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BOSONIZATION: HOW TO MAKE IT WORK
FOR YOU IN CONDENSED MATTER* **

R. SHANKAR

Center for Theoretical Physics, P.O. Box 6666
Yale University
New Haven, CT 06511 U.S.A.

An elementary introduction to Abelian bosonization is provided here.
It is shown that although it is applicable to relativistic Dirac fermions,
there are many examples of problems in condensed matter theory which
are described (with respect to some characteristics) by just such objects.
Examples considered here are the uniform and random Ising models, and
the Hubbard model.

PACS numbers: 71.10.Hf, 11.10.Kk

1. Introduction

I thank the organizers for inviting me to this wonderful haven. Just as
the tour book said, we came to Poland as visitors and will leave as friends.

Some of the work described here was due to Claude Itzykson of Saclay,
who passed away recently. It was my good fortune to have known this warm
and charismatic gentleman. I fondly dedicate these lectures to Claude’s
memory.

Now for our topic proper. Bosonization refers to the possibility of de-
scribing a theory of relativistic Dirac fermions obeying standard anticom-
mutation rules by a boson field theory. While this may be possible in all
dimensions, it has so far proved most useful only in d = 1 for the simple
~ reason that only in this case is the bosonic version of the given fermionic
theory local and simple, and often simpler that the Fermi theory.

* Presented at the XXXV Cracow School of Theoretical Physics, Zakopane,
Poland June 4-14, 1995.

** Lectures given at the BCSPIN School, Katmandu, May 1991. Reprinted af-
ter minor changes with the kind permission of World Scientific from Current
Topics in Condensed Matier and Particle Physics, Editors J.Pati, Q.Shafi and
Yu Lu, World Scientific (1993).
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To my knowledge bosonization, as described here, was first carried out
by Lieb and Mattis [1] in their exact solution of the Luttinger model. Later
Luther and Peschel [2] showed how to use it to find asymptotic (low mo-
mentum and energy) correlation function for more generic interacting Fermi
systems. It was independently discovered in particle physics by Coleman [3]
and further developed by Mandelstam [4]. Much of what I know and use is
inspired by the work of Luther and Peschel.

Before getting into any details, I would first like to answer two questions
and thereby provide you with an overview. First, if bosonization applies only
to relativistic Dirac fermions, why is it of any interest to condensed matter
theory where relativity is never considered? Second, what is the magic by
which bosonization helps us tame interacting field theories?

As for the first question, there are two ways in which Dirac fermions
enter condensed matter physics. The first is in the study of two-dimen-
sional Ising models. If we use the transfer matrix approach and convert
the classical problem on an N-by-N lattice to a quantum problem in one
dimension we end up with a 2%V dimensional Hilbert space, with a Pauli
matrix at each of N sites. The two dimensions at each site represent the
two-fold choice of values open to the Ising spins. Consider now a spinless
fermion degree of freedom at each site. Here too we have two choices: the
fermion state is occupied or empty. There is some need for cleverness in
going from the Pauli matrix problem to the fermion problem since Pauli
matrices commute at different sites while fermions anticommute; this was
provided by Jordan and Wigner. At the critical point the fermions had to be
massless and relativistic: massless since the system is critical and relativistic
since one regains all the symmetries of the continuum at the critical point.
All this will be made precise shortly.

The second way in which Dirac fermions arise is in the study of spinless
fermions on a linear lattice. Consider the noninteracting case with just
hopping:

H=- Y ¢ln)p(n+1)+hec. (1)

n=—0oo

In the above, the spinless fermion field obeys the standard anticommutation

rules
{¥1(n), ¥(m)} = bmn (2)

with all other anticommutators vanishing.
We switch to plane waves (with system volume equal to unity)

vln) = [ Frvmen (5

-
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obeying
{¢1(k), ¥(a)} = 278(k ~ ). (4)

In inverting relation (3) you must use 27§(0) = N, the volume of the system.
The Hamiltonian separates nicely in terms of these operators:

Ky

H=- / %coskiﬁf(k)qb(k). (5)

_-

In the ground state we must fill all negative energy modes, that is,
states between tkp , where kp = /2. If we now need to study the low
energy properties of the system, we can focus on the modes near just the
Fermi points. We find that they have E = 1k, where k is measured from
the respective Fermi points. These are the two components of the massless
Dirac field. Any interaction between the primordial fermions can be written
in terms of these two components.

Next, we ask how bosonization can make life easier. Say we have a
problem where H = Hy + V, where Hy is the free Dirac Hamiltonian and
V is a perturbation. Assume we can express all quantities of interest in
terms of a power series in V. In the interaction picture the series will
involve the correlation function of various operators evolving under Hj.
Bosonization now tells us that the same series is reproduced by starting with
H = HP + VB where HP is a massless free boson Hamiltonian and V& is a
bosonic operator which depends on V and is specified by the bosonization
dictionary. Consider a special case where V = p? where p = ¥(z)y(z) ,
the Dirac charge density. This is a quartic interaction in the Fermi language
and obviously non trivial. But according to the dictionary, we must replace
p by the bosonic operator (1/1/7)3,¢, ¢ being the boson field. Thus V is
replaced by the quadratic interaction (1/7)(8.4)?. Thus the bosonic version
is trivial! I must add that this is not always the case, a simple mass term
in the Fermi language becomes the formidable interaction cos /47 ¢.

Let us now begin our course. I will first remind you of some basic facts
about massless fermions and bosons in one dimension. This will be followed
by the bosonization dictionary that relates interacting theories in one lan-
guage to the other. This will be followed by the first application: deriving
the critical correlation function of the Ising model using bosonization. Next
we will do the same for the random bond Ising model. The last section will
be devoted to quantum Fermi systems linearized near their Fermi points as
described earlier. All topics will be discussed essentially from first principles.
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2. The massless Dirac fermion

In one dimension the Dirac equation

i _
Zﬁ H":ba (6)
will have
H =aP + pm, (7

where P is the momentum operator, and o and 3 are Pauli matrices o3
and o, respectively. Let us focus on the massless case. There is nothing
to diagonalize now: 34, the upper and lower components of 1), called right
and left movers, are decoupled. In terms of the field operators obeying:

{¥L(z),v+(¥)} = 6(z - v), (8)

the second quantized Hamiltonian

# = [WH@)aP)(e)is

= [vl@-itps @)z + [LE)G0Iw-()z. ()
Going over to Fourier transforms
vi(p) = [ vale)e 7oz, (10)
obeying
{$1(p), ¥(a)} = 276(p— q), (11)
we find

H= [ YL0) p s () o + / W) (-, (12)

From the above, it is clear that the right/left movers have energies F = +p,
respectively. The Dirac sea is thus filled with right movers of negative
momentum and left movers with positive momentum.

Since the fields have trivial time evolution in this free field theory, we
can write down the Heisenberg operators at all times:
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o0

(e, t) = / ;i—f:zﬁi(p)eip(”q:t). (13)

Notice the 4 is a function of z F ¢ only.
Consider now the equal time correlation function in the ground state:

o o]

(b (2ol (0) = / /dq e vh(a) = [P (19)
2n6(p—q)(q)  °

We have used the fact that a right mover can be created only for positive
momenta since the Dirac sea is filled with negative momentum particles.
The last integral is ill defined at large momenta. So we introduce a con-
vergence factor e~ /P! that cuts off large momenta. Unless the physics in
question involves arbitrarily large momenta (and hence energies) this should
not make any difference to anything: in other words, if at the end of the
calculation we have a formula for some physical quantity, we will usually be
able to set a = 0. So now we have

(Baapl () = [ emereios = 2. (15)
0

If we want the correlation function for unequal times, we just replace z
by # — t since we know that the right movers are functions of just this
combination.

In the same way, we can show that

(ba(2)$L(0)) =TT, (16)
(L) wale)) = L. ()

Note that
W) L) + PO vs(e) = 2~ o), (18)

2+a?
where in the last equation we are considering the limit of vanishing a.
Besides the Fermi field, there are bilinears in the field that occur often.
Let us look at some key ones. The current density j, has components
jo = 1y = L (@) (2) + vl (2)- () (19)
= play = vl (2)91(2) — ¥L(2)9-(2) (20)
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The axial current is given by ji = €uyjp- The last bilinear is the “mass
term”

Y = pH(z)By(2) = —ipl (2)¢-(z) + il (2)p4(2). (21)

For later use, let us note that

11

T oIz y a2’ (22)

($9(z) $1(0))

The derivation of this result is left as an exercise. All you need are the
anticommutation rules and the correlation functions from Eqs (16), (17).
We close the section on fermions with a digression on what are called
Majorana fermions. These may be viewed as hermitian or real fermions.
Let us call our Dirac field ¥p and express in terms of two Hermitian fields

% and x:

_ Y +ix
Yp = ol (23)
oh =¥ (24)

It is readily verified that

{¥(2),¥(y)} = é(z - 9) (25)

with a similar rule for xy and all other anticommutators vanishing. If we
write the massive Dirac Hamiltonian in terms of the Majorana fields, defined
above, we will get

Hp = / W} (aP + fm)ypldz

=1 [WT(aP + Bm)$)+ (T (aP + )
— i[yT(aP + fm)x] + i[x" (aP + Bm)y]. (26)

You may check that the cross terms involving 3 in fact add to zero. To fully
decouple the Majorana fields, we change the representation of the a matrix
so it equals Pauli’s 7. It is now easy to verify (upon doing an integration
by parts) that the cross terms do indeed drop out and the Hamiltonian is
a sum of two Majorana Hamiltonians. Thus one free Dirac fermion equals
two Majorana fermions just as one charged scalar field equals two real fields
(not just in degrees of freedom, but at the level of H).
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3. Free massless scalar field
The Hamiltonian for a massless scalar field is
Hp =} [ + (Ve)i,
where II and ¢ obey

(#(2), I (y)] = i6(z — y) -

The Schrédinger operators are expanded as follows:

#(z) = / on ,—2] [¢(P) 1p:: ¢t(p)e"ip”] e—elpl ,
H(:C) = / #\/1;_:_7} [-,’¢(p)eipa: + z'¢f(p)e—isz e—a|p| .
Due to the convergence factors, ¢ and IT will obey
(92 T(0)] = 521 ~ iz~ v).

The Hamiltonian now takes the form:

#= [ Lild0)o(r),

1841

(27)

(28)

(29)

(30)

(31)

(32)

as you may show for yourself. We now introduce right and left movers as

per

¢+(z) =

D

[qs(z) = / H(z')dz'}

o0

o=t

B 2_[0 27/2/p|

+oo
. / _ 9P ipzg—alpl
s 2my/2|p)

P__ —alpl [¢(p) (1 T ‘%l) e'P® 4 h.c.]

(33)
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I leave it to you to verify that

[6+(), 62(v)] = Le(z - ), (34)
[$+(2), o—(3)] = . (35)

(The studious reader will note that due to the convergence factors, a rounded
out step function will arise in place of ¢(z — y), and this will become a step
function as @ — 0.) Note also that if we use the Heisenberg equations of
motion for ¢(p) and ¢t(p) we will find that ¢ are functions only of z F .

We must next work out some correlation functions in this theory. It is
claimed that

G(z) = (¢+(2)$+(0) — 43(0)) (36.a)
= & ln— :iz (36.b)

G(z) = (¢(z)¢(0) - ¢*(0)) (37.a)
=& :iz . (37'b)

I will now establish one of them leaving the rest as exercises. Consider

t ezp:c_ e~ P
] vl \/“[((qs(p)qs @)™ 1)

o0
[ e e
) 4r|p|

1 a

= In

a-—iz’ (38)
where the last line comes from looking up a table of integrals. If you can-
not find this particular form of the result, I suggest you first differentiate
both sides with respect to z, thereby eliminating the 1/|p| factor. Now the
integral is easily shown to be i/(47(a — iz)). Next integrate this result with
respect to z, using as a boundary condition G(0) = 0 to get the quoted
result.

Finally we consider a class of operators one sees a lot of in two (space-

time) dimensional theories. These are exponentials of the scalar field. Con-

sider first . ‘
Gp = (etﬁdi(z) e~ll3¢(0)> . (39)

First note that for the correlator to be nonzero, the sum of the factor mul-
tiplying ¢ in the exponentials has to vanish. This is so because the theory
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(the Hamiltonian of the massless scalar field) is symmetric under a constant
shift in ¢. To evaluate this correlator, we need the following identity:

2 B2
et teP =:eAtB exp (<AB + i;—B>) , (40)

where the normal ordered operator : A : has all its destruction operators
to the right and creation operators to the left. In the case of : e? :, the
vacuum expectation value is unity since in the exponential series, only the
unity fails to annihilate the vacuum acting to the right or left. If you want
to amuse yourself by proving Eq. (40) here is a possible route. Start with
the more familiar identity (which we will not prove):

A+B _ oA B,—(1/2)[4,B]

— eBe4e(1/2)(A,B] (41)

e

provided [A, B] commutes with A and B. Using this, first write e4 =
eA++A_, where AT are the creation and destruction parts of A, in normal
ordered form. Now turn to eA+ B, separate the exponentials using the iden-
tity above, next normal order each part using this formula again and finally
normal order the whole thing. (The last step is needed because :4::B: is
not itself normal ordered.) We now use Eq. (40) to evaluate Gg:

Gp = (: exp (iB(4(2) - $(0))) 2
2 2
x exp (82 [{s(=)a(0) - LOT L)

1 a?
2
=e —n——)
P (’3 ar  o? + 22
( o? )ﬁ2/47r
a? + z2

Notice two things. First, by varying 8 we can get operators with a
continuum of power law decays in correlation. Next, as we send a to 0,
the correlator vanishes. To avoid this we must begin with operators suit-
ably boosted or renormalized. The thing to do in the above example is to
consider:

(42)

(€8] g = a~F /4meiPé (43)

This operator will have finite correlations in the limit of zero a: if we give
it less of a boost it dies, more and it blows up.
One can similarly show that

g /4m
<eiﬁ¢i(z)e—i5¢i(9)):( = ) . (44)
aFiz
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4. Bosonization dictionary

So far we have dealt with massless Fermi and Bose theories and the
behaviour of various correlation functions in each. Now we are ready to
discuss the rules for trading the Fermi theory for the Bose theory. The
most important formula is this:

1 ,
Vi(e) = eI, (45)

This means that any correlation function of the Fermi field, calculated in the
Fermi vacuum with the given («) cut-off, is reproduced by the correlator of
the bosonic operator given in the right hand side, if computed in the bosonic
vacuum with the same momentum cut-off. Given this operator equivalence,
we can replace any interaction term made out of the fermionic field by the
corresponding bosonic counterpart. Sometimes, this will require some care,
but this is the general idea.

There are several ways to convince you of the correctness of the above
master formula. First consider the correlation

toy = Lt 4
(4@ O0) = 5o (46)
Let us see this reproduced by the bosonic version:

(o eiVATp(s) L —ivAme1(0))
Vara Vara
= __1...(: eiVATS1(2) o~ iVaT 1 (0) :>e4w(¢+(z)¢+(o)_¢1>

21
_ 1 anGi(2)

2ra
-1 e (47)
T 2raa-—iz

In the above we have used the normal ordering formula Eq. (40), the defi-
nition of G from Eq. (36.a) and its actual value from Eq. (36.b).

It is possible to verify at an operator level that the bosonized version
of the Fermi field obeys all the anticommutation rules (with delta functions
of width a). I leave this to the more adventurous ones among you. Instead
I will now consider some composite operators and show the care needed in
dealing with their bosonization. The first of these is

P = 1 cos Vire. (48)
ra
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The proof involves just the use of Eq. (41) and goes as follows:

P = —ipl (e)y_(z) + hec.
- [e—i‘/‘l_"‘ﬁ*”(z)e_im‘i’“(”)(—i) + h.c.]

T 27a
_L(e_,-\/z;¢(z)e%4w(—l)%(-i)+h.c.)

T 2ra

= 1 cos VAre. (49)
TQ

The factor i/4 in the exponent arises from the commutator of the right and
left movers, Eq. (35).

In the above manipulations we brought together two operators at the
same point. Each one has been judiciously scaled to give sensible matrix
elements (neither zero nor infinite) acting on the vacuum. There is no
guarantee that a product of two such well behaved operators at the same
point is itself well behaved. A simple test is to see if the product has a finite
matrix element in the vacuum as the points approach each other. In the
above example, this was the case: in fact the mean value of the composite
operator is zero since they create and destroy different (right or left moving)

fermions. This is not the case for the next item: the operator 1/)L(:E)2L’+(23).
We define it by a limiting process as follows:

1 = (lm )L e—iVETh4(2) 4ivATH4(0)
Y1 ()4 (z) = (lim)—e e

= (hm L : e_i‘/4—“—'¢+(‘°)ei\/47¢+(0) :e47rG+(z:)

z—0' 21x
_ 7 . . —0¢4 . Qe
_27r(:c+ia)'1 wan Bzm-i— "z +ia
T 1 0¢+
- il 50
2m:+\/7_r<92: + (50)

The above manipulations need some explanation. First observe that we per-
form a Taylor expansion only within the normal ordering symbols. This is
because only the normal ordered operators have nice (differentiable) matrix
elements. Thus terms higher order in z and sitting within the symbol are
indeed small and can be dropped as £ — 0. Consider next the z 4 ia in
the denominator. Is it permissible to drop the « in comparison to z, even
though z itself is being sent to 0?7 Yes, we must always treat any distance
z in the continuum theory as being smaller than a, which is essentially
a spatial short-distance cut-off. Finally note that the density operator in
question has an infinite c-number part, we have displayed in front. This
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reflects the fact that the vacuum density of right movers is infinite due to
the Dirac sea. If we define a normal ordered density, i.e., take away the
singular vacuum average from it, we obtain

V(e Woal) = T2t (51)

A similar result obtains for the left-mover density. Combining the two we
get some very famous formulae in bosonization:

jo = %? (52)
. _ 1 ¢+ —¢-)
n= NZ3 oz

- .._\1/1_7?. (53)

We close this section with what is a very useful but odd looking relation:

2
|22 cosvams| = -2 4 o cos VTwH + comumbers. (54)

To derive this result, you have to point-split the two cosines as we did in the
density problem, write each as a sum of two exponentials. You must then
combine exponentials with opposite exponents within the normal ordering
symbol only, going this time to second order in the Taylor series since it
is an even function we are expanding. The first term on the right hand
side comes from doing this. The second comes from the naive combination
of exponentials of the same sign, allowed since the product has no vacuum
expectation value. In the field theory literature you will not see the sec-
ond term mentioned. The reason is that at weak coupling this operator is
highly irrelevant. By this I mean that if you find its correlation functions
they will vanish despite the negative powers of a in front of it: though these
boost it up, the boost is not enough. You can check this by considering
its two-point function. The reason for keeping this is that in the presence
of strong interactions the importance of this operator is decided by its cor-
relation functions in the strongly interacting (as compared to the present
noninteracting ) theory. This is what happens in the X X Z chain.

5. Application I: uniform Ising model correlations at criticality

We now pass from this rather sterile business of deriving bosonization
to actually using it. Of the countless applications, I have chosen a few that
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I am most familiar with. While my treatment of the subject will not be
exhaustive, it should prepare you to read any more material dealing with
the subject.

Consider the Ising model in d = 2 with a partition function:

Z = Z exp (KZ sisj) , (55)

s=41 (i5)

where (i, j) tells us that the Ising spins s; = +1 and s; = £1 are nearest
neighbors on the square lattice. The sum in the exponent is a sum over
bonds of the square lattice.

The correlation function

G(r) = (srs0), (56)

where 0 is the origin and r a point a distance r away is defined as the
following thermal average:

> =ty 3rsoexp (K Y ;. 8i8;
Glr) = == (%6 ’). (57)

2 o=ct1€XP (K 2 i) -"isa‘)

It generally falls exponentially with r, except at the critical point where
it falls like a power, which is known to be 1/4. This power is universal,
i.e., it will not change if we make some change in the interaction, such
as adding a second neighbor term or making it anisotropic. But it will
be unstable to adding a term odd in the spin variables, since this changes
the symmetry or to the addition of a long range interaction which alters
the effective dimensionality. (In the anisotropic case the distance r will
naturally be given in terms of the coordinate differences and an anisotropic
metric.) This exponent of 1/4 is rather difficult to derive and the reason
will be more or less clear to you as we go along. I will now describe a trick
due to Itzykson and Zuber [5] which uses bosonization to get around this.

Let us begin with a review of the transfer matrix formalism. For this
purpose consider the model in d = 1. The lattice now is an array of N dots
which we imagine to be vertical, to represent discrete units of time and to
be connected so that the N + 1-th point lies next to the first, i.e., with
periodic boundary conditions. Consider

7= 3 e (Y Klssina =)
=) Hexp (K(sisi41 — 1))

= E T3182T8283 o 'T3N81 ’ (58)

35
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where we have subtracted a constant K from the bond energy, and, in
the last step, introduced a 2 X 2 matrix 7 whose rows and columns are
labeled by a pair of spins and whose element T, equals the Boltzmann
weight associated with a pair of neighboring spins in the state s,s’. Thus

T4+ =T__ =1,T4_ =T_4 = exp(—2K). In terms of this matrix
T=I+e kg, (59)
Z="TeTN. (60)

Let us rewrite 7 as follows. Consider the identity

K91 = cosh K* + sinh K*oy
= cosh K*(I + tanh K*01).(61)

If we choose
tanh K* = e 2K (62)

we see that up to a prefactor cosh K*,
T =K1, (63)

We will drop this prefactor henceforth. This prefactor will modify the free
energy by a term which is analytic except at infinite K™*. It will not affect
the behaviour of correlation functions. Note that K*, called the dual of K,
is large when K is small and vice versa.

From Eq. (60) we see that finding Z reduced to finding the eigenvalues
of T, which is readily done in this simple 2 X 2 case. Usually one has a more
modest goal. One wants just f, the free energy per site in the infinite IV
limit. Then we need just the largest eigenvalue Ag:

Z=TrTV
2
=Y AN
i=1
~AY (as N - ) (64)
) Z
=1InAg. (65)

For later reference let us note that in the present case, the eigenvalues are
exp(+K™) and the corresponding eigenvectors are

10),11) = J5(1,+1). (66)
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Consider next the correlation function (s;s;) for ¢ > j. I claim that

Tr TN_i0'3Ti_j0'3Tj
Tr TN

(si85) = (67)
To see the correctness of this, look at the numerator. Retrace our derivation
by introducing a complete set of o3 eigenstates between every factor of 7.
Reading from right to left, we get just the Boltzmann weights till we get to
site 7. There the o3 acting on its eigenstates, gives s;, the value of the spin
there. Then we proceed as usual to j, repeat this and go to the N-th site.
This clearly agrees with Eq. (57). Let us rewrite this another way. Define
Heisenberg operators

0a(j) =T 90,17, a==g,y,z. (68)
In terms of these N
T g3 z o3 ]
(sisg) = L r2)oald) (69)

Consider now the limit as N — oo, 7 and j fixed. If we write T as
T = 3 Ji)i, (10)

then for large N

TV =~ |0)(0[Ay (71)
and in the infinite volume limit
(sisj) = (0los(i)os(4)|0). (72)

(To verify this, combine Egs. (69), (71) and take the trace in the eigenbasis
of T.) For the case j > i, we will get the operators in the other order. In

general then
(si85) = (0](o3(2)3(4))10) (73)

where the time-ordering symbol 7 will order the operators with time in-
creasing from the right to left.

Now replace o3(j) by the unit operator in the above derivation. It
follows that the mean magnetization is

(s:) = (0]o3(0)[0) - (74)

In our example, |0) is the eigenket of oy so that there is no mean magne-
tization. The only exception is at zero temperature or zero K*: now the
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eigenvalues are equal and we can form from the degenerate space a fully
ordered state.

Although the preceding analysis and in particular Eq. (73) suggests
that everything depends on just the ground state, a knowledge of all states
is required even in the infinite volume limit. Going to Eq. (73) for the case
i > 7, let us insert the complete set of (two) eigenvectors of T' between
the Pauli matrices. When we insert |0)(0| we get zero (since there is no
magnetization) and when we insert |1)(1| we get

(sj8i) = (0T *o3(0)T*~7[1)(1]o3(0)T7|0)

A\
- (;ﬁ) [(0los]1)]?
= &=2K" (=) |0l |1) . (75)

Notice that the correlation falls exponentially with distance with a coeffi-
cient 2K*, which is just the gap to the first excited state of the Hamiltonian
H defined by T = e~ H which in our example is —K*ay.

This simple example has revealed most of the general features of the
transfer matrix formalism in any context. The only difference is that for a
bigger matrix, there will be a sum over decaying exponentially. Asymptot-
ically the gap to the first excited state will rule.

Let us now move on to an N x M lattice d = 2. Now we have M copies
of the column of N dots. We think of the horizontal dots as a spatial lattice
and the vertical dots as discrete time just as in d = 1. The Boltzmann
weights involve couplings between a spin and its spatial neighbor (a new
feature) and it temporal neighbor (as in d = 1). We must once again cook
up a T matrix, acting on the direct product space of dimension 2M with
matrix elements that equal the corresponding Boltzmann weights. I state
the result:

M M
T = exp (K* Z al(i)) exp (K Z 03(z')0'3(i)) . (76)

Sandwich this between a bra and a ket labeled by the eigenvalues of the M
o3 matrices, the ket and bra describing the spins at a given slice and the next
respectively. Acting to the right the second factor in T gives the Boltzmann
factors within a row (each o3 is replaced by its eigenvalue) times the ket.
We now see the first factor sandwiched between the direct product of M
Ising spins operators. Each is identical to what we had in d = 1 and gives
the Boltzmann factor for the M vertical bonds. With these changes in T,
all the formulae are of the same form as in d = 1. For example Z = Tr TM
and f = InZ/MN. In the limit of infinite M, T can be replaced by the
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projection to the dominant state. To get the full thermodynamic limit we
must next look at this state in the limit N — oco. All correlation functions
are given by the expectation values of Heisenberg operators in this state.

Note that unlike in d = 1, where T is the exponential of a simple oper-
ator, it is a product of two exponentials. We could of course combine them
by brute force, but this would involve a never ending set of commmutators
involving the exponents. So we resort to the following trick invented by
Fradkin and Susskind [6]. If K and K* could both be made small, we could
simply add the exponents dropping the commutators as being of higher or-
der. However, as seen earlier, when one is small the other is large. Let
therefore consider an anisotropic lattice with couplings K; and K, in the
time and space directions. Let us choose the former very large and the latter
very small, in particular let us choose

K,=r, (77)
K =Ar (r—0). (78)
With this choice (called the 7-continuum limit)
T=e"H, (79)
H=-)) o1(m)= ) os(m)os(m+1). (80)

The idea of Fradkin and Susskind is that anisotropy will change the metric
but not the exponent for decay or any other universal quantity.

Although the above H is translationally invariant and bilinear (at most)
in its variables, we cannot solve this by fourier transformation. The reason
is that o’s at different sites commute (resembling bosons) while those at the
same site anticommute (resembling fermions). Thus their transforms will
be neither bosonic nor fermionic operators. We follow here the magic of
Lieb, Schulz and Mattis and trade the Pauli matrices for full fledged Fermi
operators [7].

Let us define

n—1
P1(n) = % (_11 01) o2(n), (81)

n-—1
1/)2(n) = % (_Il 0'1) a3(n). (82)

We are now treating an infinite spatial lattice and the “string” of o1’s comes
from the far left to the point n — 1. You should verify that the new fields
are Majorana fermions obeying

{"l’i(n)a ¢J(m)} = 6ij6mn . (83)
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The role of the string is to introduce global anticommutation. This is
all very good, but what will the string do to the Hamiltonian? A local
(nearest neighbor) interaction can easily become nonlocal when we change
to nonlocal variables. Luckily for us

H =2i))_ $1(n)ga(n) — 20 Y tha(n)dha(n +1)
= (1= 2) ) (=it (n)eha(n) + ivha(n)¢1(n))

+ > [=ia(n)($2(n + 1) — $2(n)) + i(2(n)($a(n) - $a(n — 1)} .
(84)

I urge you to verify these steps. I also urge you to invert the transformation
expressing the Pauli matrices in terms of fermions. It is remarkable how the
final theory is bilinear and local in fermions, and hence amenable to solution
by Fourier transformation. Had there been a coupling to a magnetic field
via a o3 term, you would find that the string does not cancel and that H
contains a sum over sites of infinite strings of Fermi operators. This is why
the Ising model in a field is yet unsolved. (In going to the last equation
above, I have used the anticommuting nature of the fields to trade in the
factor of 2 for two ways of writing the same operator.)

Let us’imagine that our lattice has a spacing a. Define continuum
operators ¥, = ©¥/+/a so that the lattice operators obey § function anticom-
mutation rules as a — 0. In terms of these, we get in the continuum limit
the following continuum Hamiltonian H. = H/a:

H.= [ ¥T(aP + Bm)yde — ; A , (85)

where a is now o1, as we agreed earlier. Several points need explanation.
First, the subscript ¢ has been dropped on the fermion operators. Next, we
have replaced differences by derivatives. This is allowed only if the operator
has correlations long compared to the lattice size. Now the correlator has a
range given in this free field theory by its inverse mass a/(1 — A) since this
is the lowest excitation over the vacuum. Thus we must be very close to
A = 1 before this continuum limit is valid. Let us assume that this is the
case.

The quadratic Hamiltonian in Eq. (84) is easily diagonalized. By filling
all the negative energy levels we get the ground state energy FEy. This
energy (per unit spatial volume) is essentially the free energy per site of the
square lattice model, a result I leave to you show. Let us turn instead to the
correlation functions. Now it seems that in a free field theory this should
be trivial. But it is not, the reason being that what we want is not the
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two-point function of the Fermi field, but of the spin freld, and the latter
is a very complicated function of the former. Let us find the equal time
correlation of two sites a distance n apart. (The power law for decay should
be the same in all direction even though length scales are not.} Thus we
need to look at

(0]a3(0)a3(n)|0) = (0]o3(0)a3(1)o3(1) - -03(n ~ 1)o3(n)|0)
= (0][24¢1(0)2(1) - 2i%p1(1)32(2)
-+ 2ith1(n — 1)h2(n)][0) . (86)

Thus we find that the two-point function of spins is a 2n point function of
fermions. This becomes very hard if we want the limit of large n: we must
evaluate a determinant of arbitrarily large size. We are however presently
interested in obtaining just the power law of the asymptotic decay of the
spin-spin correlation. To this end we can follow the trick of Itzykson and
Zuber. First note that apart from the end factors, 1;1(0) at the left and
12(n) at the right, we have the product over sites of

Ditha i) (i) = exp (fg[wz(iwl(i)]) - (87)

This equation follows from the fact that 2:1,()2(2)1;‘)1(1) is just like a Pauli
matrix (with square unity). The exponent is just **¢1). When we from the
product over sites, it becomes a sum and in the contmuum limit the integral
of ¥y between 0 and R, where R = na is the distance between the points
in laboratory units. There is no simple way to evaluate

R
G(R) ~ (O‘exp —;—r-/ P(z)yP(z)dz ;0 (88)
0

Consider now an auxiliary problem, where we have made two noninter-
acting copies of the Ising system, with spins called s and ¢, and associated
Pauli matrices ¢ and 7 and Majorana fermions ¢ and x. It is clear that

(SntnSOto) = <8n30>(tnto>
= G(n)? (89)

since the thermal averages proceed independently and identically for the
two sectors. The trick is to find G2 and then take the square root. Let us
see how this works. First, we will be dealing with products of the following
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terms:

2i32112ix2x1 = [—2ix1%1] - [2ix292]
= exp (%r"[z'i"l’IXI + 2i¢2X2])

= exp (i1r : 1[)})1/113 :) . (90)

The last step need some explanation. Let us form a Dirac fermion

_Y+ix
Yp = 7 (91)

and consider its charge density:

Yy = L1 —ixa)(¥1 +ixa) + (1 - 2)
=ip1x1 + i2xe +1 (92)
19Ty = i + idaxa, (93)

where I have used the fact that the vacuum density of the Dirac fermions is
1 per site, half for the right movers half for the left movers. (Recall that in
momentum space half the states are filled, this translates into half per site
in real space.) This brings us to our punch line: in view of the above

R
G%(R) = <0 exp (mr[ :pt(2)y(e): da:) ‘0) (94.a)
0
R
= <O exp (/ i\/7783¢dz)§0> (94.b)
0
= (0] exp (ivrg(R)) exp (—ivFd(®)[0)  (940)
- @i/; (94.d)

Thus the beauty of the bosonization is that a nonlocal Green
function in the Fermi language has become a local 2-point function
in the bosonic language. Several points of explanation are needed.
First, we have used Eq. (52) in going from the first to the second equation
in the above sequence. Next we have used the fact that at the critical point
the Fermi theory has no mass. Thus the bosonic ground state in which the
bosonic correlator is evaluated is the free field vacuum. Lastly we have used
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Eq. (42) to evaluate the desired two-point function. Taking the square root
we find the desired decay law G(R) ~ R~1/4.

I have been careless about the end points where the product does not
follow the pattern. If this is taken into account, one finds that we must
use sin+/7¢ in place of ¢'V™®_ This does not however change the critical
exponent. If one tries the Itzykson—Zuber trick away from criticality one
finds that one has to find the correlation function of the same operator but
in the theory with an interaction cos4./7¢ which is the bosonized version
of the harmless looking mass term in the free Dirac theory.

To conclude, the following were the highlights of our derivation of G(R):

o The critical theory of the Ising model in the extreme anisotropic 7
continuum limit is a massless Majorana theory.

e The two-point function of spins a distance R apart is given by the
average of the exponential of the integral of a fermion bilinear from 0
to R. A

e By considering the square of G, we made the integrand referred to above
into the normal ordered Dirac charge density.

o By bosonizing the latter into the derivative of ¢, we got rid of the
integral in the exponent and were left with just a two-point function
coming from the end points of the integration.

o By evaluating this in the free field theory we found that G2 falls off like
R~1/2, We then took the square root of this answer.

6. Application II: the random bond Ising model

Consider an Ising model in which the bonds are not uniformly strong
with strength we have called K, but where the bonds are chosen randomly
from an ensemble. This can happen in real systems due to vacancies, lattice
imperfections and so on. We should therefore imagine that each sample
is different and translationally noninvariant. The study of the d = 2 Ising
model with such a complication was pioneered by Dotsenko and Dotsenko [8]
(refered to as DD hereafter) in a very influential paper. I will now describe
their work as well as further contributions by others myself included. You
will see bosonization at work once more.

First let us understand what we want to calculate in a random sys-
tem. The behaviour of an individual system with bonds chosen in a sample
specific way from the ensemble of possibilities is not interesting, unless by
luck we are dealing with a property which is sample independent. (The free
energy per site in the infinite volume limit is one such object.) In general
what one wants are physical quantities, first calculated sample by sample
and then averaged over samples. This is called a quenched average and is
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a lot more difficult problem than the annealed average in which one treats
the bond strength as another statistical variable in thermal equilibrium, just
like the Ising spins themselves. Which one should one use? If the bonds are
frozen into some given values over the period of the measurements, we must
take them as a fixed external environment and do the quenched average. If
they fluctuate ergodically over the period of measurement, we must do the
annealed average. The DD problem deals with quenched averages. In this
case one must work with the averaged free energy f obtained by averaging
In Z over all samples. The temperature derivative of f gives the average
internal energy so on. (As mentioned above, it is known that in the infinite
volume limit, each sample will give the same f. This is not true for all
quantities.) Similarly one can take two spins a distance R apart find the
correlator G. This will depend on the absolute values of the coordinates
since there is no translational invariance. However the ensemble average G
will depend only on R. Besides these mean values, one can calculate the
fluctuations around these mean values. Given the distance R and a tem-
perature, there is a unique number G(R) in a pure system describing the
correlation. In our case there is probability P(G(R)) that G(R) will have
this or that value. We will return to this point in the end.

We have seen that the Ising model is described a noninteracting Ma-
jorana field theory. We can take this Hamiltonian and write Z as a path
integral over Grassmann numbers as follows:

2n(K) = [law)exp ([ FD+mpva’a) . (95)

(You must consider the lectures by professors Rajaraman or Mani [9, 10] to
see how this is done.) In the above m, the mass is determined by the A or
equivalently the temperature. It vanishes at the critical temperature. We
are assuming we are close enough to criticality for this continuum theory
to be valid. Suppose now that the bonds, instead of being uniform, vary
from point to point on the two-dimensional lattice, never swaying too far
from criticality. This means that m = m(z) varies with the two-dimensional
coordinate z. Zps = Zps(m(z)) is thus a functional of m(z). Let us assume
that the probability distribution for m is a Gaussian at each site:

—(m(z) — myp)?
P(m(:n)):Hexp( ( (2)!]2 ) ) . (96)

Hereafter we will focus on the case of zero mean: mo = 0. Thus each
bond fluctuates symmetrically around the critical value. To find f we must
calculate

7= / P(m(z))In Zas(m(z))dm(z). (97)
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Since we are averaging In Z and not Z, we see that the problem is not as
easy as that of adding an extra thermal variable m(z). We circumvent this
using what is called the replica trick. We use

InZ = (lim)Z

n—0

(98)

In what follows we will drop the minus one in the numerator since it adds a
constant to the answer and also drop the factor of inverse n since it multiplies
the answer by a factor without changing any of the critical properties. In
short in Eq. (97) we can replace In Z by Z™ (and of course send n to zero at
the end). But Z™ is just the partition function of n replicas of the original
model. Thus

7= ] ] exe (f Z¢,a+m(z))¢,d2 o) exp (73 () dmz)
L 1

-/ T ] exn [ [F@w+ (3 50) ). o9
L 1 1 1

-

Thus the randomness is traded in for an interacting but translationally
invariant theory, called the n-component Gross—Neveu model [21]. The
above is a shortened derivation of the DD result. It is understood that all
calculations be performed for general n and that in any analytic expression
where n occurs, it is set to zero. The value of the DD work is that it shows
in detail that this crazy procedure is indeed doing the ensemble average we
want to do.
Now DD proceed to deduce two results:

e The specific heat will have a “InIn” divergence instead of the “In” di
vergence of the pure system. To derive one must also explore the case
my ;ﬁ 0.

o The average two point function G(R) falls essentially like R® as com-
pared to the R=1/4 in the pure system.

While the first result seemed reasonable, the second did not. The reason
is as follows. It can be shown that the Gross-Neveu model is essentially free
field theory at large distances, the interactions falling logarithmically. It is
known in that in such asymptotically free theories correlations are usually
free-field like up to logarithms. Thus we can accept the change in the specific
heat from “In” to “Inln” but not the change of the decay exponent from
1/4 to 0. It was however difficult to see what had gone wrong in the rather
difficult calculation of DD who dealt with the formidable task of evaluating
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an average like Eq. (94.b) (which is difficult enough in free field theory) in
an interacting theory.

I decided to approach the problem a different way. Recall how, in the
pure case, by considering the square of the correlation, we could convert
the problem, via bosonization, to the evaluation of a two-point function.
Let us try the same trick here. Consider any one sample with some given
set of bonds. On it imagine making two copies of the Ising system. Then,
following the previous reasoning from the last section

1

G*(0, R, m(z)) = W

X/[d%bD][d;l’—D] exp [/ d*zyp(d + m(‘”))%bD] exp {iff :yhyp : dm] .
0

(100)

In the above, G remembers that one spin was at the origin and the other
at R (in both copies). In principle one must move this pair over the lattice
maintaining this separation. However this will be obviated by the replica
averaging to follow since the replicated problem will be translationally in-
variant. Next, due to the doubling, we have a Dirac fermion. Finally the
normalizing partition function downstairs is itself a functional of m(z) which
makes it hard to average G2. So we do the following. Let us multiply top
and bottom by Z™"~! and set n = 0. This gets rid of the denominator and
adds n — 1 copies upstairs. We have then

630, R,m(2) = [ [ﬁ apdgi] exp ( [ S Tp+ mle)de)
1

R
X exp zw/¢T¢1dw (101)
0

where the subscript 1 labels the species we started with and all fermions
are understood to be Dirac. If we now do the gaussian average over m(z),
we just complete the squares on the mass term and obtain

G*(B) = / [ﬁcwi%] exp / S (A + g(i%«pi)ﬁdzz)
1 1

R
X exp z7r/¢1¢1d:c (102)
0
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Let us now bosonize this theory to obtain:

G*(R) = /Hd¢i exp (/ d’z z": ‘%(V%)z + 2ngaz [ZCOS(\/E@)] 2)
; 1

1

x exp (iv/7(¢1(R) - $1(0)) - (103)

Consider the square of the sum over cosines. The diagonal terms can be
lumped with the free field term using Eq. (83) with two caveats. First, we
can ignore the irrelevant term since we will never deal with strong coupling.
Second we replace each cosine squared by —31-(V¢)?. This is because in the
old derivation we brought the two cosines together in the spatial direction,
at equal times. Here it is more appropriate to average over the spatial and
temporal separations in defining the cosine squared. Imagine now rescaling
¢ so that the kinetic term still has the standard coefficient of 1/2. In terms
of the new field

3=(1+L)s (104)

(once again called ¢, in what follows)

G2(R) = (exp (i 1 +”ﬁ¢1(3)) exp (-, /- +”L2¢1(0)))g, (105)
27

2

where the subscript g tells us that the average is taken with respect to the
vacuum of an interacting field theory with action

§S= [ &z -1 V;)?
/ > -3V
2
+ 555 [0 cos(v/angi cos(v/an4;)] - (106)

|
2T rallewy

Unlike in the pure case, where we had a two point function to evaluate
in a free field theory, we have an interacting theory. Since the size of the
interaction, g%, measures the width of the bond distribution, perhaps we can
work first with small g in a perturbation expansion? Unfortunately not. If
we carry out the series we will find that the real expansion parameter is
¢’ InR/a. Thus no how small g is, we cannot trust anything at large R.
There is a well known way out of this problem. Suppose we can trade the
theory with cut-off a for a theory with cut-off 2a. This can be done, say
be integrating out every other degree freedom in the functional integral and
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using what remains as the Boltzmann weight for the remaining degrees. In
the new lattice the spins will be separated by R/2a sites and the log will
be a little smaller. But there are two problems. First, the new theory will
have many couplings that come from the integration just refered to. Here
is where renormalizability comes: if the theory is renormalizable, as ours is,
we can lump all the effects of the cut-off change into a suitably chosen g,
as long as we ask only questions involving long distances. In addition, the
surviving fields in the functional integral will be rescaled by a factor Z (not
to be confused with the partition function) with respect to what we started
with. This is because the integration of the unwanted modes will in general
rescale the free field part of the action as well. This must be brought to
standard form (say 7(V¢)? in the case of a scalar field.) If we do not do
this, we cannot call the number in front of the quartic term the coupling
constant.

Suppose we do all this. We could still have a problem: the new g is now
bigger and offsets that gain we made with the log factor. To see which way
things go, one has to compute the 3 function:

Al9) = 77 ln 1’
where A is the inverse of the lattice size. This computation involves finding
to any given order the contributions the eliminated modes make to the
interaction between the surviving modes. To second order in g% one draws
the three possible one loop graphs and integrated the loop momenta from
the old A to the new. For the n-component Gross—Neveu model one knows
(12] that

(107)

3
B(g)=(1~- n)g;r— + higher order. (108)

In our case, n = 0, the coupling decreases with increasing lattice size. If
we increase the lattice size all the way to R, we find, upon integrating the
above equation, that

9*(R) = o R (109)

for very large R/a. Hence, when we do perturbation theory in the new
lattice with size R, not only will we be dealing with a small coupling constant
g(R), the troublesome logs will be gone.

Consider the two-point function of some operator {2 computed in the
original theory with coupling g(a) on alattice of size a. Call this G(R, g(a), a).
We assert that

9(R)

G(R, g(a),a) = exp |2 gf"idg G(R,g(R),R).  (110)
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The second factor tells us that as we change the lattice size from a to R, we
must change the coupling from g(a) to g(R). The first is just the rescaling
referred to earlier. It has this form for the following reason. Imagine doing
the lattice change in infinitesimal steps. At each step the coupling that is
operative is different and so is the rescaling. Define

7(9(4)) = %- (111)

Then the prefactor in Eq. (110) is seen to be just the integral of this equation
after two facts are incorporated. First, we need 2 because it is a two-point
function, and each of the two operators gets rescaled. Next, the integral
over dln A is traded for an integral over g by using the definition of the g
function, Eq. (108).

Since G can depend only on the ratio of the distance R to the cut-
off, and this ratio equals unity on the in the G in the right hand side of
Eq. (110). There is a mild dependence of the G on R via the coupling g(R)
contained within. We may evaluate this G' at zero coupling, the neglected
corrections being down by powers of g ~ 1/In R. Thus all the leading R
dependence is contained in the exponential integral. To do it, we just need
the lowest order 4. We obtain this from its definition. First note that if we
ignore all interactions (due to the double sum over cosines),

G(R,g,A):<exp (z /1: 1(R))exp(—i /HLEE¢1(0))>9
27

2
1 30+%)
- &l
The term in square brackets comes using Eq. (42) valid for the free field
theory, its g dependence comes from explicit factors of ¢ in the definition
of the operators. The corrections to the interactions begin at order g*
because the diagonal terms in the double sum have been pulled out and the
off-diagonal terms do not contribute to correlation in question due to the
constraint that the sum of all the exponents must add up to zero for each
boson. Looking at Eq. (112) we can see that if we were to change the cut-off
to A* and wanted the same answer the operator to use must get rescaled
by a factor

LSk

3

e (14 0(g%). (112)

oo [A]0R) )

A*
from which it follows that to order g2

1 g
- -_9 114
T=73 (114)



1862 R. SHANKAR

Doing the integral it is easy to obtain

(ln R)1/4

T (115)

(srs0)? ~

We now use the fact that the mean of the square is an upper bound on the
square of the mean to obtain

(ln R)l/s
R1/4

Thus we find that the DD formula cannot be right since it violates this
bound. It is also nice to see the kind of logs you expect in an asymptotically
free theory.

Several developments have taken place since this [13] work was done.
First I learnt that Shalayev [15] had independently done this, without using
bosonization. The English version of the paper was brought to my notice
about a year or so later. Next, in my paper I had made to claim that if my
arguments were repeated for higher moments one would find that the 2n-th
power of G averaged would be the n-th power of G? averaged that I just
described. Ludwig pointed out [14] that this was wrong: the error came
from using the exp(i\/7@) in place of sin/7r$. Although the difference
due to this is zero so far, it does affect the higher moments. Ludwig in
fact carried out the very impressive task of obtaining the full probability
distribution for G.

More recently Dotsenko and collaborators [16] did a numerical study to
confirm the correctness of my bound and some additional predictions made
by Shalayev. For more technical details of my derivation given above see
the excellent book by Itzykson and Drouffe [17].

(smrso) < (116)

7. Application III: the Hubbard model

We now turn to a problem where the fermion occurs from the beginning
instead of after the Jordan—Wigner transformation on spin operators. For
a more detailed review if this topic see the article by Emery [18]. Consider
nonrelativistic fermions hopping on a lattice in d = 1. Let

H=-313 [#l)atn+ Dt he| =3 wplina(n),  (117)

a,n

where @ = 1,2 are two possible spin orientations and p is the chemical
potential. Upon introducing plane wave modes :

Ya(k) = Y ta(n)e’*” (118)
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we get
H=Y [ (u-cosbppl(ka(i) (119)

In the ground state all fermions with |k| < kp are present, where u =
cos kp. The low energy modes of this theory are given by excitations near the
Fermi points. As mentioned at the outset, we may linearize the dispersion
relations near these two points to obtain a Dirac fermions. Here are some
details. First let us break up the k-integral in Eq. (118) to two disjoint
parts, centered around +kp. Let us keep a band of width A < kp around
each point. The assumption is that for low energy physics these modes will
tell the full story and that modes deep in the sea will not be excited. Thus
we write

—kp+A kp+A dk
, . dk , ,
~ a—thEn tkn bt tkpn ikn -
va(myzemhen [ ey Tt [ ki)
—kp—A kg —A
= e e () + e g (n). (120)

Note that %,4+(z) do not contain high momentum modes. Thus we have
written the nonrelativistic field, which does have high momentum modes
as explicitly rapidly oscillating factors (the exponential prefactors) times
smooth fields. We will assume these fields have slowly varying matrix el-
ements on the scale of the lattice. While this is readily verified in this
noninteracting theory (where the correlations fall like inverse distance), it
will be assumed to be so even when interactions are turned on.
Feeding Eq. (120) into Eq. (117) we get

He=sinke 3 [ da(u]_(2)i02)ba-(a) + (614 (2)(~i0: b ()

(121)
Those of you wish to derive this must note the following. First, when feed
in Eq. (120) there will be cross terms between + components. These have
rapidly oscillating Fermi factors e***f™ which will make no contribution.
This is because of momentum conservation: the smooth the left and right
fields have mean momenta centered around +kp and the two will have no
overlap in momentum space since the fluctuations around these means are
assumed to be small (4 <« kp). Next, you must write

Yat(n+1) = Yox(n) + alptpgrn +--- .

Finally you must remember the relation between u and kg, the factor v/a
which relates the lattice fields to the continuum fields and the factor a which
relates H to H.. (Also feel free to integrate by parts.)
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Let us now turn on the Hubbard interaction:

Hine =U Y 91 (n)ir(n)p] (n)y(n), (122)

where 1) stands for the original nonrelativistic fermion. The Hubbard in-
teractions is just the extreme short range version of the screened coulomb
potential between fermions. Due to the Pauli principle, only opposite spin
electron could occupy the same site. One can extend the model to include
nearest neighbor interactions, but we will not do so here.

Let us now express this interaction in terms of the Dirac fields. We get,
in obvious notation:

YH(n)er(n)e](n)yy(n) =

(% ()4 (n) +91_(n)er_(n)+ (9] ()7 (n)e™2*F™ +h.c.)) o (1))
(123)

If we expand out the products and keep only the parts with no rapidly
oscillating factors (momentum conservation) we will, in the generic case,
get the following terms:

Hine = Uljordoy) + U ()b (n)9] ()9 1(n) +hc).  (124)

If we now bosonize these terms as per the dictionary, we get in the continuum
(dropping the subscript ¢ for continuum):
3¢T 8¢ 1 1
4 - .
— + 3z cosVin(gr - )
(125)

We can now separate the theory into two parts by introducing charge and
spin fields ¢, and ¢,:

"= /dz'% [HT2+(3¢T)2+ T—>1]+U[

o1t
= ) 126
¢c/a \/2— ( )
This will give us
H=H.+H, (127)
H, = / del [II2 + (8¢.)* A2 (128)
H, = [ del [IT? + (84.)242) + U7rzl7cos JBrés  (129)

A, =14 g- (130)
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It is obvious that the charge sector is massless, being a quadratic hamilto-
nian. This means that there will be no gap to creating charge excitations,
the system will be metallic. The fate of the spin sector needs some work.
First, we do not like the unconventional free-field term. We cannot simply
rescale ¢ (as we did in the functional integral) to bring the coefficient of
the gradient term to 1/2 since it is now an operator, with a canonical com-
mutation relation to satisfy. To preserve the latter, we must scale ¢ and IT
oppositely. Let us pull out a factor 4, out of H, and forget it hereafter since
the overall scale of H, does not concern us. We will now find an inverse A,
in front of IT?, simply A, in front of the grad squared and the U in front
of the cosine will become U, = 4,. Let us now rescale the momentum and
field oppositely by /A, thereby getting the free-field part to standard form
without affect the commutation rules. The argument of the cosine however
changes to

8T
V1-U/x

We can now show that for weak positive U, this interaction does not produce
any mass, while for weak negative U, it does. Suppose we do perturbative
calculation around the free theory with this interaction. At second order
we will get two-point correlations of this operator. According to Eq. (42) it
will go as

b (131)

argument =

1 (12 162/4'"
at [az + Rz]
8r

VI-Ujr

Thus if U > 0, there are more powers of a in the numerator and in the
limit of vanishing a, the operator is irrelevent. By the same token for the
attractive case, the perturbation process divergent effects, it is relevent.
This does not prove that there is a mass, just makes it very likely. Besides
the exact solution by Lieb and Wu [19], the following physical argument
helps. If there is an attraction between opposite spin electrons, they will
tend to form on site, singlet pairs. To make a spin excitation, we must break
a pair, and this will cost us, i.e., there will be a gap in the spin sector.

In the special case of half filling, another term comes in. If we look
at Eq. (1232 we see that in the case of half-filling, since kg = 7 /2, the
factors eX4*%F™ are not rapidly oscillating but, simply equal to unity. Thus
two previously neglected terms, in which two right movers are destroyed
and two left movers are created and vice versa, come to play. (This is an
umklapp process, in which lattice momentum is conserved modulo 2x). I

G(R) = (132)

f= (133)
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leave it to you to verify that the bosonized form of this interaction, after
rescaling of the charge field in the manner described above for the spin field,
is another cosine, with

4= 8x
AN Vi¥U/R

Thus we find the situation is exactly reversed in the charge sector: there is
a gap in repulsive case, and no gap in the attractive case. To see what is
happening, think of very large positive U. Now there will be one electron
per site at half-filling, unable to move without stepping on someone else’s
toes i.e., there is a charge gap of order U if you try to move the charge.
But the spin can do whatever it warns with no cost. If U were very large
and negative, there would be tightly bound pairs on half the sites. These
doubly charged objects can be moved without cost. There will however be
a cost for breaking the spin pair.

With all this formalism in place, we can get another solution for free.
Suppose the fermions had no spin. They cannot have any on site interaction
since the Pauli principle will not let them occupy the same site. So let us
say U is the nearest neighbor coupling. If we proceed as we did above, we
will find for generic filling that the theory is massless: you will have to use
Eqs. (52) and (54). There will be no cosines in sight to produce a mass,
it will all be quadratic terms in grad ¢. At half-filling, Eq. (54) will admit
a term that is irrelevant to begin with. However it is possible that upon
sufficient rescaling due to interaction we could end up with 32 = 8x though
we stared 167. Indeed, the exact solution by Yang and Yang tells us that
this is indeed the case. Please consult references [20] given in the end for
more reading on this topic.

(134)

8. Conclusions

I hope that with this introduction you can go out and read more things,
and more importantly, do more things. I have focused on problems I have
worked on since I know these in some detail. You are urged to read some or
all of extra references [21] provided. In particular the time is ripe to master
what is called nonAbelian bosonization, invented by Witten and very well
explained and exploited by Affleck in his review [22] and publications [23].

A more recent development has been the application of bosonization to
problems in higher dimensions. The basic idea of Haldane [24] was developed
very energetically by the group at Brown University, consisting of Houghton,
Kwon and Marston [25].
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