Vol. 26(1995) ACTA PHYSICA POLONICA B No 12

HIGH ENERGY ASYMPTOTICS
OF PERTURBATIVE QCD*»**

L.N. LiraTovi

Petersburg Nuclear Physics Institute
Gatchina, 188 350, St. Petersburg, Russia

(Received November 30, 1995)

In these lectures some perturbative approaches to the description of
high energy scattering processes in QCD are reviewed. It is shown, that
the gluon is reggeized and the pomeron is a compound state of two
reggeized gluons. We demonstrate, that the equations for compound
states of an arbitrary number of reggeized gluons in the multi-colour QCD
have remarkable mathematical properties. In the conclusion the effective
action describing the gluon-Reggeon interactions is discussed.

PACS numbers: 11.25.Hf, 11.55.Jy, 12.38.Lg

1. Introduction

The Feynman—Bjorken parton model was invented to explain the ap-
proximate scaling behaviour of the structure functions Wi (=, QZ) for deep-
inelastic scattering at the fixed Bjorken variable z = Q%/2pq and the large
photon virtuality Q2 = —g¢?. Now this process is investigated in the region
of very small values of z. Here the usual GLAP equation [1]

1
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describing the Q*-dependence of parton distributions n;(z) should be com-
bined with the BFKL equation [2]

m‘zlng(z 1) = 2u(FJng(a, k1) + [ APRLE (ks Kng(a, k) (2)

describing their z-dependence for fixed values of the gluon transverse mo-
mentum k.

In these lectures it will be demonstrated, that in the Regge limit of large
energies /s and fixed momentum transfers v/—% the gluon having the spin
7 =1 at t = 0 lies on the Regge trajectory j = j(t). Therefore it is natural
to reformulate QCD in terms of the Reggeon effective field theory. Below
we show also, that in the generalized leading logarithmic approximation
the equations for compound states of several reggeized gluons in the multi-
colour QCD have remarkable mathematical properties leading to their exact
integrability.

In QCD the gluon has two degrees of freedom corresponding to two
possﬂﬂe values A = :i:1 for the helicity which is the projection of its spin
Son the momentum k. They correspond to two polarization vectors e*.
Their nonzero components are e} = 1/y/2 and e3 = Ai/4/2 for the gluon
moving along the third axis.

In accordance with the Lorentz invariance the gluon in the Yang-Mills
theory is described by the four-dimensional vector-potential v (z) (1 and a
are the Lorentz and colour indices correspondingly). The matnx fields v, =

v, t* belong to the self-conjugated representation of the SU(N) group (N =
3 for QCD). The quantities t* are the anti-Hermitian Gell-Mann matrices
with the commutation relations [t%,t%] = f,;.t¢ and the tensors f,;. are the
structure constants of SU(/V). The Yang—Mills theory is invariant under the
gauge transformation

5”;4 = [DuaX], D=0, + 9Vu > (3)

where g is the coupling constant and D is the covariant derivative. The
intensity of the Yang-Mills field is given below

Guy = :T[Du’Du] =0,4, - 0,4, + g[A“,A,,] : (4)

The action for the gluodynamics is

Socp = ——/d4:c t1‘(GW)2 (5)

The elastic scattering amplitude A(s, ¢, u) for the hadron process a+b —
a' + b is an analytic function of three invariants:

s =(p, —{-pb)z,u:(pa—pb,)z,t:(pa—-pa;)z, (6)
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related as follows:
s+u+t=4m? (7)

for the case of spinless particles with an equal mass m.
The function A(s,t,u) describes simultaneously three channels. In the
s,u and t-channels one has

s>4m?, u<0, t<0;

u>4m2, s<0, t<0;
and

t>4m2,u<0, s<0,

correspondingly. For example, the scattering amplitude in the s-channel
(where ./sis the c.m. energy of colliding particles) is obtained as a bound-
ary value of A(s,t,u) on the upper side of the cut at s > 4m? in the complex
s-plane.

The Regge kinematics in the s-channel is given below

s~—u>>mix-t=¢, (8)

where ¢ is the momentum transfer in the c.m. system (¢ = p, — p,,). The
total cross-section is determined by the optical theorem:

Utot(s) = "lihn.s A(s, 0) s (9)
where Im, A(s,t) is the imaginary part of the scattering amplitude in the s-
channel. In the Regge kinematics the essential s-channel angular momenta
I = pp (p is the impact parameter and p is the c.m. momentum) are large

and one can write the angular momentum expansion of 4 in the form of its
Fourier transformation:

A(s,t) = —2is / 2p [S(s, p) — 1)eid?. (10)

The quantity S(s, p) is parametrized with the eikonal phase §(s, p):
§(s,p) = €609, (1)

where Im § > 0. Because essential values of p are fixed from above by the
value p.... = cln(s) the Froissart theorem is valid:

Orot < 4mc?1n?(s). (12)
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Using some additional assumptions one can derive also the Pomeranchuk
theorem for the particle-particle and particle-anti-particle total cross sec-
tions:

oFP = gPP. (13)

In the Regge model the asymptotics of the elastic scattering amplitude has
the following form

A(s,t) = Z f;;(t)sji’(t)gf(t)gg(t) . (14)
p==

Here g, ,(t) are the Reggeon couplings with external particles, £J.i( ¢) is the
signature factor (for the signature p = +1):

cosTj +p (15)

51.’ =1 - -
J sinwj

and jp(t) is the Regge trajectory assumed to be linear:
jp(t) = 3§ + apt, (16)

where jé’ and a; are the Reggeon intercept and slope correspondingly.
The Regge asymptotics seems to be natural from the ¢-channel point of
view. Indeed, let us present the f-channel scattering amplitudes as the sum

of contributions from different angular momenta j

A(s,t) =167 > (2] + 1)fF Pj(cos6,). (17)
3=0

Here P.(z) are the Legendre polynomials and the ¢-channel scattering angle
0, is reiated with the invariant s as follows:

2s

t—4m?’ (18)

z=cosf; =1+
The t-channel partial waves fJI.’ in a general case of the particles with non-

zero spins are different for two signatures p = + corresponding to the ana-
lytic continuation from even and odd values of j.

In the physical region of the s-channel the sum over integer j should be
replaced by the Watson—Sommerfeld integral

A= Y [digp@it D O Pcos(-0)) (1)

P
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along the contour L displaced along the line Re(j) = o parallel to the
imaginary axis. It is situated to the right of all singularities of ff .

Using the known asymptotic behaviour of the Legendre polynomials for
their large arguments one can write A(s,t) in the Regge limit as follows:

A(s,t) = At (s,t) + A (s,t), AT(=s,t) = + A% (s,1), (20)
where
o+ic0 & ‘
AP(s,t) = / b 200 (21)

The functions 451; (t) are proportional to the partial waves ff ():

rg+3)

(22)

and are real in the physical region of the s-channel.
Thus, for the imaginary parts of the signatured amplitudes AP one
obtains the simple formulae, corresponding to the Mellin transformation:

o+100 &
p = N Y
Im, AP(s,t) = / T4 g2(t). (23)
=100
The inverse Mellin transformation
o0
¢f = fdge—ff Im, AP(s,t), £ = In(s) (24)
0

is a simplified version of the Gribov-Froissart representation for f;-’ (t).
The t-channel elastic unitarity condition for partial waves gég analyti-
cally continued to complex j for t > 4m? takes the form
. ; P :
&; (¢ +ie) — ¢ (t — ie)
22

= 7 (t - 4m?)tE e R (t + i) $E(t — ie) . (25)

The physical unitarity condition for f]? with integer j is its particular case.
Experimentally all light hadrons belong to the Regge families with almost
linear trajectories and an universal slope o' ~ 1GeV ™2,

Total cross-sections for hadron-hadron interactions at high energies are
approximately constant (up to possible logarithmic terms). To reproduce
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such behaviour in the Regge model a special Reggeon called Pomeron was
invented many years ago. Its trajectory is assumed to be close to 1:

it)=1+w(t), w=A+at. (26)

where A~ 0.1 and o' = 0.3 GeV 2. The real part of A(s,t) for the Pomeron
contribution is small. The quantities A and o' are the so-called bare pa-
rameters of the Pomeron.

In the j-plane there should be other moving singularities of qS}*’(t) —
the Mandelstam cuts arising as a result of simultaneous exchanges of several
Pomerons. V. Gribov constructed the Reggeon field theory for calculating
their contributions which renormalize in particular the Pomeron parameters.
The Mandelstam cuts are taken into account approximately if one writes
the eiconal phase in the form

1 dzq —id7 - _al—a2
8(s,p) = 5/(2-;(_—)—2—6 WPigit)sd—>7 . (27)

In this case the resulting amplitude satisfies the Froissart requirements. The
analogous unitarization procedure can be used also in other cases when the
scattering amplitude obtained in some approximation grows more rapidly
than any power of In(s).

The high energy theorems do not forbid the existence of another Regge
pole with the flavour vacuum quantum numbers — the Odderon which
has the negative signature and the negative charge parity. It could be
situated also near j = 1, which would lead to a large real part of scattering
amplitudes at high energies and to a significant difference between proton-
proton and proton-antiproton interactions. Such singularity appears in the
perturbative QCD simultaneously with the Pomeranchuk singularity and,
therefore, the discovery of the Odderon effects would be very important.

The asymptotic behaviour of scattering amplitudes in the Born approxi-
mation is determined by the spin o of the particle, exchanged in the crossing

channel:
ABorn ~ 8% (28)

and the Regge asymptotics is a generalization of this rule to continuous
values of the spin: ¢ — j = j(t). In higher orders of the perturbation
theory the scattering amplitude behaves (apart from possible logarithmic
terms) as s7, where the value 0 = 1+ ) ,(0; — 1) is determined by the spins
o; of the particles in the ¢-channel intermediate states.

In QCD the gluon spin is 1 and therefore here the most important
processes are governed by the gluon exchanges. For example, the Born
amplitude for the parton-parton scattering is [2]

A(s,t) = 25983,,0, Tara 1 993,50 Thip s (29)
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where )\; are helicities of the initial and final particles; 4, A', B, B' are
their colour indices and T; are the colour group generators. The s-channel
helicity for each colliding particle is conserved because the virtual gluon in
the ¢-channel for small g interacts with the total colour charge Q¢ commuting
with the QCD Hamiltonian.

Let us consider now the hadron-hadron scattering amplitude described
by the Feynman diagrams containing two gluons in the ¢-channel without
any other pure gluonic intermediate states. The polarization matrix for
each of the gluon propagators with momenta k, ¢ — k can be written at
large energies s = (p, + pp)? > m? as follows

wv . guv _ PaPh +PaPy

§HY = §MY L §
+ I PaPb

f (30)

Moreover, if the indices p and v belong to the blobs with incoming particles
a and b correspondingly, then with a good accuracy we have

v
suv _, PoPa (31)
DaPb

By introducing the Sudakov parameters

a dsed
az—kp = —~84/8,08 = kpy =sp/s, d*k=d’k, s; %

(32)
Pabp PaPb S

for the virtual gluon momenta k, g — k one obtains for the contribution of
these diagrams the following impact-factor representation:

Aoyt) = 2isl 3 [ (1) 7 (g-4) 7 e (b -0 (g,
(33)

The sum over the gluon colour indices is implied. Note, that we neglected
the longitudinal momenta in gluon propagators in comparison with the cor-
responding transverse components because in the essential integration re-
gion for the impact factors

—

- - oods bpf PZ 1
ed(eh o) = [ SRR kg,
—00

we have

sap~m?, (k1) ~ (7 8)" ~m, (35)
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and therefore (k)2 « (k1)2. The impact factors are real functions of

k+, @ — k* vanishing for small |k—:L | and |§— k+ |, which is a consequence
of the gauge invariance. In particular the total cross-section for the photon-
photon scattering does not contain any infrared divergency in the integral

over kL. In the leading logarithmic approximation ones also obtains the
infrared-stable result [2]:

2kt 2k - - — .
ABFKL 3 t) ZISI/(z )2 (27‘_ @ (k-]-’ é’-—-k-]-)fb (k’l’q‘_k'l)fBFKL(k,kl’ Q),
(36)
where the function fgpki is expressed in terms of the ¢-channel partial
wave f,, for the virtual gluon-gluon scattering with the use of the Mellin
transformation

fora (b Ky = [ 225 1 (kh g -k R - #L) . a0
27
The BFKL equation for f, will be discussed later.

2. Multi-Regge processes in QCD

In the case of the deep-inelastic scattering at small Bjorken variable
z the gluon distribution g(z, k) depending on the longitudinal Sudakov
component z of the gluon momentum k and on its transverse projection k|
in the infinite momentum frame of the proton |p)4| — oo can be expressed
in terms of the imaginary part of the gluon-gluon scattering amplitude at
t = 0 in the Regge regime of high energies /s = 1/2p4pp and fixed momen-
tum transfers ¢ = v/—t. The most probable process at large s is the gluon
production in the multi-Regge kinematics for final state particle momenta

ko =pak1i=q — 92,0, kn=@n — qny1,knt1 = ppr:

— n+1 n
—2 —
s> 8 =2ki 1ki>ti=qf = (pa— D k) [[si=s][%". 8] = k%,
P =1 i=1

(38)
In LLA the production amplitude in this kinematics has the multi-Regge
form [2]:

n+1
t;
A%E:%-f-n = A% H 3(:( ). (39)
Here sif)(t‘) are the Regge-factors appearing from the radiative corrections

to the Born production amplitude Ag‘_"fz 4+n- The gluon Regge trajectory
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7 =1+ w(t) is expressed in terms of the quantity:

2N —2
T [ ——, t=-¢°. (40)

Infrared divergencies in the Regge factors cancel with analogous di-
vergencies in gy, from the contributions of real gluons. The production
amplitude in the tree approximation has the following factorized form [2]

AT n=29T,,

1 1
dy 1 d ¢
A,An 0TS Ty 0T e Pt g9 T I

c2€y Cn4+1Cn
(41)
Here A, B and A, B',d, (r = 1,2...n) are colour indices for initial and final

gluons correspondingly. T, = —ifsp. are generators of the gauge group
SU(N.) and g is the Yang-Mills coupling constant. Further,

= 2 u ,,/ FW > :+1,r = ~%I’“(qr+1,qr)ezf*(kr) (42)

are the Reggeon-Particle-Particle (RPP) and Reggeon-Reggeon-Particle
(RRP) vertices correspondingly. The quantities A\, = +1 are the s-channel
helicities of gluons in the c.m. system. They are conserved for each of two
colliding particles: Iy = §y/y, which is not valid in the one loop approxi-
mation [3]. The tensor I'*? " can be written as a sum two terms:

J ' 1 '
vy — 71/1/ + _ q2(n+)u_¥(n+)u , (43)
Py
where we introduced the light cone vectors
n~:%an+:%€aE:\/‘;/2’n+n—=2, (44)

and the light cone projections k* = k%nZ of the Lorentz vectors k°. The
first term is the light cone component of the Yang-Mills vertex:

1 1 1
y¥Y + = (pz +pj,)6”” - 2p‘l'4(n+)y - 2p;,(n+) . (45)

The second (induced) term is a coherent contribution of the Feynman dia-
grams in which the pole in the t-channel is absent. Indeed, it is proportional
to the factor ¢2 cancelling the neighboring propagator.

Similarly, the effective RRP vertex I'(¢2,¢1) can be presented as fol-
lows [2]

_ n nt)”
(g2, q1) =7""" - 2?%( _) + 242( +) ) (46)
ky ky
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where
17 = 208 +2¢ - 207k} + 2n )Ry (47)

is the light-cone component of the Yang—Mills vertex.

Due to the gluon reggeization the above expression for the production
amplitude in LLA has the important property of the two-particle unitarity
in each of the t; channels. Furthermore, it satisfies approximately the uni-
tarity conditions in the direct channels s; with the intermediate particles
being in the multi-Regge kinematics. These conditions lead to the so called
“bootstrap” equations.

Note, that I'has the important property:

(k1)*Tu(g2, 1) = 0, (48)

which gives us a possibility to chose an arbitrary gauge for each of the
produced gluons. In the left (I) light cone gauge where p4e'(k) = 0 the
polarization vector e!(k) is parametrized in terms of the two-dimensional
vector efL

l
1 _kiey (49)
and the Reggeon-Reggeon-particle vertex I" takes an especially simple form

I}, =Ce" +C%, C= q;c—qz- (50)
1

if we introduce the complex components

e=ez+iey,e* =e; —iey; k=ky+iky, k* =k, —iky (51)

for transverse vectors eI, k. The factors ¢ and g2 in the expression
for C suppress the inelastic amplitude at small momentum transfers. The
singularity 1/k7 in C reproduces correctly the bremstrahlung factor in the
soft gluon emission theorem.

The above complex representation was used in [4] to construct an ef-
fective scalar field theory for the multi-Regge processes. This theory was
derived recently from the Yang-Mills Lagrangian by integrating over the
fields corresponding to the highly virtual particles [5].

The effective action describing multi-Regge processes can be written in
the form invariant under the Abelian gauge transformations 6V} = i9,x*
for the physical fields V), provided that the Reggeon fields A4 are gauge
invariant (§44 = 0):
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Sma= [ d'a{ 1R + 1(01043)(0104%)
+1g[- A%(F-oTi071F_,) - A% (Fy o T®i07 " Fy o)
+(0Z F2, )(A-_T%i0, Ay ) +(0F ' FS, ) (A1 T*i0, A-)

+i(51;3’—: Fo )(a A)T*(8,A-) +iF2_(A_ T“A+)J} (52)

where F,, = 0,V, — 0,V, and N1+ = Ny + N; are the light-cone compo-
nents of the vectors N,. The fields A satisfy the kinematical constraints
0+Az = 0 equivalent to the condition that in the multi-Regge kinematics
the reggeized gluon transfers the negligible part of energy from the collid-
ing particles. The Feynman vertices which are generated by this action
coincide on the gluon mass shell with the above effective vertices for the
Reggeon-gluon interactions.

3. BFKL pomeron

Using the explicit expressions for production amplitudes in the multi-
Regge kinematics one can calculate the imaginary part of the elastic scatter-
ing amplitude with the vacuum quantum numbers in the crossing channel.
The contribution from the real particle production is expressed in terms of
the product of the effective vertices calculated in the light cone gauge [4]:

. P1P2 P1Py
Clp1.py) C*(p2,par) +hoc. = =5 S he, (53)

where p,p; and pys, pyr are the corresponding complex transverse compo-
nents of initial and final momenta in the t-channel (¢ = p1 +p2 = py/ +par)-
In turn, the contribution related to virtual corrections to the production
amplitudes is proportional to the sum of the Regge trajectories of two glu-
ons:

w(=pi’) +w(-p3°) ~In | p1 |* +1n | p; * +e, (54)

where the constant ¢ contains the infrared divergent terms which are can-
celled with the analogous terms from the real contribution after its integra-
tion in k. The final homogeneous equation for the t-channel partial wave
fu(k,q — k) takes the form

8wr?

E¥ = H; 29, E= ——
g

(55)
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Here the “Hamiltonian” Hy, is

1
Hiz=In|p; > +In |p; |? -l-|—1;1‘I—2|—1[);—|5(P1‘102111 | p12 |° p1p3 + hoc)—4ep(1),

(56)
where ¥(z) = JInI'(z) and I'(z) is the Euler I-function. In the above

2
expression 1/p; are the gluon propagators. We introduced the complex
components pp = 2 +iy; for the impact parameters canonically conjugated
to the momenta p; = ibf’;—k and performed the Fourier transformation:

where p;;, = p; — pr. The expressions
In|p: [, |pi| ™ (58)

are the integral operators in the impact parameter representation. The
Hamiltonian has the property of the holomorphic separability:

Hiz = h1z + h5, E=¢+¢, (59)

where ¢ and £ are the energies correspondingly in the holomorphic and
anti-holomorphic subspaces:

eY(p1,p2) = h129(p1, p2)
EY(p1s p2) = R12%(p1,P3)
P(p1,p2) = Y. (60)
The holomorphic Hamiltonian is
1 1
hiz = 1’)—1‘111(1712)1’1 + Eln(plz)pz + In(p1p2) — 29(1). (61)
One can verify the validity of another representation for Hj:

hiz = p1zIn(p1p2) p1y + 21n(p12) — 2¢(1). (62)

Further, using the following identities:
2In 8 +2In p = P(-p0) + %(0p) = Y(~pd) + (1 + p8),  (63)

and

21n(p?8) — 21n(p) = ¥(pd) + (—p?8p™ ) = ¥(p8) + ¥(1 — pd), (64)
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we can derive the following formulas:
h = In(p3, p1) + In(p3; p2) — 21n(p12) — 24(1), (65)

h = 39(p1201) + 39(p2102) + 2¥(1 + p2101) + 29(1+ p1202) — 29(1) . (66)

Using above expressions for h it is possible to verify that A is invariant under
the Moébius transformations:

api +b
— 67
P (67)

for arbitrary complex values of a,b,c,d. It means, that solutions of the
BFKL equation beldng to the irreducible unitary representations of the
Moébius group. The generators of this group for an arbitrary number n of
particles are

n n n
M*= ppde, M~ =Y O, MY == pid;. (68)
k=1 k=1 k=1

Its Casimir operator is

M2 =(M*): - Y(M*M~ + M MT)=- p%,0.9,. (69)
2
r<s

In the case of two particles we can use the Polyakov ansatz for the wave
function:

Ym(p10; p20) = {0 | (p1)p(p2)0m(po) | 0) = (;)‘l%)m - (70)

Here m = % +1iv + 7 is the conformal weight of the composite operator Oy,
which has the anomalous dimension d = 1 + 2¢v and the conformal spin n.
This operator belongs to the basic series of the unitary representations if v
is real and n is integer. The fields ¢(p;) describe the reggeized gluons and
have the trivial quantum numbers d = n = 0. The holomorphic factor ¥,
is an eigen-function of the corresponding Casimir operator:

M2t = m(m — 1), . (71)

Due to the Mobius invariance of the Hamiltonian 1,, is also an eigen-
function of the Schrodinger equation in the holomorphic subspace:

P = e¥m, € = p(m) + (1 —m) - 29(1). (72)
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The eigen-value £ can be obtained from the above representations for h

if one will integrate the both sides of the Schrédinger equation over the
coordinate py with the use of the relation:

/dpo (P10, p20) ~ P13 ™ (73)

The second Casimir operator M?* is expressed through the conformal weight
m= % + iv — %. The total energy is

E = p(m) + (1 —m) + P(m) + $(1 — m) — 44(1). (74)
One can rewrite E as follows
E:4Re¢(%+iu+ "2‘—|) — ap(1). (75)

The minimum of the energy is obtained for » = n = 0 and equals
Ey = —8In 2. Therefore the total cross-section calculated in LLA using
the above expressions for production amplitudes grows very rapidly as sA
(where A= (gZNc/ﬂ'z)ln 2), which violates the Froissart bound oyt <
cIn?s [2]. One of the possible ways of improving the LLA results is to use
the above effective field theory [4, 5]. We shall discuss this approach later.

4. Multi-Reggeon compound states

The simple method of unitarizing the scattering amplitude obtained in
LLA is related with the solution of the BKP equations [6] for compound
states of n reggeized gluons:

E¥ =Y Hu?, (76)
i<k

where the eigen-value E is proportional to the position w = j — 1 of the
singularity of the ¢-channel partial wave:

82

E=——r 7
gchw7 ( 7)

and the pair Hamiltonian H;;, has the property of the homomorphic sepa-
rability:
T*T?2
T k (hig + hY) - (78)
[+
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where T} are the group generators acting on colour indices of the gluon 1.
The holomorphic two-body Hamiltonian is

1 1
hit = ;In(Pik)Pi + o In(p;r)pr + In(pips) + 2. (79)
i

where 7 = —1)(1) is the Euler constant. Similar to the Pomeron case we
introduced the complex coordinates p; = z, + tyx (k = 1,2,...n) and
the canonically conjugated momenta p; = ia—(%k—) in the impact parameter
space (note, that p;x = p; — pr). The above Schrédinger equation for ¥ is
invariant [7] under the M&bius transformations:

| _aprtb
Pr=
C Pk -|- d
for any complex values of a, b, c, d.

In the multi-colour QCD (N, — o0) only planar diagrams in the colour
space are important according to ’t Hooft and therefore the total Hamilto-
nian H can be written as a sum of the mutually commuting holomorphic
and anti-holomorphic operators [8]:

H = %(h+ h*) s (R, h*] =0, (80)

where % is a colour factor and h contains only the neighboring gluon inter-
action:

n
h= hiit1. (81)
=1

Thus, in this case the solution of the Schrédinger equation has the property
of the holomorphic factorization:

& =" cir(p1yepn) Bilpl, 03 - (82)

where v and 1 are correspondingly the analytic and anti-analytic functions
of their arguments and the sum is performed over the degenerate solutions
of the Schrédinger equations in the homomorphic and anti-holomorphic sub-
spaces:

e = hp, e*p* = h*§*, E = L(c + ¢*). (83)

These equations have nontrivial integrals of motion [9]:

t(8) =trT(6),  [t(u)t(v)] = [t(6),h] =0, (84)
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where 0 is the spectral parameter of the transfer matrix ¢(4). The mon-
odromy matrix T'(#) is constructed from the product

T(8) = L1(8)L2(8)...L.(8) (85)

of the L-operators expressed in terms of the Mébius group generators:

_ 4 + ipkak ’iak
Lk(e) - ( —ipiak 0 — ipkak ) (86)

Thus, the solution of the Schrédinger equation is reduced to a pure algebraic
problem of finding the representation of the Yang—Baxter commutation re-
lations [10]:

zlz' (u) igth (v)(v —u+ zpl?) = (’U = u+iP2)T, i) (’U) i8] (u) s (87)

where the operator Pj; in the left and right hand sides of the equation
transmutes correspondingly the right and the left indices of the matrices
T(u) and T(v). Moreover [10], the Hamiltonian for the Schrédinger equa-
tion coincides with the Hamiltonian for a completely integrable Heisenberg
model with the spins belonging to an infinite dimensional representation of
the noncompact Mébius group and all physical quantities can be expressed
in terms of the Baxter function Q()) satisfying the equation:

tA)QA) = (A+9)"QA+ )+ (A-9)"Q(A-1), (88)

where (1)) is an eigen-value of the transfer matrix. The solution of the
Baxter equation is known for n = 2 [10]. In a general case n > 2 one can
present it as a linear combination of the solutions for n = 2 by obtaining a
recurrence relation for their coefficients. For n = 3 this relation takes the
form:

Ady(4) = HEFD)

= 2(_21;'+—1)(k —m+1)(k+m)(det1(4) + de—1(4))  (89)

with the initial conditions dy = 0,d; = 1. For integer values of the conformal
weight m the quantization condition for eigen-values 4 is dp,—1(A4) = 0.
Although the orthogonality and completeness conditions for the polynomials
di(A) are known:

E R 0 ) 40 6(0) =8, 7 (4) (4,

A#0, (90)
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di(A)dz(A) 5 Kk +1)(k — m + 1)(k + m) (01)
d_(A)dm—y(4) ~ kE 2(2k + 1) '

AZ
their complete theory is not constructed yet. It does not allow us to calculate
analytically the intercept and wave function of the Odderon in QCD.

All these results are based on calculations of effective Reggeon vertices
and the gluon Regge trajectory in the first nontrivial order of perturbation
theory. Up to now we do not know the region of applicability of LLA
including the intervals of energies and momentum transfers fixing the scale
for the QCD coupling constant.

Therefore, it is needed to generalize the effective field theory of Ref. [4]
to processes for which the final state particles are separated in several groups
consisting of an arbitrary number of gluons with a fixed invariant mass; each
group is produced with respect to others in the multi-Regge kinematics.
These conditions are more general than the requirements for the quasi-multi-
Regge kinematics of Ref. [11] where only one additional group consisting of
two gluons was considered.

5. Effective action for high energy processes in QCD

To begin with, let us consider the quasi-elastic process in which the final
state contains apart from the particle B' with momentum pg/ ~ pp also
several gluons with a fixed invariant mass in the fragmentation region of the
initial gluon A. It is convenient to denote the colour indices of the produced
gluons by aj,az,...a, leaving the index a¢ for the particle A. Further,
the momenta of the produced gluons and of the particle A are denoted

n
by ki, kz,...k, and —kgo correspondingly. The quantity ¢ = — Y k; is
i=0

the momentum transfer. Omitting the polarization vectors e, (k;) for the
gluons i = 0,1,...n we can write the production amplitude related with the
single gluon exchange in the tensor representation as follows

YoVL..-Vn —  _AVoVi.evn+ 1 — e
agaj...anB'B T ¢a001--~0~:C t ngTB'B‘SAB”AB : (92)

Here the form-factor ¢ depends on the invariants constructed from the mo-
menta kg, ..ky.

For the simplest case of the single gluon production ¢ was calculated in
the Born approximation in [11]. We present this result in the form:

Vol v, — vo¥i1Va ‘Yy’m’a(kls “kO)Fvaa+(k2y k2 + Q)
¢a,a,a:;j ~'92{F¢oa,a,: - T:,QQT:QG (kO + k1)2
_a e ¥*3¥0% (ky, —ko) 1% (ky, k1 + q)
4389 G164 (ko +k2)2
- 'y"’""’(kg, mk;)F"°a+(k0’ ko + q) } )
4383 " apa (kl + k2)2
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The three last terms in the brackets correspond to the contributions con-
structed from the gluon propagator combining the usual Yang-Mills vertex
v and the effective RPP vertex I'. The first term can be written as

vorive+ _ . vovivat voviva+
Faoala.zc - 7a0a1a2c + Aaoalazc ? (94)

where v is the light-cone projection of the usual quadri-linear Yang—Mills
vertex

7:85};%;'- =TglaoT;2a(5V1V25Vo+ — §vitgrora)
+ Tgyao Taya (67271870 — g¥atg¥0m)
2@20
+ ngalTac,oa(6V2V06VI+ _ 6u2+6u1uo) , (95)

and A is a new induced vertex

vorivea+(g+ .+ 1+ +\v +yv +\v ngaoTacla ngangoa
AT ) = (ot () { e ey Jonmy e |
172 02

(96)

In the general case of the multi-gluon production in the fragmentation region

of the initial particle one should introduce an infinite number of the effective

vertices A for the gluon-Reggeon interactions to satisfy the condition of the
gauge invariance of the inelastic amplitude A.

It turns out, that we can construct the effective action reproducing
these vertices for the fragmentation processes:

Sfragm = - /d4 z Tr [%wa + ]—(V)A+ + ]+(V)A"] ’ (97)

where G, = [D,,D,] and D, = §, + gV, is the covariant derivative for
the Yang-Mills field V = ¢,V ¢, [ts,t5] = fabctc describing the real gluons.
The fields A4 = ¢, A% correspond to the reggeized gluons (cf. [12]). The
currents j4 are given below:

jx(V) = j2YMWV) 4 jird(v), (98)

where the modified Yang-Mills current °YM and the induced current jind
equal:

PEM = U (V) M U(Ve) s 524 = ~010:U(Ve).  (99)
Here j¥M = _[D > G ] is the usual Yang-Mills current and
2:t 1
g 1+
U(Vi) =P ex ——/d:cV = — 100
(V) p(-3 )= 7 P (100)

— o0
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is the path-ordered Wilson exponent. According to equations of motion
iYM — 0 we obtain j4 = ]md. Therefore, one can express the effective
action for double quas1-e1a.st1c processes after integrating over A in terms

of the action for a two-dimensional o-model:

2
Sdouble = SYM(V) - 9_2 / dzz_l. tr (a_Lch—)(a.LaT-i-) ’ (101)
where
o0
T+=P exp(——% / dztVvy). (102)
- 00
This o-model was derived earlier by E. Verlinde and H. Verlinde using other
arguments [13].

For a general case of the Reggeon—gluon interaction local in the rapidity
interval (y—7,y+n) (wherey = 1 ln and n is an intermediate parameter)
the effective action has the form [14]

Suw=5"(0) - [ a2 Te [(AT(0) - 4400 A+ (A5 (0) = A3 o]

(103)
where

re 0 1
AL (v) = ‘%U(”ﬂ:) = v - gugve .. (104)

is a composite Reggeon field and j+ = 82 Ay is the Reggeon current satis-
fying the kinematical restriction 0+ j3 = 0 which is important for the gauge
invariance of S.g. Taking the functional integral over v one can obtain the
pure Reggeon effective action describing all possible processes of production
and annihilation of Reggeons in the t-channel. Because A’8(v) contains the
terms linear in vy there is a non-trivial solution of the Euler-Lagrange equa-
tions for Seq which can be constructed as a series in A4. By calculating
the quantum fluctuations around this solution one can find the gluon Regge
trajectory and multi-Reggeon vertices in the one loop approximation. The
subsequent functional integration over A4 corresponds to the solution of
the Reggeon field theory acting in the two-dimensional impact parameter
subspace with the time coinciding with the rapidity. It is important, that
in the above approach the t-channel dynamics of the Reggeon interactions
turns out to be in the agreement with the s-channel unitarity of the $-
matrix in the initial Yang-Mills model. In the Hamiltonian formulation of
this Reggeon calculus the wave function will contain the components with
an arbitrary number of reggeized gluons. Nevertheless, one can hope that at
least some of the remarkable properties of the BFKL equation will remain
in the general case of the non-conserving number of reggeized gluons.
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