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The supersymmetric extensions of k-Poincaré algebra are considered.
All extensions of algebraic sector are classified. It is shown that, under
some assmptions, no regular coproduct can be introduced.
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1. Introduction

Recently some attention has been paid to the deformed Poincaré alge-
bra introduced by Lukierski, Nowicki and Ruegg [1] (see also [2]). It seems
that it posses some atractive features and is worth to be considered in more
detail. In particular one can pose the question concerning the supersymmet-
ric extensions of deformed Poincaré algebra. This question was addressed
and solved in Ref. [3]; the solution was obtained by applying the combined
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deformation and contraction procedure to the algebra OS,(1|4). The char-
acteristic feature of the resulting structure is that the x-Poincaré algebra
does not form the subalgebra of the superalgebra.

The superalgebra introduced in Ref. [3] was further analysed in series
of papers [4-6]. It appeared that one can change the basis in deformed
superalgebra in such a way that in the new basis x-Poincaré algebra is a
subalgebra; however, there is always some price to be payed for that (see
Section 4). This shows that the problem deserves some further studies.

In the present paper we analyse the problem of the supersymmetric ex-
tensions of the x-Poincaré algebra in more detail. In Section 2 we classify
the possible N = 1 extensions of the x-Poincaré algebra making a number
of rather natural assumptions. In Section 3 the coalgebra sector is analysed.
A simple Ansatz is made for the coproduct of supercharges. It is then shown
that, within this Ansatz, no regular (analytic) solution exists. Finally, Sec-
tion 4 is devoted for short conclusions; in particular, the results obtained
previously are shortly discussed within the framework studied here.

2. The algebraic sector

We are looking for deformed N = 1 supersymmetry algebra. The fol-
lowing assumptions are made:

(i) our algebra contains x-Poincaré algebra as subalgebra;

(ii) there are two additional femionic generators Q o, @ which obey

{Qa, Q,B} =0, |
(08,07} =0, W)

and transform as spinors under SU(2):

{Mia Qa] - _%(aiQ)a )
(M, Q3] = 3(QF0i)ai (2)

(#i) the supercharges commute with fourmomentum

[Qa’Pp.] =0,
[QF. Pu] =0; (3)

(iv) the superalgebra admits involution such that x-Poincaré subalgebra is
real and Q is transformed to Q% ;

(v) the following commutation rules are assumed to hold,;
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{Li: Qa] = i(7i(P))aﬁQﬁ s
{Qou Q;} = Aoz,B(P), At = A, (4)

here v; and A are P-dependent matrices.

In order to find the possible forms of the superalgebra under consider-
ation we use the following Jacobi identities

[Li’{Ljs QH+ [Lj’[Q LH [Qa(LiaL']] =
(L4 {Qus @} Y] — {[L, @l @3} — {Qa o Q%)) = (5)

They give, respectively

. 1 Py 1
[Liyv5) = [Lj, 7] — ilvi, 73] = 3 cosh (7) EijkOk — ‘ScheijkPkPnUn , (6)

[Liy A] = i + iA‘y?- . (7)

Taking into account that the SU(2) subalgebra spanned by rotation gener-

ators is not deformed we can write the following general expressions for A
and v; :

A=a+bPpo,, (8)

1
i = §(f0'i+gPiPnan+h5iknPkan+dPi); (9)

here a, b, f, g, h, d are functions of P? and P,. However, it follows from
our assumptions that

P —,
M? = 4«2 sinh? (—") — p?
2K

is the Casimir operator of the superalgebra under consideration. Therefore,
a, b, etc. can be viewed as functions of Py and M? (or P? and M?).

Equations (6), (7) and (8), (9) give the following set of equations for
scalar functions a, b, efc.:

—f—— snh(P)+ fh+ gh(4nzsinh2 (%)—MZ):O,(wa)

—ikh sinh (P ) +-f% - 1 (4n sinh? (P) Mz)
2 2K
+5 fg @K, sinh? (PO) Mz):% cosh (i) (10b)

1 1

2 1

- Y B 10
2h toh-5fe=-g. (10c)
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a :a(d;d) +b(f;’f) (";g) énz sinh? (%)—Mﬂ , (10d)
b =a (g;g>+b(d;’j)+zb<h2h), (10e)

nbsmh(io) =a (I%f) —ib (h 5 h) @n sinh? (R) M"’) , (10f)
a (f‘%’f) tib (%i> = 0; (10g)

here prime denotes differentiation with respect to Py with M? fixed.

The above system of equations looks quite complicated. However, it
posses a rather rich set of symmetries. They follow from the fact that the
structure assumed is invariant under some redefinitions of supercharges.
Namely we can make the following redefinitions:

(a)

Q—-e%Q, QT —efQt, (11)
where ¢ = p(Py, M?) is an arbitrary complex function. The correspond-
ing symmetry transformations read

a— e?teq, b— e2t@, d—d+ 20, (12)
all other functions being unchanged;
(b) . . :
Q —ecfromg, QY - QTeAon, (13)
with arbitrary complex a = a(Py, M?); the relevant symmetry reads
a — acosh(a + a) + b|P|sinh(a + &),
b — bcosh(a + @) + I‘%_l sinh(a + &),

f — fcosh2a + ih|P|sinh2a + —- B ®_sinh (I; ) sinh 2,

ih P, 24
g—g —.——}2){2 sinh? a — Esmh o — —_I;P smh2asmh( - ) + ﬁ ;
h — hcosh2a - i sinh 2a — 2—1’1 sinh? a sinh (-P—O) ,
|P| |P? K
d—d. (14)

Now we can analyse the set of equations (10). Transformation (14)
allows us (with some exception — see below) to put

= — 15
h= o (15)
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which determines a up to the discrete number of possibilities. Analogously,
equation (12) can be used to set

d=0, (16)

which determines ¢ up to complex additive constant.
Now, equations (10a)-(10c) give

f= :!:e'%% , (17a)
= _2’;, (17b)
g=0. (17¢)

Equation (10g) is identically fulfiled while (10e) gives

b= C’e"%‘1 . (18)

Using the freedom in the choice of additive constant in p we set ' = *1.
Therefore we get finally

g=2=0, (193)
d=0, (19b)
1
= — 19

h= (19¢)
P, P,

f= e I = efe_’l% , (19d)
P P

b=de 7% = ebe_fg . (19e)

It remains to determine a. From the equations (10d), (10f) we get

P2
a = EbEf (K,Sinh (%) - E{j) . (lgf)

In order to reveal the meaning of the above solutions let us take x — oo
which yields :

(Li, Q] = %efdiQ, (20a)
{QaQ+}=€b€f (Po+£fﬁ3) . (20b)

We can get rid off the factor ¢; by noting that the x-Poincaré algebra
admits an automorphism P, — £, P, which allows to exclude £;. The sign

factor € determines the choice of D39 or DOD) representation for Q.
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It remains to consider the case when the transformation (14) does not
allow us to put h = 5..

Let us write out the relevant equation:

7 h K P,

where z = €22, If the above equation has double root at z = 0 the transfor-
mation under consideration cannot be performed. However, this can happen

only provided
|2P| & sinh (PO) , (22)

K K

which cannot be fulfiled generically.
Let us write our final solution (we choose 4 = 1 in what follows)

L0Q) = te R oiQ + oeiknPacn@, (232)
{@,0%}= (nsinh (%) - %) te R Puon. (23b)

Let us note that the second rule can be written in factorized form

{Q,Q%} = i (2mosh (;) Pa) (2nsmh (P ) + P& ) (24)

All other solutions can be obtained from the one given by equations
(19) by applying the transformations (11) and (13) given above.

3. The coalgebra sector

We shall make the following rather mild assumptions concerning the
coproducts:

(i) the coproduct for P, has the same form as for x-Poincaré algebra.
(it) the coproduct for @, can be written as :

AQa = Fap(P,P)Qp + 00s(P, P)Qpg, (25)

where for simplicity, we denote the second factor in tensor product
by~
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The basic constraint for F and G is provided by the condition
{AQ,AQT} = a(AP) + b(AP)AP, 0, (26)

and reads

a(FF*) + &4(GGY) + bpi(Fo; F*) + bp;(Goi:G) = a(Ap) + b(Lp) AP0 5
. (27)
here a = a(p), b = b(p), @ = a(P), b = b(P).

Let us consider the above condition for a and b given by equations (19).
We get then

(o () - .0) (o () )
6 (2scoms (2] - ) (2nsion (2] + 7.0)

o (amcom (12) - Fos) 4o (2esimn (1) - 7.9)
|t ) +5-a) + B (onsinn () 7). 9

We shall now show that the above equation does not posses the solu-
tions F, G which are everywhere regular. To show this let us note that
the covariance under the rotation subalgebra spanned by M;’s imply the
following structure for F and G :

Mo
T
A
&.
=3
9
|
N

F =A+ (BP; + CP; + De; P; Py)oi,
o =E + (HP; + K P, + Re;;, P; B)os; (29)

here A, B etc. are functions of Py and M 2 to be determined by equation
(28). Let us now specify P and P as follows:

P, = (Py,0,0, P3), P, = (P,0,0,P3).

Then all matrices appearing in equation (28) become diagonal. Let us now
choose

~ P ~ P
Py > 0, Py > 0, P3; = 2k cosh (—0) R P3 = 2k cosh (_Q) .
25 2&
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It is then easy to see that, if F and G are nonsingular, the (1, 1)-element
on the left-hand side vanishes while the corresponding element on the right-
hand side does not.

Still we cannot conclude that there exists no regular coproduct for our
algebra. This is because we could in principle choose another solutions
to equations (19) and again look for regular coproduct (25). However, we
can argue that no such choice exists. As we have shown all solutions to
equations (10) are related to each other by the transformations (12), (14)
(once the sign factors €4, ¢, have been choosen). Therefore, any solution
can be obtained from our particular solution (19) by applying first, say,
transformation (14) and then transformation (12).

Let us first consider the transformations (14). Equations (14) imply
that a? — b%|p]? is an invariant. However, we have

a® — b2|p)? = (a + bp'- &)(a — bp - 7). (30)

The left-hand side can be now calculated using our particular solution (19).
It vanishes, if

17 = 2k cosh (g%) , (31)

1.e.

M? = —4k?%. (32)

The matrices on the right-hand side of equation (27) commute and can be
diagonalized simultaneously. For 7' # 0 they are nonzero. Thus we conclude
that for the momentum configuration (31) both have one eigenvalue zero and
these eigenvalues stand on different places. As both matrices are related
by transformation p — —p we conclude that for any a, b obtained from
the particular solution (19) by transformation (14) the matrix a + bp - &
has the following property : if we fix the direction 7 of p then one of its

eigenvalues vanishes for p = 2k cosh (%) 71 while the second — for p =
P -
—2k cosh (2—’%) fi.

Let us again consider equation (27) for

PO = = 130
Pp = (PQ,0,0,leCOSh(é;)) s Pﬂ = <P0,0,0,2K,C08h (5;)) .

The left-hand side of equation (27) has eigenvalue zero provided (new) F
and G are nonsingular. On the other hand, using again the invariance of
a? — b%|p]? under transformations (14) we easily check that, with P,, P,
chosen as above,

a?(Lp) — b*(Ap)(LF)? > 0, (33)
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so the right-hand side of equation (27) cannot have zero eigenvalue.

There remains to consider the effect of transformation (12). As the
transformation (14) does not change the coefficient d, and d = 0 for the
particular solution (19) we have now

BQ(PO,Mz)

d=
0P

However, d is regular by assumption, so ¢ must be a sum of regular
function of Py and M? plus a (possibly singular) function of M2. The
regular part cannot transform singular coproduct into a regular one.

Therefore, we can restrict ourselves to the functions ¢ = g(M?). Under
the transformation (11) a — e2t2a, b — €21 @b; g can cure the singularity
of F and G if either
(i) et @ kills zero eigenvalue on the left-hand side of equation (27) or
(i) it provides the zero eigenvalue on the right-hand side.

As far as (i) is concerned, ¢ must have singularity at M? = —4x%. In

consequence, this singularity appears for both P3 = +2kcosh (%); but

any of two eigenvalues of a + bp - & vanishes only for one of these values so
that )
e®Te(a+bp- &) =a' + b'pd

is necessarily somewhere singular.
In order to cosider (%z) let us take again

P, ~ P
P3; = 2k cosh 2 s P3 = 2k cosh -2
2k 2K

and vary Py, Py (Po, Py > 0). Then AM? = M?(/Ap) varies in the interval
(—o0o, —8k?%). Therefore, ¢+ should vanish for M? taking values in this
interval; consequently a' and b' vanish for such M?2. This contradicts the
assumption that a’' and b' are regular (analytic). We conclude that no
regular coproduct of the form (25) exists.

4. Conclusions

We have analysed the possible extensions of x-Poincaré algebra to N =
1 superalgebra. Some rather mild assumptions have been made concerning
the algebraic as well as coalgebraic sectors.

We have found all possible algebraic structures admitted by the as-
sumptions we made. It appears that, in principle, they are all related by
redefinition of supercharges. To put our results in proper framework let us
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compare them with those obtained in Ref. [5, 6]. It was shown there that
the deformed superalgebra of Lukierski, Nowicki and Sobczyk 3] can be put
in the form in which the bosonic operators form «-Poincaré superalgebra.

However the price to be paid for that is that Q@ and Q cannot be inter-
preted as conjugated to each other (if we assume that x-Poincaré superalge-
bra is invariant under conjugation). This can be further cured by perform-
ing an additional transformation which, however, is necessarily singular at
M? = —4x?%. Therefore, the coproduct resulting from such transformation
will be singular at that point. This again supports our conclusion that it is
not possible to construct regular coproduct (except k£ = 00), at least within
the Ansatz we have used.
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