one infers that (4.10) holds true for the Weyl,
symmetric and Born—Jordan orderings.
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