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The aim of these lectures is to present an introduction at a fairly
elementary level to recent developments in two dimensional field theory,
namely in conformal field theory. We shall see the importance of new
structures related to infinite dimensional algebras: current algebras and
Virasoro algebra. These topics will find physically relevant applications
in the lectures by Shankar and Ian Affleck.

PACS numbers: 02.20.Tw, 11.25.Hf, 11.10.Kk

Lecture 1

Infinite dimensional algebras

Let us start by introducing some basic notions related to finite and
infinite dimensional Lie algebras.

As an example of a finite-dimensional simple Lie group, describing the
internal global symmetry of a field theory in D-dimensional spacetime, let us
take the orthogonal group O(N). A multiplet of fields $4(z) (a = 1, ..., N)is
assumed to form a N-dimensional fundamental representation of the group
O(N). The infinitesimal transformation of fields is given by

§%Pq(2) = iTaPs(z), (1)
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Poland, June 4-14, 1995.
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1786 J.-B. ZUBER

where T are the generators of the infinitesimal transformations, so that
exp (: T*ée?) belongs to O(N). They span the Lie algebra associated with
the symmetry group, completely defined by the structure constants fabe

[Ta’ Tb] — ifabcTc . (2)

The generators of the group O(IV) are taken as (hermitian) antisymmetric

matrices,
(T =T = ~(T%)*, (3)

satisfying also the normalization condition
tr TOT® = 6,y (4)

In a quantum theory, the transformation law (1) for the field operator & is
generated by the conserved charge operator Q¢

§°d = i[Q°, 3. (5)

Here and in the following, the hat above a field intends to stress its operator
nature. It will be dropped whenever it is unambiguous. The following
algebra of charges holds,

[Q%, Q% = if**Q-. (6)

In a local field theory, the charges resulting from global symmetries are
given by

e = / P jo(a,1), (7)

where Jg‘ are time components of the Noether currents. They are conserved
%Q“ = 0 if the currents satisfy

orJe =0. (8)

Then, we can look at the equal time commutation relations between the
time components of the currents,

[J3(2,1), Jo(@, 1) = if**°J§(2,0)6(Z - ) + ..., (9)

and, if possible, at analogous relations for space components of the currents.
The first term on the right hand side of (9) follows from the structure of the
symmetry algebra O(N). The dots stand here for possible extra terms, that
cannot be deduced from the sole properties of the O(XN) charge algebra.
They are the so-called Schwinger terms.
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If these extra terms are under control and the algebra (9) closes on
the terms Jyg plus a finite number of other terms, we see that these current
components form an infinite dimensional algebra. The structure of this
algebra is particularly simple in two spacetime dimensions.

Free Euclidean fermions

Let us consider a simple model of free massless fermions in two-
dimensional Euclidean spacetime. FEuclidean coordinates are denoted by
z# = (21,2?). Tt is convenient to adopt complex coordinates,

z=z' +iz?, z=2'—i2?, (10)
The line element is given by,

(ds)2 = (d.’cl)2 + (d:t:z)2 = g,z,z(dz)2 + 2g,zdzdZ + gzz(df)2 . (11)

The flat metric g, = §,, corresponds to off-diagonal z, Z components

922 =922 =0, gz =9z = % (12)
The complex contravariant components are, respectively,
gF =g =0, ¢gF=g¥ =2, (13)
and thus the complex indices are raised and lowered according to
V,=3V%, V=2V, (14)

It is easy to find relations between real and complex tensor components.
For example, we can relate respective components of the gradient operator,

0=0,= %(31 —i8), 8=0;= (61 +i8,). (15)
We will further abbreviate , by 3 and 8; by 0. The volume element reads

‘d?z' = d%z2 = dz A d2? = dz /\'dz ] (16)
21

Dirac or Majorana fermions in two dimensions are two-component ob-

jects,
¥ = (3) . (17)
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The bar over the down spinor component is only a customary notation, and
both components are anticommuting. The gamma matrices may be taken
to be the Pauli matrices

1 01 0 —z . .{1 0
Y :(1 0)$ 72:(2' 0)’ ’)’1‘)/2=2’)’3:Z(0 _1)' (18)

(Note that 72 is diagonal, so that up- and down-components of (17) describe
opposite chiralities, and that returning to real space-time, a Wick rotation
would make 72 real: this allows to choose solutions of the Dirac equation
(see below) with reality properties and justifies calling the two components
of (17) Majorana—-Weyl fermions.)
We can write the Dirac Lagrangian explicitly,
16740,8 = 1ty k0,0

_ gt [ 3(81+i82) 0 AL L TAT
= (2 A %(31_i82))w_¢a¢+¢a¢. (19)

Therefore, the action for massless two-dimensional fermions is
1 _ -
S = o [ & (v + 500). (20)

The factor 27 is introduced for later convenience. Dirac equations of motion
are 0vY = O¢ = 0, their solutions show that the spinor components are
holomorphic and antiholomorphic functions respectively, namely

v =9(2), ¥=9(2). (21)

The fermionic system decomposes into a holomorphic (analytic) part and
an antiholomorphic (antianalytic) part.
The kinetic Lagrangian term (20) can be inverted to derive propagators,

8((2)9(2)) = 3((2)P(2")) = meB (7 - +T). (22)

Due to the normalization chosen in (20) we obtain the following simple
results

(B(2)p(w)) = ——, (23)

FOHD) = (24)
(¥(2)d(@)) = 0. (25)
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The above model can be generalized to incorporate the internal symme-
try group O(N). We consider N Majorana—Weyl fermions with the following
action

1 N
_ 2 5 /) /)
. ; / &2 (badta + Padda). (26)

The action is invariant under the O(N) global transformations, with the set
of conserved currents J; = %!Pt'yl'y“T 9. We will consider their complex
components,

(I = iJ3) = 39%a(2)Tes¥p(2) s (27)
=3(J7 +iJ3) = 39a(2)Tas¥p(2) - (28)

The holomorphicity (resp. anti-holomorphicity) of the currents J (resp. J)
that follow from the equation of motion imply the conservation law 0#J, =
(BJ + 8J) = 0. In fact this holomorphicity of J and antiholomorphicity
of J are equivalent to the conservation of both the vector currents J, and
the axial currents JAxnaIp, = %SP‘717,,73T“SP whose z,Z components are
(J,~J).
The only change to the above formulae due the field quantization is the
normal ordering of field operators, J¢ = % : d)aTgﬁwﬁ : etc. Now, let us

calculate the operator product J®(z)J®(w) in the limit where z approaches
w. Using the Wick theorem and (23)-(25) we calculate

T (2)T8(w) = 1+ p(2)To(z) = w(w)wa( ):
1

- 2(2— w)2 6ab + fabc ( ) +1‘eg (29)

The last (‘reg’) term is finite in the limit z — w. In the same way, we obtain

ja(z)jb(w) 2(_—1)—60b+ fabc ( )+reg (30)
J°(2)J®(w) =reg. (31)

These ‘short distance expansions’ (29)-(31) have to be understood in the
sense of insertions in correlation functions: in the presence of other fields
located at points different from 2 and w, one may write

1
Je Sw)e oY= — =
T w)-) = g
Finally, we can compare the above relations with the generic formula (9).
The second term on the right hand side of (29) can be recognized as the

8P+ ) 4 iFP D (T (w) -+ )+ xeg. (32)
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Cauchy kernel, so that it matches the first term in (9). We have determined
also the Schwinger term, of the form §%%§'(Z — §). This will be exposed
more clearly in the next lecture.

One lesson to be remembered from this first lecture is the importance
of complex coordinates when dealing with massless fields in two dimensions:
the holomorphic (z) and antiholomorphic (Z) dependences have decoupled.

Lecture 2

Radial ordering

As is well known, there are two main quantization procedures in field
theory. One appeals to functional integration, where the basic observables,
the correlation functions of fields, result from the integration with a certain
measure [ D pe® of the field functionals. For example the two-point function
of the current that we have been considering reads

(TH(2) TP (w).. ) = ( / D¢e5) - / DpeSIH ()P (w)....  (33)

The second procedure emphasizes the role of observables as operators acting
in the Hilbert space of the theory. The non commutation of the field opera-
tors and their ordering in the correlation functions is an important feature
of that quantization procedure. Thus the correlation functions are to be
computed as the vacuum expectation values of suitably ordered products of
field operators. Usually, the physical observables are expressed in terms of
correlation functions made of time ordered products of fields. In conformal
field theory, it is more convenient to order the fields radially outward from
the origin. The radially ordered product of two operators is defined as

X(z,2)Y (w,@), |z > |v|

( b , 34
1Y (w, @)X (2,2), |z| < |w| (34)

RX(z, 2)Y (w, ®) = {

where the plus (minus) sign is for bosonic (fermionic) operators. The proce-
dure for calculating radially ordered correlation functions, ‘the radial quan-
tization scheme’, is very powerful because it facilitates the use of complex
analysis and contour integrals.

In fact the radial ordering appears in a natural way in a conformally
invariant two—dimensional field theory. Suppose the space direction peri-
odic, t.e. let it be a circle of a given length L. Euclidean space—time is thus
a cylinder, a situation familiar in the context of string theory when one
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looks at time evolution of closed strings, or of statistical mechanics when
one works with a finite strip with periodic boundary conditions. We denote
the complex coordinates of that cylinder by (,( (the real part of { is the
space coordinate). As we shall see soon, a conformal field theory has a cer-
tain covariance under conformal changes of coordinates. In particular, we
can consider the following mapping,

2= ezir% , 3= e—~2i1r£— , (35)

that maps the cylinder onto the plane (punctured, i.e. with the origin re-
moved). Equal time lines on the cylinder correspond to constant radius
circles on the plane. Our radial ordering on the plane thus corresponds to
the usual time ordering on the cylinder.

Let us now rephrase the results that we have obtained on the short
distance product of two currents in the operator language. To distinguish
the two approaches, we shall put again a hat on fields to stress their operator
interpretation. Thus (29) reads

R (Jo(2)¥(w)) = 2(2—_15

w)

6ab fabc ( )+reg (36)

Affine current algebra

As it has been already mentioned, the conservation laws reexpressed
in complex coordinates lead to the (anti)holomorphic dependence of the
current components (see (27), (28)). Holomorphic fields can be expanded
in Laurent series,

J2) =Y Jgzmt, JME) =) Jar Y, (37)

nez neZ

Je = }( ;—zja(z)z f 2 e (38)
O
where the integrals are along contours encircling the origin.
Let us now derive the commutator between the Laurent modes,

s 2 dz dz -
(72, 78] =f%2 Ez—wm-fa(z)-]b(w)
0 bo)

dz n dz m 7b a
—fé-i;z f2z1r T (w)J%(2)
O o
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_fdw ., dz
_f{mw [ ?{ Sin”

o [z]>]w]
_ f -;{z;z”]R(j“(z)fb(w)). (39)
fz]<|w|

The difference between the two 2-contour integrals, one inwards, one out-
wards with respect to the w-contour, combines into a single integration
along a contour around the point w (see Fig. 1).

Z
w
. .

Fig. 1. The difference between two z-contour integrals may be reexpressed as a
contour integral around w

Then, if we insert the short distance product (36), only singular terms
contribute to the final result.

A dw o™ dz -0 .
e, 32 = f & f;z.—,;z"R(J (2)J*(w))

= 2z1r mfmw [2(2 w)2606+ f"bc = )—{—reg]

= 55 Sntm,0 + 12T, (40)

The current algebra of the modes J2 is called an affine Lie algebra:
[Je,Jb) = ifebege . + gk6“b6n+m,o. (41)
It is infinite dimensional: there is an infinite number of generators, J2 and

k. The finitely many modes jg form the ordinary Lie algebra with structure
constants f9%¢, The extra term commutes with all generators, [k, J%] = 0,
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whence the name ‘central term’. This ensures that the Jacobi identity is
satisfied. For irreducible representations, Schur’s lemma implies that the
k-operator must be proportional to the identity, £ = kI. The constant k
thus depends on the specific representation of the affine algebra. We have
found that for N free Majorana fermions £ = 1 : it is a ‘level £k = 1’
representation of the affine SO(V) algebra. Later, we will see that for all
‘good’ representations of current algebras, k is integer, with appropriate
normalizations of the generators.
In the following we shall drop the hat above operators.

Conformal (Virasoro) algebra

Another important infinite dimensional algebra appears if we consider
the local changes of coordinates, z# — z# + ¢#(z). The infinitesimal change
of the action defines the energy-momentum tensor T},

§S = %/dzx Ty, 0%e” (42)

(the choice of normalization with ;- will be convenient in the following).
Let us concentrate again on the example of the free massless Majorana
fermion. The complex components of the energy-momentum tensor read

T(Z) T, = _§ : "pad' )

T(2) =Tz =—-3: 9,
Tzi = Zz — 0 . (43)
If we return to Cartesian tensor components, the vanishing of off-diagonal
complex components means that the energy-momentum tensor is symmetric
and traceless, while the holomorphicity of the diagonal components amounts

to the conservation law §#T,, = 0. As in the previous section, we can
evaluate the short distance product expansions,

TETW) = gy (51_1(:;2 ¥ ZT( o e
T(2)T(w) = reg. (44)

The Laurent modes are defined by:
=Y Lnz™"%, T(2)= ) L.z 77, (45)

ne”Z neZ
dz n+1 T f dz - _ sn+1
_d e _ 4% . 4
L. ]f ZT(z)e, I Z1(5)z (46)
(@) [o)
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Following the same procedure as above for the J’s, it is now straightforward
to derive the following algebra,

[Ln, Lm] =(n—-m)Lpmyn + in(n2 —1)0ntm,0,

[I/n,im] =(n-=m)Lmyn + %n(n2 —1)bpntm,0,
[LayLm] =0. (47)

In general the Virasoro algebra is defined as
[Ln,Lm] =(n—m)Lmyn + %n(n2 -1), (48)

and c is the central charge. We thus see that the operators L., and L,
of (47) form two commuting Virasoro algebras of central charge ¢ = %—
Equation (46) shows that L,, resp. L., is the generator of the change
8z = 2™ (resp. §2 = z*t1) in the quantum field theory. It is interesting

to confront these operators with their classical counterparts, namely

0 0
—. _ o+l —_ _3zn+l
L, =—2 35 Ln=-2 35 (49)

which satisfy the following classical algebra
[En, ACm] = (n - m)£n+m ’ (50)

together with similar relations for the antiholomorphic sector. We see now
that the ‘central term’ in (47) is due to quantum effects.

Note also that Lg, Lo are the rotation/dilatation generators, whereas
L_y, L_; are those of translations.

Lecture 3

Conformal invariance

Let us first discuss briefly the general features of conformally invariant
field theories, in a generic space-time dimension D. A conformal transfor-
mation is defined as an angle-preserving local change of coordinates.

If g, is the metric tensor (ds? = g,,(z)dz#dz"), a transformation that
leaves the metric invariant up to a local scale change,

Juv(2) = g4, (2') = (1 + a(2)) g () (51)
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is conformal. For an infinitesimal coordinate transformation z# — z#* +
e#(z), the condition reads

9uv(2) = 9uu(2)+6P0p9uu (2)+9up(2)00 P+ 91 p(2)0pe? = (1 + a(z))guvgz))-

52
Thus in Euclidean space the transformation is conformal if and only if the
following equations are satisfied,

gy,pauep + gupay.ep = a(z)guu ’ (53)

Contracting with g#¥(z), one identifies a = 20,¢”.

In a classical local field theory, the infinitesimal change of the action
under a local change of coordinates is defined by the energy-momentum ten-
sor T,,, see (42). Equation (42) implies the invariance of the action under
constant translations e(z) = a. If we assume moreover that the energy-
momentum tensor is both symmetric and traceless, then the action is also
invariant under infinitesimal rotations ¢* = w#¥z,, (with w*” antisymmet-
ric), and dilatations £¢# = Az*. (Conversely with adequate assumptions,
invariance under rotations and dilatations implies the symmetry and trace-
lessness of T},,.)

If we combine the fact that T,, is symmetric and traceless together
with equation (53),

T, 0%e” =T, 1 (0e” + 8¥¢*) = La(2)Tug™ =0, (54)

then we draw the striking conclusion that the action § is left invariant under
arbitrary conformal transformations! (Polyakov [1]).

In the quantized conformally invariant field theory, Eq. (42) should be
understood as inserted in the functional integral and implies Ward identities
for correlation functions. Consider some correlation function,

($1...0N) = 5 [ D 51414, .. .o, (55)

where Z = [ D¢ eS¢l Denote by §¢ the change of the field ¢ under the
conformal transformation ¢ — z + ¢. Writing that the functional integral
in the numerator is invariant under that change, we get

N
(1005 0m) + o [ @02 0K (Tu(e)dr. . bm) = 0. (56)
=1

In particular, if the §@(z) are local expressions depending only on ¢(z), e(z)
and a finite number of their derivatives,

§¢i(x) = Pi(0,¢€)¢i(<), (57)
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we find after functional differentiation with respect to €, (z)

N
O (Tyu(2)p1(21) - dn(en)) = Y By s(8:)8P) (2 — 2:){1 -+ o) - (58)

=1
In particular the conservation law 0#T,, = 0 holds everywhere except at

coinciding points ¢ = z;.

Conformal invariance in two dimensions

From now on, we shall restrict ourselves to two-dimensional theories.
In complex coordinates, equation (53) reads

Bz6% = 0,67 =0. (59)

Thus conformal transformations correspond to holomorphic changes of the
complex coordinates,

z—oz+e(z), z—ozZ+E(3). (60)
There exists a subset of conformal transformations that form a group,

az+ b

. 1
cz+d (61)

Z -

Those are the only one-to-one applications of the complex plane with a point
at infinity (or Riemann sphere) onto itself. In general we may only demand
analyticity of ¢ in a bounded region.

Assume that T is traceless and symmetric (hence T,z = Tz, = 0) and
rewrite the Ward identities (56) in complex coordinates

§(d1(z1,51) - SN (2w, Zn)) = ~/ d22/i\7rdzée(z, %)
X (Tzz(z» 2)¢>1(z1,21)...¢N(zN, 2N)> + c.c.. (62)

Assume moreover that ¢ vanishes fast enough at large distances from
the origin to allow integration by parts, say outside a domain D' and is
analytic in a domain D C D' containing the points z1,...,2zn. Moreover,
as we have just seen in the previous subsection, 7, is conserved, i.e., in
2,z components, T,, = T(z) is a holomorphic function of z (and mutatis
mutandis for T(z) = Tzz). More precisely, the correlation function

(T(Z)¢1(Z],21)...¢N(ZN, EN» (63)
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R
e

Fig. 2. Transforming the integral in (62) into a z contour integral around z;, - - - zn.

is analytic everywhere except at the positions of inserted fields. Similarly,
(T(2)¢1(21,21) - - - ¢n (2N, ZN)) (64)

is antianalytic except at z = zq,..., zN.

Using this analyticity and Stokes theorem, we can transform the right
hand side of (62), originally an integral over the domain D' where ¢ is non
vanishing (see Fig. 2)

rhs. = / d22{i\7rd2€(z’2)5<Tzz¢l - ¢N) + c.c. (65)
Dl
- / dzz?wdze(z)amzm o)+ coc. (66)
D
dz
= /d(%e 2)(Tzz201 - qSN)) + c.c. (67)
D

= § ST ) + e (68)

8D

= Zf e(z)(T(2)p1---bN) + c.c. (69)

that is, into a sum over small contours encircling each of the points z;. The
left hand side of (62) is also a sum of local contributions of each §¢;, thus
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we may identify each with the corresponding contour integral

8d(z1,21) = f %E(Z)T(z)g{;(zl, z1) + c.c.. (70)

21

This shows that analytical properties of the product 7T ¢ encode the variation
of the field.

Primary fields

When we describe a system which possesses some symmetry, it is gen-
erally appropriate to pick objects that obey ‘tensorial’ transformation laws.
In the case of conformal field theory, this role is played by ‘primary fields’.
Under an arbitrary conformal change of complex coordinates z — z'(z),
Z — Z'(2) a primary field operator transforms by definition according to

o) = ()" () 0,2, (1)

The real numbers h and h are called conformal dimensions (or conformal

weights). Note that the form ¢(z, 2)(dz)h(d2)7‘ is invariant. For an infinites-
imal transformation z — z + ¢(2), Z — Z + £(Z) this reduces to

§6(z,2) = [e(2)d + he'(2) + £(2)8 + he'(2)] $(z, 2) - (72)

Formulae (70) and (72) for §¢ are consistent if we have the following
short distance expansion,

_hé(w,w)  O¢(w,w)
T (2 - w)? T e

T(z)¢(w, ®) {j(_w;;) N aﬁ(f’f’

T(2)¢(w, o) + reg,

+ reg. (73)

The operator product expansions (73) can be used as an alternative defini-
tion of the primary fields.

As a short exercise, let us return to our example of free massless Ma-
jorana fermions. Taking (43), we can calculate the singular parts of the
operator products,

T()h(w) = 5 ;P(_wz))z N i¢_(u;) + reg,

T(2)¢(w) = reg. (74)
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It means that the fermionic field ¢(z) is a primary field of conformal weights
(h,h) = (2, 0) In the same way, one can show that ¢(Z) is a primary field
of weights (0, 1).

As another example, the reader may treat the case of a free massless
boson field ¢(z) for which the two-point function is < ¢(z)¢(0) >= —Inz
and the energy-momentum tensor T(z) = —1(8¢)*. Using Wick theorem,
she (or he) will verify that exp ia¢(2) is a primary field of conformal weight
h = a%/2. Those ‘vertex operators’ play a prominent role in Shankar’s
lectures.

Of course, not all fields satisfy the simple transformation law (71) un-
der conformal changes of coordinates. For example, we see from (73) that
derivatives of primary fields have more complicated transformation proper-
ties. Let us also check the properties of the energy-momentum tensor under
conformal transformations. For massless fermions, we see from (44) that
the order of singularities is higher than what is allowed by the definition
formulae (73). One can prove that the most general form of short distance
products between components of the energy-momentum tensor is

c 2T (w) BT(w)
T(z)T =
N c 2T (w) 3T(w
T =
(Z)T(w) e TR EE A + reg,
T(2)T(w) = reg. (75)
It leads to the following infinitesimal transformation law,
8T(z) = [e(2) + 2¢'(2)] T(2) + f—is"(z), (76)
which can be integrated to yield the law for finite conformal transformations,
1) =7 (%) ¢ S, (1)
which involves the Schwartzian derivative,
d3 ' 3 a2z \ 2
dz2
{Z Z}_ i{z: _'2"(3;) . (78)
dz dz

Finally, if we refer to Laurent modes defined by (46) the following pair of
Virasoro algebras arises

[Ln, Lm] = (n - m)Lm+n + ‘l%n(nz - 1)6n+m,0 3

- - = [+

[Ln, Lm} =(n—m)Lmyn+ —
L

12
[LryLm) =0. (79)

n(n2 - 1)51'L-Jf-'rn.,0 s
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The real central charge is a very important characteristics of the conformal

field theory. As we have seen, the model of free massless fermions has ¢ = %

(see (44)). Can the reader compute the value of c for the boson field just
mentioned?

Lecture 4

Physical interpretation of the conformal weights

To expose the meaning of conformal weights of primary fields (71), let
us consider the 2-point correlation function,

1
(21~ 22)%" (71 -

(921, 21)@(22, 22)) =

; )2h<¢'( )$(0),  (80)

where we have made use of a change of variable z — 2z’ = (z — 23)/(z1 — 22)-
Furthermore, we choose the normalization (¢'(1)¢'(0)) = 1 and denote
zZ] — 22 = P12 €xp (iArg(z1 - zz)).

($(z1,21)8(22, 2)) = z,j_zhexp( 2i(h - h)Arg(z1 — ). (81)
712

The number & + h is the scaling dimension of the field ¢, while the number
h — h is the spin of the field ¢

(#(2e*27)¢(0)) = exp (—4im(h — h))(8(2)$(0)) - (82)

A short tour through the representation theory

We shall make now a brief survey of the representation theory of the
Virasoro and affine algebras. The only representations that will concern us
are the so-called ‘highest weight’ representations. The simplest example of
a highest weight representation is provided by the familiar example of the
SU(2) algebra,

[T+, I-]=20;, [JzJi] = £J+. (83)

A highest weight is a state |7, j) satisfying the conditions

I3y =0, J:l5,5) = il5,5) - (84)
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The descendant states are produced by acting with the operator J_,
353 = p) = J215,5)s Jalisi—p) = (i —p)iri—p). (85)

Linear combinations of the states {|j,7),|7,7 — 1),1/,7 — 2),...} form the
space of the representation of spin j. If the representation is finite dimen-
sional, 2j has to be an integer and

JEH5,5) = 0. (86)

The same construction can be applied to the Virasoro algebra
c
[Loy L) = (n — m)Lmin + En(n2 —1)8ntmp0- (87)

We follow the same procedure as for SU(2) with the following correspon-
dences Lo — J;, Lp>o — J+, Lnco — J— . A highest weight (h.w.) state
is thus defined by the following conditions,

Lo|h) = hlh), Lynylh) =0, (88)

and the representation space M, . is generated by ‘descendant’ states of
the form
o jo a
LZNL75--- L% |h). (89)
However, there exists a big difference in comparison with the SU(2) case:
the representations of the Virasoro algebra are always infinite dimensional,
being generated by an infinite number of independent states. The repre-
sentations of the Virasoro algebra are ‘graded’, ¢.e. within a representation,
the eigenvalues of Lg are integrally spaced

L
Lo (L‘f‘}lL‘jzz...Lf‘;lh}) = (h+ Zjaj)L‘igL‘g . L2PIRY. (90)
i=1

The h.w. state has the lowest eigenvalue h, and its descendants form the
‘conformal tower’, see Fig. 3. The integer Z;’=1 ja; is called the level of
the state L*L L% .. .Li’;lh) in the tower.

In conformal field theory, we may have to deal with either a finite or an
infinite number of representations of the Virasoro algebra. Because there
are two copies of the Virasoro algebra (one for the holomorphic part L, and
one for the antiholomorphic part L), a physical h.w. state is characterized
by two weights |h, h). Among these representations, the one built from the
vacuum state is singled out. The vacuum state is defined as the h.w. state
possessing vanishing conformal weights,

0)=|h=0,h=0). (91)
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n=4 n=4
n=3 n=3
n=2 n=2
n=1 n=1

n=0 o h=1/16 n=0

Fig. 3. The ‘conformal tower’ of descendants above the h.w. state h = 1/16
in the representation M.—;/3 =116 (left) and in the irreducible representation
Ve=1/2,n=1/16 (see below). The multiplicity is depicted for each level n = 0,1,...,4.

The vacuum state has the following properties,

Ln2—110> = LnZ—l}()) =0, (92)

and is thus invariant under translations. For a ‘unitary’ representation, the
central charge c is a positive real number, the same for the left and right
copies of the Virasoro algebra. (The meaning of ‘unitary’ is that the space of
states is a Hilbert space, t.e. has a positive norm, and the Virasoro algebra
is consistent with this norm in the sense that L}, = L_,. This property is
not satisfied by all representations of the Virasoro algebra. )

Let us now turn to a short discussion of the representation theory of
affine (current) algebras,

[J2,J8) = if**TC o + 2kn6°%60 im0 s (93)

where f%b¢ are the structure constants associated to a simple Lie algebra, k
is some coefficient. The zero modes J§ forms an ordinary Lie algebra (‘hor-
izontal Lie subalgebra’), while the full set of J3 constitutes an ‘affinization’
of the horizontal subalgebra.
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Consider the affinization of SU(2) algebra, denoted by @(2), spanned
by the generators J.7,J,;,JZ (n € Z). A h.w. state is defined as follows,

Tis0ld) = Insoli) = Jiseli) = 0, J§13) = jl3), Joli)=0.  (99)

A tower of states is created by acting on the h.w. state with J or any of
the J,<o-

For ‘good’ (i.e. unitary) representations k and 2j must be integers and
satisfy the following relation,

0<2<k. (95)

Originally introduced in elementary particle physics, current algebras
are now regarded as relevant in many contexts, including condensed matter
physics, as illustrated by Ian Affleck in his lectures.

There is in fact an interesting connection between current algebras and
the Virasoro algebra.

Sugawara construction

Let us start from a representation of a current algebra § by currents J;
and let us form the following combination

T(z) = % 3 2 (2)I%(2) (96)
a=1

The claim is that, for a proper choice of the constant k, T'(z) qualifies as an
energy momentum tensor, or equivalently, that its Laurent moments satisfy
the Virasoro algebra,

n m:=-+oo

L, = }152 DONEY A (97)

a=1 m=-o00

The normal ordering is defined as the requirement that the operators J2-,
stand at the right. (Note that thanks to Eq. (93) two currents J3, and Jj
with m, n of the same sign and with the same a do commute). Thus

KL= 3 JETE ot Y Th T (98)
m<n m>n

To fix the constant x, we require that the fields J(z) transform as primary
fields of conformal weights (1,0),

Jo(w)  8J%(w)

T(2)J%(w) = Gow? T iow + reg. (99)
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The above operator product leads to the following relations,
(L, I =-—mJZ2 .. (100)

It is now easy to show that x should be adjusted in such a way that

k=k+g, (101)
where ¢ is the quadratic Casimir of the adjoint representation of the Lie
algebra,

Z fabCfabd — gécd_ (102)
a,b

Recall that for SU(N),g =N

Now, it is straightforward (though tedious!) to check the Virasoro al-
gebra. By explicit calculations, we conclude that the L, defined in (97)
satisfy (87) with the following value of the central charge

__kdimg

s 103
k+g (103)

whgre dim g is the dimension of the Lie algebra (recall dim SU(N) =
(N2 1)),

The above construction is known as the Sugawara construction. If we
start from the S/I\I(Q) current algebra, then we find a Virasoro algebra with
the central charge ¢ = 3k/(k + 2). The highest weight state |j) transforming
as the spin-j representation of the horizontal SU(2) is also a highest weight
of Virasoro with

NJ+1N> (104)

Lolj) = k+2

Lecture 5

Finite size effects

The transformation laws developed for conformal field theory may be
also applied to conformal changes corresponding to true changes in the
geometry, not only to changes of the system of coordinates. Below, we give
an example of how we can use the conformal theory in the plane to solve it
on a cylinder.



An Introduction to Conformal Field Theory 1805

Correlation function on a cylinder.
Let us consider a cft on a cylinder of perimeter L. As was already
mentioned, the conformal transformation w — z = exp (2i7rw / L) maps the

cylinder on a (punctured) plane. A primary field operator ¢ transforms
from the plane to the cylinder according to (71),

Botane(2,2) = (%‘ﬂ)h (‘;—f)ﬁqscyl(w,w). (105)

Taking the result for the 2-point correlation function on the plane (81), we
determine its counterpart on the cylinder,

($(w1, @1)$(w2, B2)) eyt = (2—3—7{) " (_2i“)2E.( (2122)"(2122)"

L L 21 — 2 )2h(2 — B)?h
} 06)
Let us restrict ourselves to ‘spinless’ fields, 7.e. h = h,
_ _ 1
($(w1, D1)P(w2, W2))cy1 = (107)

(Lsin w(wl—w»)‘*" '

Now, it is interesting to look at two extreme opposite regimes. First, assume
that the distance between the points of field insertions is much smaller than
the size of the system, i.e. |wy — w2| < L. In this case, the correlation
function (107) can be approximated by 1/|w; — wa|**, i.e. one recovers the
result of the plane (81). In other words, in this limit finite-size effects on
correlation functions can be ignored and (81) describes a universal behavior.
The opposite limit, ! = Im(w; —w3) 3> L, probes the correlation function for
large ‘time’ separations. This is useful for applications to statistical systems
at criticality. Then, the correlation function (107) behaves like exp (—1/€L),
where the correlation length is defined by {7, = L/4hw. Using cft, we have
(or rather Cardy has !) thus justified a finite size scaling law that had been
observed empirically (Cardy [2] and references therein).

Partition function on a cylinder.

Let us now compute the partition function on a cylinder, from a Hamil-
tonian point of view. The time direction corresponds as above to the imagi-
nary part of the complex variable w = wj +iwy. Then the partition function
is given by the following formula,

z=Tx¢T, (=eH, (108)
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where the Hamiltonian is defined by,
H= /dwszg(w) = i(By — 8g) = (L) — IY)y. (109)

Using the transformation law (77) we obtain the relation,

o) =~ (%) (*Tpnels) ~ 57) (110)

It enables us to rewrite the Hamiltonian using operators defined on the
plane,

S A GO (Lo ~ o+ Lo 2“4) (111)
The partition function can be now expressed as the trace in the Hilbert
space H that describes the cft in the plane,

Z = Try exp(—HT) = Trpq exp ( 2LT (Lo + Lo - ﬁ)> (112)

The Hilbert space H decomposes into a sum of representations of the prod-

uct of the two (left and right) Virasoro algebras. Let us denote by dS{‘) (the
degeneracy) the number of independent states at the level n of the confor-

mal tower of highest weight A. The numbers dS—LB) are defined analogously.
Using this notation,

Z = (%) ;Ld%h)dg‘) exp [—21(% (h +htn4a- %)] . (113)

Assume now that % > 1. Let Ag denotes the eigenvalue of largest modulus
of the operator {. In the limit under study, the partition function can be
approximated by Z = X{.

Usually, the largest eigenvalue is provided by the vacuum state of con-
formal weights A = h = 0 (this is true for the ‘unitary’ physical models), so
that we can set Ao = exp ((27/L)(c/12)). It gives the following value of the
free energy per unit ‘time’ length,

— = 114

F= T an 6L (114)

The above result can be interpreted as a finite-size correction to the free
energy, i.e. a ‘Casimir effect’ (Note that Z has been normalized in such
a way that the ‘bulk’ free energy limy 7..o(1/TL)InZ vanishes at the
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critical point where we are standing). It is remarkable that in the cft this
Casimir effect depends only on the geometry of the system and the value of
the central charge (Affleck {3], Blote, Cardy and Nightingale [4]).

More on the representations of the Virasoro algebra

The decomposition of the Hilbert space H and the resulting calcula-

tion of the degeneracies dg,h) and dg,,,h) have to be carried out in zrreducible
representations of the Virasoro algebra. It thus important to know when
a highest weight representation of the Virasoro algebra is irreducible. Let
us parametrize the central charge of the Virasoro algebra using a (real or
complex) parameter z

6
z(z+1)

It can be proved (Kac; Feigin, Fuchs) (and it is highly non trivial!) that
the representation M, . is reducible if and only if the highest weight can
be written as

c=1-~- (115)

(rz+1)—sz)? -1
4z(z + 1) ’

where r and s are positive integers. Moreover the discussion by Feigin and

Fuchs tells us how to construct an irreducible representation V; . when

My ¢ is not irreducible.
Suppose furthermore that z is a positive fractional number,

h=h. = (116)

!
T == J"‘—; y (117)
P—-p
where p,p' are coprime integers (i.e. without common divisor). It is then
consistent (in a sense to be explained soon) to restrict to h,, such that:

1<r<p'-1 1<s<p-1. (118)

Thus, under these circumstances, for a given value of ¢ = 1 — 6(p — p')?/pp'
there exists a finite number of possible A,, and all these weights are frac-
tional numbers. We shall refer to these representations as the minimal ones.
Further strong restrictions emerge if we require the unitarity of the
representation. It was proved (Friedan, Qiu, Shenker, one more highly non
trivial result !) that the necessary and sufficient conditions for highest
weight representations of the Virasoro algebra to be unitary are either

¢c>1,h>0, (119)
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or

_ 6 _ (r(m+1)—-sm)2—1
cml—;-n—(r—n—ﬁ—)-, he{h,,~ ppmp—— }, (120)

where m, r, s are integers, m > 3,1 <r<m-land 1 <s<m.
Examples

Critical Ising and Potts models

Let us show how well known models of statistical mechanics fit in this
scheme. I guess everybody knows the Ising model. The Potts model is a
simple generalization of the Ising model in which (in two dimensions) ‘spins’
o are assigned to the sites of a square lattice and may take Q distinct values,
denoted by o = 1,---Q. The interaction energy of a configuration depends
on whether at the ends of each edge, the two spins are or are not in the
same state. Thus this energy reads

H=J > b50;- (121)
edges ij

Clearly, if @ = 2, we recover the Ising model (up to the addition of a
constant term in H). In two dimensions, the Potts model is known to
undergo a second order phase transition (thus has a critical conformal point)
if @ < 4. This means that there is a low temperature phase in which the
symmetry between all the possible ground states is spontaneously broken,
and as T — T, the ‘magnetization’ (¢) vanishes as a certain power 3(Q) of
(Tc — T). Right at T, the correlation function (o (r)o(0)) has a power law
decay ~ 1/r". Beside the @ = 2 (Ising) case, a case of interest is @ = 3.
As a matter of a fact, they are described at criticality by cft’s with central
charges obeying the formula (120) with respectively m = 3 and m = 5,
hence ¢ = 1/2 resp 4/5. That the central charge of the Ising model is 1/2,
t.e. the same as that we found above for free fermions is by no means an
accident. We all know since the work of Onsager that free fermions are
hidden in the Ising model; these free fermions are massless at T = T, and
they build the relevant cft. Now in the m = 3 minimal cft, the conformal
weights may only take three values: A = 0, 1/2 and 1/16. With them we
may make various fields of integer or half integer spin

h = h =0, the identity field I

h =1/2, h = 0, the Majorana fermion %
h=0, h =1/2, the fermion ¥
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h = h = 1/2, the composite ¥, i.e. a mass term for the fermion:
this is indeed the ‘relevant’ operator that drives the system out of its
conformal point at T = T¢;

h = h = 1/16: this is another relevant term, nothing else than the
spin operator: it describes the response of the system to an external
magnetic field.

From that value of h = h for the spin, we get for the 2-spin function
the critical behavior (0(0)o(r)) ~ 1/r1/4, i.e. the well-known value of the
Ising exponent n = 1/4.

For the 3-state Potts model, similar considerations apply. The little
subtlety is that only a subset of the allowed conformal weights (Eq. (120))
are used in the description of the model under normal circumstances. For
example, the weight h33 = 1/15 yields the conformal dimension of the ‘spin’,
from which the exponent 7 above follows as 4/15.

Lecture 6

The partition function on the torus

We shall now see that all the information about the operator content of
the conformal field theory is contained in the partition function of the cft
on a torus, and that the latter is subject to strong constraints.

A torus can be regarded as a parallelogram whose opposite edges have
been identified. Let us adopt the convention that the parallelogram vertices
lie at the following points on the complex plane:

0, 2x, 277, 2x(l1+7), (122)

where 7 is some complex number called the modular (or aspect) ratio of the
torus, and chosen to satisfy Im7 > 0.

We have computed above in (112) the partition function on a cylinder,
but in fact by taking a trace in { we have implicitly identified the two ends
of the cylinder and made a torus of modular ratio 7 = ¢T/L. Thus by a
slight modification of the above discussion, we find that for arbitrary 7

Z = Tryexp (22'7r7' (Lo - 5%) - 2inT (Eo - ECZ) ) . (123)

Let us introduce the following parameters,

qg= e212'7!"1' , §= e—-2i1r1" , (124)
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and define the character of the irreducible representation Vj . of highest
weight h of the Virasoro algebra,

o
- _e 3
Xh,c(Q) = Trvh,c (qLo c/24) - qh 24 Z dgz )qn. (125)
n=0
From the detailed analysis of the irreducible representations follows the
knowledge of these characters as explicit functions of g.
We conclude that the partition function on a torus can be decomposed
into a bilinear form of characters (Cardy [5]),

Z=Y Npxal@xi(®, (126)

(h,R)
where the integer N,; (a multiplicity) tells us how many times the repre-
sentation (h, h) enters. As the identity operator must be present and non
degenerate in any sensible theory, we have also the constraint that Nog = 1.

Modular invariance on the torus

Now it is important to note that the shape of the torus does not uniquely
determine 7, namely we can perform arbitrary ‘modular’ transformations,
, ar+b
T =3 T = ——— ,
cr+d
where a, b, ¢, d are integers, and 7' describes the same torus. Modular trans-
formations form a group. Any modular transformation can be obtained as
a composition of two basic transformations,

ad—bc=1, (127)

1
T:r—7+1, S:‘r—»——;. (128)

The crucial point is that we want the partition function Z to be intrin-
sically attached to the torus, i.e. to be invariant under modular transfor-
mations. This modular invariance of the partition function, together with
the form (126), turns out to yield very strong constraints on the operator
content.

T-transformation

We have here ¢ — €?*™¢, and consequently

xn(q) — exp (Zir (h - f—)) xr(9)»

24
x5 () — exp (—2i7r (71 - ;—4)) x5 (9) (129)
xn(2)x5(q) — exp (2ix(h — R)) xn(9)x7(2) - (130)

Thus, the invariance under the T-transformation requires spins h— h of field
operators to be integers.
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S-transformation

It is more difficult to find the S-transformation, because the characters
transform among themselves under it.

Let us concentrate on the family of representations of the Virasaro
algebra (116). Denote for short xrs = X#,,- It can be shown that

1
Xrs (—;) = ,Z, Srs,r's'Xr’s’(T)7 (131)
s

with 7', s’ running over the same range as in (118). The matrix § is sym-
metric and unitary

0 2 . wmrr'p . wss'p
Spsprgr = (=1)™TT o [ " sin P sin P
’ p

pp' 4 (152)

Likewise for the representations of the SU(2) current algebra of level k,
labeled by a spin j, with 0 < 2j < k, formula (97) gives representations of
the Virasoro algebra and the corresponding characters transform under the
S transformation according to the unitary matrix

[T x(2i+ 1)@+ 1)
P . 133
S“ k+25m ) (133)

Now we have all the ingredients to discuss the following problem: find
all modular invariant partition functions Z of the form (126) with N’s non
negative integers, Nog = 1. Solving this problem for a given class of rep-
resentations amounts to classifying conformal field theories of that class. I
will not dwell on that any longer. Suffice it to say that this programme has
been carried out for the ‘minimal’ representations of Virasoro and for the
(related) cft’s with a SU(2) current algebra. The solution exhibits a beau-
tiful structure that had not been anticipated: we refer the reader to the
literature (Cappelli et al. [6]). This classification program has been pursued
lately for theories with a higher rank current algebra (SU(3) in particular:
see the recent work of Gannon [7]).

The Operator Product Expansion

This short guided tour would be very incomplete without some dis-
cussion of another fundamental feature of conformal field theories, namely
their consistency under operator product expansions. In any quantum field
theory, we have learn from the work of Wilson the importance of the short
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distance expansion of a product of two fields. In a conformal field theory,
we postulate that the set of fields that we have discussed so far, the pri-
maries and their descendants, form a closed set under the Operator Product
Expansion (OPE). Thus for two fields &1, & 7, assumed to be primary fields
of weights (hy, h1), (hy, hy), we write

QI(zla Z )§J(Zz, 22) =
D Criklz — )Mk (5 — )b —hi=hs

K
X Zﬂ%}?(zl ~ 2)I™I(z1 - 52)|ﬁl45§?'ﬁ)(22, ). (134)
n,f

This means simply that the product of #; and #; may be expanded on all
other primaries #x and their descendants denoted here Q(I?’n) with coeffi-

cients Cry Kﬂg’}’;{l). The notation |n| denotes the level of the descendant and
it is understood that 45(12"0) = $x and ,6?_)]’?(2 = 1. The relative coefficients

ﬂy}’;) are easy to find using the Ward identities of the Virasoro algebra. In
contrast, the structure constants C1yy of the OPE are important and non
trivial data of the cft. They give for example the three-point function of
the three primaries ¢, 85, $x

(B1(21,21)8 5 (22, 22)PK (23, 73)) =
Crox . (136)
(21 — 29)(Rr+hy=hi)(z; — 25)(hrthi—hK) x cyclic perm.

These structure constants may be extracted from a separate discussion of
the consistency of the OPE. We refer to the original paper by Belavin,
Polyakov and Zamolodchikov [8] for that matter.

The fusion algebra

Rather than computing all these C;jx, we may content ourselves in
a first step with finding the selection rules that apply to them. In other
words, what are the fields &5 that couple to a given pair #; and &;?
This important question can be given the appropriate precise meaning. It
is more suited to look at how the holomorphic (or antiholomorphic) com-
ponents of fields combine, i.e. to discuss the fusion of representations (of
Virasoro, current,. . .algebras). For this fusion operation, the ‘minimal’ rep-
resentations that we have introduced above, or those of §fJ(2), form a closed
algebra. This is the ‘consistency’ alluded to in Lecture 5. We write

th,c'vh_y,c = eahKN;fthK,c (137)



An Introduction to Conformal Field Theory 1813

with coefficients N ff, that are multiplicities, hence integers. An amazing
discovery of E. Verlinde [9] is that the determination of these multiplicities
follows from the knowledge of the modular matrix S

S1LSiL8kL
Ni5 =Y G (138)

with 0 referring to the identity field (or vacuum representation). The mere
fact that with the S matrices of (132) and (133) these numbers are non
negative integers is not trivial and the general validity of formula (138)
reflects the beautiful consistency of Conformal Field Theory.
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