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The perturbative QCD predictions concerning deep inelastic scatter-
ing at low z are summarized. The theoretical framework based on the
leading log 1/z resumation and k, factorization theorem is described.
The role of studying final states in deep inelastic scattering for revealing
the details of the underlying dynamics at low & is emphasized and some
dedicated measurements, like deep inelastic scattering accompanied by
an energetic jet, the measurement of the transverse energy flow and deep
inelastic diffraction, are briefly discussed.
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1. Introduction

It has been known for quite some time [1, 2] that perturbative QCD
predicts several new phenomena to occur when the parameter z specifying
the longitudinal momentum fraction of a hadron carried by a parton (z.e.
by a quark or by a gluon) becomes very small. The main expectation was
that the gluon and quark densities should strongly grow in this limit even-
tually leading to the parton saturation effects [1-4]. This increase of parton
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distributions implies similar increase of the deep inelastic lepton - proton
scattering structure function F> with the decreasing Bjorken parameter z [6]
and the experimental data from HERA are consistent with this prediction
(7, 8]. The Bjorken parameter z is as usual defined as ¢ = Q2/(2pq) where

M
|

Fig. 1. Kinematics of inelastic lepton-nucleon scattering in the one photon exchange
approximation and its relation through the optical theorem to Compton scattering
of the virtual photon. p and ¢ denote the four momenta of the nucleon and of the
virtual photon, respectively.

The growth of structure functions with decreasing parameter z is much
stronger than that which would follow from the expectations based on
the “soft” pomeron exchange mechanism with the soft pomeron intercept
Qgoft ~ 1.08 as determined from the phenomenological analysis of total
hadronic and real photoproduction cross-sections [9].

Small z behaviour of structure functions for fixed Q? reflects the high
energy behaviour of the virtual Compton scattering total cross-section with
increasing total CM energy squared W2 since W? = Q*(1/z — 1). The
Regge pole exchange picture [10] is, therefore, quite appropriate for the
theoretical description of this behaviour. The high energy behaviour which
follows from perturbative QCD is often referred to as being related to the
“hard” pomeron in contrast to the soft pomeron describing the high energy
behaviour of hadronic and photoproduction cross-sections.

The inelastic lepton—nucleon scattering is related through the one pho-
ton exchange mechanism illustrated in Fig. 1 to the Compton scattering of
virtual photons. In Fig. 2 we summarize the present experimental situation
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on the variation of the total virtual Compton scattering cross-section with
total CM energy W for different photon virtualities Q% which range from
the real photoproduction (Q? = 0) to the deep inelastic region [12]. The
change of high energy behaviour with the scale Q? is evidently present in
the data.
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Fig. 2. The total virtual photon cross-section plotted as a function of W? for dif-
ferent values of the photon virtuality @2. The curves correspond to the theoretical
parametrizations [32, 11]. The figure is taken from Ref. [12].

The purpose of this lecture is to summarize briefly the QCD expecta-
tions for the deep inelastic scattering at low z. In the next section we recall
the parton model and the Regge pole model expectations for the descrip-
tion of the small z behaviour of deep inelastic scattering structure functions.
Section 3 is devoted to the description of the QCD improved parton model
based on the Altarelli-Parisi evolution equations and the collinear factoriza-
tion {13, 14]. We discuss the small z behaviour of structure functions which
follows from this formalism. In Section 4 we summarize the results based
on the leading In 1/2z resumation which is provided by the Balitzkij, Fadin,
Kuraev, Lipatov (BFKL) equation and k; factorization. We also briefly
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discuss the Catani, Ciafaloni, Fiorani Marchesini (CCFM) equation based
on the angular ordering of gluon emission [15, 16]. This equation embodies
the BFKL Iln1/2 resumation and the conventional QCD evolution in the
regions of small and large values of z, respectively. Section 5 is devoted to
a brief discussion of the dedicated measurements of the hadronic final state
in deep inelastic scattering for revealing the dynamical QCD expectations
at low z. Section 6 contains a brief summary and conclusions.

2. Parton model description of deep inelastic lepton scattering

The inelastic lepton—-nucleon scattering is related through the one pho-
ton exchange mechanism and through the optical theorem to the imaginary
part of the forward Compton scattering amplitude of virtual photons (see
Fig. 1). The latter is defined by the tensor W** [18, 19]:

v Fi(z,Q? ol
w# (p,q)=——3—(——9~—) (—guu+ qqg )

M
F2(z,Q2) ( pq ) ( bq ,
+ =t -2t ) (P - 547 - 1
M(pq) q? q* (1)
In this equation p denotes the four momentum of the nucleon, Q% = —g?

where ¢ is the four momentum transfer between the leptons, z = Q2/(2pq)
the Bjorken scaling variable and M is the nucleon mass. The functions
Fy 2(z,Q?) are the nucleon structure functions. These structure functions
are directly related to the total cross-sections oy, and o7 corresponding to
the longitudinally and transversely polarized virtual photons, respectively:

QZ

Fy = ——
27 4nla

(er +01), (2)

2
o'l (3)

FL:Fz—szl =

The differential cross-section describing inelastic lepton scattering is related
in the following way to the structure functions F; and Fy:
d?o(z,Q?) 4ma® Fy(z, Q%)
z

[ PR, (@)

where y = pg/pip with p; denoting the four-momentum of the incident
lepton.

The deep inelastic regime is defined as the region where both Q? and 2pq
are large and their ratio, z, is fixed. It is assumed that in this region the
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deep inelastic scattering reflects the (elastic) lepton scattering on (point-
like) quarks and antiquarks, as illustrated by the “hand-bag” diagram of
Fig. 3, with the virtuality k? of the quark (antiquark) being limited. The
“hand- bag” diagram for virtual Compton scattering together with the lim-
itation of the virtuality k% form the basis of the (covariant) parton model
which leads to Bjorken scaling (i.e. Fa(z, Q%) — Fa(z) ) [20]. In the infi-
nite momentum frame the Bjorken variable z acquires the meaning of the
momentum fraction of the parent nucleon carried by a probed quark (anti-
quark). For spin 1/2 partons the structure function Fy, vanishes in the deep
inelastic region- this being a straightforward consequence of the limitation
of the quark transverse momentum [18, 19].

Fig. 3. The hand-bag diagram for the virtual Compton scattering on a nucleon; k
denotes the four momentum of the struck quark (antiquark). At high Q? and in
the infinite momentum frame of the nucleon k & zp where « is the Bjorken scaling
variable.

In the parton model the structure function F becomes directly related
to the quark and antiquark distributions ¢;(2) and g;(z) in a nucleon

F=z Z e?lgi(z) + @(=)], (5)

where e; is the charge of the quark carrying flavour “i”. At small z (%.e. for
2pq > Q?) one can use the Regge pole model for parametrizing the high
energy behaviour of the total cross-sections o 1, and obtain, using Eq. (2),
the following parametrization of the structure function F3(z, Q?):

F, = Z Biat (0, (6)
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The relevant reggeons are those which can couple to two (virtual) photons.
The (singlet) part of the structure function F; is controlled at small z by
the pomeron exchange, while the non-singlet part FzN S = F? — FJ by the
A; reggeon. From equations (6) and (5) one gets the corresponding Regge
behaviour of quark (antiquark) distributions.

3. Small ¢ limit of parton distributions in the
QCD — improved parton model

The Bjorken scaling (¢.e. independence of the structure functions of Q?)
is violated by the elementary QCD interactions and the parton (i.e. the
quark, antiquark and gluon distributions) acquire Q2 dependence. Their
change with Q2 is described by the Altarelli-Parisi evolution equations [13,
14]. In the leading In(Q?) approximation which resumes the leading powers
of a,In(Q?) the Eq. (5) still holds, although the quark (and antiquark)
distributions are now scale dependent. This scale dependence comes from
the fact that the quark (antiquark) virtuality k? in the “hand-bag” diagram
of Fig. 3 is no longer limited as in the “naive” parton model. This lack of
limitation of k2 is the result of the (point-like) elementary QCD interactions.
The dominant region from which the scaling violations come is now kf <
k* < Q?, where k2 is some infrared cut-off. Beyond the leading In(Q?)
approximation the Eq. (5) acquires O(a,) corrections which are, however,
(by definition) absent in the so called deep inelastic (DIS) scheme.

At small z the dominant role is played by the gluons and so for simplicity
we shall limit ourselves to the following system of the evolution equations:

1

z 2 z
Qqu—(dé—?’-) = / %qu(z, as(Qz))g('z'a Qz)a (7)
1
z 2 ¥4 z
@HET)_ [ py(ma@) 0, ®)

x

where ¢(z,Q?%) and g(z,Q?) are the scale dependent quark and gluon dis-
tributions, respectively. The splitting functions P;;(z, as(Q?)) can be ex-
panded in the perturbative series of the QCD coupling a +(@?). In leading
order Q2
a 0
Pij(5,0,(@%) = 2L PD (). 9)
27 J
In an axial gauge the leading order evolution equations sum ladder diagrams
with ordered longitudinal and strongly ordered transverse momenta along
the chain.
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The evolution equations can be solved in a closed form for the moment
functions h(w, @?) of the parton distributions h(z, Q%)

1
ﬁ(w,QZ) :/i—zz“’zh(z,Qz), (10)
0

where h(z,Q?%) denotes the gluon or quark (antiquark) distribution. The
distribution A(z,Q?) is related by the inverse transform to the moment
function
c+io0
h(z,Q?) = L / dwz® " h(w, @?), (11)
27
C—100
where the integration contour is located to the right of the leading (z.e.
rightmost) singularity of the moment function h(w,@?) in the w complex
plane. The use of moments is, therefore, useful for understanding the small
z behaviour which is controlled by the leading singularity of the moment
functions in the w plane.
The solution of the counterpart of the evolution equation (8) for the
moment function §(w, Q%)

1
90,Q%) = [ Teveq(2,@?) (12)
0
is of the form:
2
2
70,Q%) = 3w @) exe | [ %%—vgg(w,aa(f)) (13)
o

and, similarly the quark distributions “driven by the gluon” are given by:
2

d 2
= 440 (@, 24(Q%))(w, Q2) exp / S os 0, 0s(0?))
3

dg(w, Q%)
Q* =1~ 0z

(14)
The anomalous dimensions v;;(w, as(Q?)) are moments of the splitting func-
tions P;;(z, as(¢?))

i5(0, (@) = / Z 2Py an(@P). (15)
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In the leading order

quz 2 0) 2 \
/ S ool e®)) = 1 (@@ Q). (16)
where
de log(27)
s@nah) = [ SLECH NPT oy 2 I (17)
Qz q 27r log(%g_

and 74 )(w) is the moment of Pgy(z).

The singularities of the moment function g(w,Qz) in the w plane are
present both in the anomalous dimension vg44(w, as(g?)) as well as in the
moment of the input nonperturbative gluon distribution §(w, Q3), see (13).
The small z behaviour of the gluon distributions is controlled by the leading
singularity. The same singularity should also control the small ¢ behaviour
of the (sea) quark distributions through the ¢ — ¢g transitions which, within
the QCD evolution formalism, are described by Eq. (14). In leading order,
the anomalous dimension 7,44 (w, @s(g?)) has a pole at w = 0 since Py, (z) ~
6/z at small z. It leads to the essential singularity of the moment functlon
§(w,Q?) at w = 0 (see Eq. (13)). This essential singularity remains the
leading one provxded that the starting gluon distribution zg(z, Q3) behaves
(at most) as a constant at small z. One gets then the following “double
logarithmic behaviour” for the gluon distribution at small z:

29(z,Q?) ~ exp (2\/65(92,623)111 (%)) (18)

with similar behaviour for the sea quark distributions. If a more singular
behaviour is taken for the input zg(:c,Qg) then it remains stable against
leading order QCD evolution in Q2.

4. The BFKL pomeron and QCD predictions for the small =
behaviour of the deep inelastic scattering structure functions

The QCD improved parton model in which the splitting functions P;;(z)
are computed at fixed order of their perturbative expansions is incomplete
in the small z region. In this region the perturbative terms generate powers
of In(1/z) and we should, at least, resume the powers of a,1In(1/z) u.e. to
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consider the leading In(1/z) approximation. The basic dynamical quan-
tity now is the unintegrated gluon distribution f(z,Q?) where z denotes
the momentum fraction of a parent hadron carried by a gluon and Q; its
transverse momentum. The unintegrated distribution f(z, Q?) is related in
the following way to the more familiar scale dependent gluon distribution

9(z, Q%)

29(2,Q / 9t ¢(2,02). (19)

In the leading In(1/2) approximation the unintegrated distribution f(z, Q%)
satisfies the BFKL equation [5] which has the following form:

£(2,Q3) = f(= Qt)+a,/ /

Q7 .
<@ @) - 1 ahe@t - ), o)

where
3a,

T

as = (21)
The first and the second terms on the right hand side of Eq. (20) correspond
to real gluon emission with ¢ being the transverse momentum of the emitted
gluon, and to the virtual corrections, respectively. f°(z,Q?) is a suitably
defined inhomogeneous term.

After resuming the virtual corrections and “unresolvable” gluon emis-
sions (g2 < p?) where p is the resolution defining the "resolvable” radiation,
equation (20) can be rearranged into the following “folded” form:

F(2,Q2) = f°(xczt)+a,/ / a PYPI

Q3

* AR(E,Qt) (g+Q,

T AEAICRES >+ogt, (22)

where Ap which screens the 1/z singularity is given by:

AR(Z’ Qf) = z% ln(Qtz/#z) =exp | — / 5 | (23)
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and

1
. de' dO I, 2
ORI WERE o (24)

z

Equation (22) sums the ladder diagrams (see Fig. 4) with the reggeized
gluon exchange along the chain with the gluon trajectory ag(Q?) = 1 —

% In(Q%/u?).
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Fig. 4. Diagrammatic representation of the BFKL equation (22).

For the fixed coupling case Eq. (20) can be solved analytically and
the leading behaviour of its solution at small z is given by the following
expression:

1 ¢~ *BFKL In?(Q2/Q?)
f(z,Q%) ~ (Qf)fT%)eXP (‘m) (25)
with
ABFKL = 4In(2)a,, (26)
A" = @,28((3), (27)

where the Riemann zeta function {(3) ~ 1.202. The parameter § is of
nonperturbative origin.
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The quantity 1+ Akt is equal to the intercept of the so-called BFKL
pomeron. Its potentially large magnitude (~ 1.5) should be contrasted with
the intercept agoq ~ 1.08 of the (effective) “soft” pomeron which has been
determined from the phenomenological analysis of the high energy behaviour
of hadronic and photoproduction total cross-sections [9].

In practice one introduces the running coupling &,(Q?) in the BFKL
equation (20). This requires introduction of the infrared cut-off that would
prevent entering the infrared region where the coupling becomes large. The
effective intercept Agpgy found by numerically solving the equation de-
pends weakly on the magnitude of this cut-off [23].

The solution (25) of the BFKL equation is obtained most directly by
solving from the solution of the corresponding equation for the moment

function
1

7 dz
flw, Q?) = ——:c“"f(:c,qf) , (28)
/e
fl@,@3) = P(w, @) + 22 :qq
[( f&; )zf(w, (g+Q.)%") - f(w,@D)0(QF - ¢*)| - (29)

This equation can be diagonalized by a Mellin transform and its solution
for the Mellin transform f(w,7v) of the moment function f(w, Q) is:

7 _ fo(w’7)
)= B R(r)’ (30)
where _
K(y)=29(1)-¥(y)-¥(1-7) (31)

is the Mellin transform of the kernel of Eq. (29). The function ¥(z) is the
logarithmic derivative of the Euler I function. The Mellin transform f(w, )
is defined as below:

Fw,7) = / Q1 01 F(w,Q?), (32)

and hence the function f(w,Q?) is related to f(w,7) through the inverse
Mellin transform

1/2+i00

@) =5n [ @) fw). (33)

1/2—ioc0
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The poles of f(w,7) in the y plane define the anomalous dimensions
of the moment function f(w,Qt) [21]. The (leading twist) anomalous di-
mension yg4(w, &,) of f(w,Q?) gives the following behaviour of f(w,Q?) at

large Qt

F(w,@F) = f2(w,7 = 7gg(w, &a))7gg(w, &s) R(cts, w)(QF)9s(30) | (34)

where

dK
(7) t“(’=‘){qg(“’a‘53) (35)

R(es,w) = - [a”rgg(w, Qs)—

The anomalous dimension will also, of course, control the large Q2 behaviour
of the moment function §(w, Q%) of the integrated gluon distribution

3, Q / 2 1w, Q3), (36)
which has the following form:
Qz 'Ygg(w &)
30,7 = Rlaww)s’@) (&) , (37)
Q3
where we have introduced the moment function of the input distribution
3°(w) = FO(w,7 = 1gg(w, @s))(QF) 05 (%). (38)

Equations (37) and (38) follow directly from equations (34), (35) and (36).
It may be seen from Eq. (37) that the BFKL singularity affects through the
factor R the “starting” gluon distribution at Q% = Q3 [22].

It follows from Eq. (31) that the anomalous dimension vg4(w, &s)) is
the solution of the following equation:

K(’ng(w as)) = 1. (39)

el&

It is a function of only one variable ¢ i.e. 74q(w,&,) — Yg9(2t). The
solution of Eq. (39) makes it possible to obtain the anomalous dimension
749(2%) as a power series of 2+ [21]

7gg% icn(a’) : (40)
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This power series corresponds to the leading In(1/z) expansion of the split-
ting function Pyy(2, ;)

zPgg(z,a5) = @, 2—:1% (s, 1(1171(1_/‘;))311* (41)

which controls the evolution of the gluon distribution.
The exponent Agpki, controlling the small # behaviour of f(z, Q%) is

ABrKL = @K (1/2). (42)

The anomalous dimension has a branch point singularity at w = ABFKL-
We also have

Ygg(w = ABFKL) = 3 - (43)

The following properties of the solution of the BFKL equation summa-
rized in the formula (25) should be noted:

1. Tt exhibits the Regge type =~ increase with decreasing z where the
exponent A = ApFkI, can have potentially large magnitude ~ 1/2. The
quantity 1 + AppkL is equal to the intercept of the so called BFKL
pomeron which corresponds to the hard QCD interactions. Its poten-
tially large magnitude (= 1.5) should be contrasted with the intercept
soft ~ 1.08 of the effective “soft” pomeron which has been determined
from the phenomenological analysis of the high energy behaviour of
hadronic and photoproduction total cross-sections [9].

2. It exhibits the (Q2)'/2 growth with increasing Q% modulated by the
Gaussian distribution in In(Q?) of width increasing as In'/%(1/2) with
decreasing 2. The Gaussian factor reflects the diffusion pattern inherent
in the BFKL equation. The increase of the function f(z,Q?) as (Q3)1/2
is due to the fact that the leading twist anomalous dimension is equal
to 1/2 for w = AppkL (see Eq. (43)). This shift of the anomalous
dimension is the result of the (infinite) LL1/z resumation.

3. The diffusion pattern of the solution of the BFKL equation is the di-
rect consequence of the absence of transverse momentum ordering along
the gluon chain. In this respect the BFKL dynamics is different from
that based on the (leading order) Altarelli-Parisi evolution which corre-
sponds to the strongly ordered transverse momenta. The interrelation
between the diffusion of transverse momenta towards both the infrared
and ultraviolet regions and the increase of gluon distributions with de-
creasing z is an important property of QCD at low z. It has important
consequences for the structure of the hadronic final state in deep inelas-
tic scattering at small 2.
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Fig. 5. Diagrammatic representation of the k; factorization formula (44).

The structure functions Fp (2, Q?) are described at small z by the
diagram of Fig. 5 which gives the following relation between the structure
functions and the unintegrated distribution f:

Fy (2,Q%) = / [ Enreanend.ed. @)

The functions Fb°"(a: ,@%,Q%) may be regarded as the structure functions

of the off-shell gluons with virtuality Q2. They are described by the quark
box (and crossed box) diagram contributions to the photon-gluon interac-
tion in the upper part of the diagram of Fig. 5. The small 2 behaviour
of the structure functions reflects the small z (2 = z/z') behaviour of the
gluon distribution f(z, @?).

The equation (44) is an example of the “k; factorization theorem” which
relates the measurable quantities (like DIS structure functions) to the convo-
lution in both longitudinal as well as in transverse momenta of the universal
gluon distribution f(z, Q%) with the cross-section (or structure function) de-
scribing the interaction of the “off-shell” gluon with the hard probe [22, 24].
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The k; factorization theorem is the basic tool for calculating the observ-
able quantities in the small z region in terms of the (unintegrated) gluon
distribution f which is the solution of the BFKL equation.

The leading-twist part of the k; factorization formula can be rewritten
in a collinear factorization form. The leading small z effects are then auto-
matically resumed in the splitting functions and in the coefficient functions.
The k; factorization theorem can in fact be used as the tool for calculat-
ing these quantities. We shall demonstrate this using the example of the
P,y splitting function which is responsible for the evolution of the quark
densities at low z (see Egs () and (14)).

From the k; factorization theorem we get:

2dF2(W, QZ /th Q2 deox(w, QtaQ )
dQ? dQ?

where F;(w, Q%) and FP°*(w,Q2%, Q?) are the corresponding moment func-
tions t.e.

Q f(w, Q%) (45)

1
P @%) = [ Za*Fa(2,07), (46)
0
and ;
.40 = [ 2 92 o Fpox(z, @2, Q7). (47)
0

Inserting the (inverse) Mellin representation of F%’“(w, Q2,07

) 1/24ic0 01\
F;ox(w7 Q%y Qz) = i / d7Fbox(w’ 7) (Q ) ’ (48)
t
1/2—ic0

and of f(w,Q?) (see Eq. (33)) into Eq. (45) we get the following represen-

- 2
tation of Qz___g_T__szdg,Q )

) 1/2+41i00 i )
deF (gng ) i / dyy R (w, 1) F(w,7)(Q%)7.  (49)
1/2—ic0

The leading twist part of the integral in Eq. (49) is controlled by the anoma-
lous dimension 7gg(%'-) which is a pole of f(w,v) in the complex v plane.
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; 2
It gives the following contribution to Q2 ﬁ(%gj’g—):

ngf%‘_‘yi ‘Ygg( )Fbox ( w,Y = 7gg(%)) 9(w, Qz) s (50)

where we have taken into account equations (34), (37) and (38). In the
so-called DIS scheme the QCD-improved parton model relation (5) holds
beyond the leading order and so we have the following relation between

2
Q?4FLD) and g(w,Q?)

Fz(w Q%)

d
2
Q —agr

= 2Zequg(w,a,)g(w,Q2)+ SRR (51)

where Pgg(w,a,) is the moment of the splitting function Py4(z, a,). Com-
paring Eq. (51) with (50) we get the following prescription for Pyy(w, a;) in
the leading In(1/z) (or rather in the leading 1/w) approximation [24, 25]:

&\ irbox w =0, g &y
qu(w,a ) 7gg( )F gz :) 7= 79 ( ))

(52)

The function 7215’%”" (w = 0,7) can be expanded into the following power
series in <

o0
VP (w = 0,7) = s(do + Y dn?™). (53)

n=1
It should be noted that the function FY°*(w = 0,7) has the 1/y? singularity
at v = 0. This follows from the fact that F’%’”(w,Q%,Qz) ~ In(Q?/Q?) at

large Q% /Q? because of the collinear singularity. The function 72F2b°x(w =
0,7) is regular at 7 = 0 and can be expanded in the power series (53).
From the power series (53) we get the following expansion:

799( ) Epox (w=0,7= 7gg(a’)) = &, [do + Z dn‘ygg(é )} (54)

Combining this expansion with the expansion (40) of the anomalous di-
mension yg44(%2) we get the following expansion of the splitting function
Pyy(z,a,) at small z:

a ad Qg 2)|n—1
Pug(zr00) = 2P (:) + (a0) Y b l(nn(l_/ 131 ,

n=1

(55)
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where the coefficients b,, can be expressed in terms of ¢,, and d,, appearing in
the expansions (40) and (53), respectively. The first term on the right hand
side of Eq. (55) vanishes at z = 0. It should be noted that the splitting
function P,; when compared with the splitting function P,y is formally
non-leading at small z. For moderately small values of z however, when the
first few terms in the expansions (40) and (55) dominate, the BFKL effects
can be much more important in P,4 than in Py4. This comes from the fact
that in the expansion (55) all coefficients b,, are different from zero while in
Eq. (40) we have ¢ = ¢3 = 0 [21]. The small z resumation effects within
the conventional QCD evolution formalism have recently been discussed in
Refs [26-29].

A more general treatment of the gluon ladder than that which follows
from the BFKL formalism is provided by the CCFM equation based on
angular ordering along the gluon chain [16, 17]. This equation embodies
both the BFKL equation at small z and the conventional Altarelli-Parisi
evolution at large z. The unintegrated gluon distribution f now acquires
dependence upon an additional scale @ which specifies the maximal angle
of gluon emission. The CCFM equation has a form analogous to that of the
“folded” BFKL equation (22):

1
. dz' d2 ,
£(2,03.0Y) = 12,040 +a, [ T [ TL0(@ - g2/2)

Qi
(g+Q,)?
where the theta function @(Q — gz/z') reflects the angular ordering con-

straint on the emitted gluon. The “non-Sudakov” form-factor Ag(z, @2, ¢%)
is now given by the following formula:

X Ar(=,Q%,4%) &' (a+ Q)% ¢Y), (56)

quZ
ql2

0(q” - (¢2')*)0(Q? - ¢")

(57)
Eq. (56) still contains only the singular term of the g — gg splitting function
at small 2. Its generalization which would include remaining parts of this
vertex (as well as quarks) is possible.

In Fig. 6 we show the results for the structure function F; calculated
from the k; factorization theorem using the function f obtained from the
CCFM equation [30]. We confront these predictions with the most recent
data from the H1 and ZEUS collaborations at HERA [7, 8] as well as with
the results of the analysis which was based on the Altarelli-Parisi equation

1
dz'
AR(Z,Q?’QZ)ZEXP _53/7/
z
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Fig. 6. A comparison of the HERA measurements of F, [7, 8] with the predictions
based on the k, factorization formula (44) using for the unintegrated gluon distri-
butions f the solutions of the CCFM equation (56) (continuous curve) and of the
approximate form of this equation corresponding to setting @(Q — ¢) in place of
©(Q —gz/z') and Ar = 1 (dotted curve). We also show the values of F, obtained
from collinear factorization using the MRS(A’) [31] and GRV [32] partons (the
figure is taken from Ref. [30]).

alone without the small z resumation effects being included in the formalism
(31, 32]. In the latter case the singular small z behaviour of the gluon and
sea quark distributions has to be introduced in a parametrization of the
starting distributions at the moderately large reference scale Q2 = Q3 (i.e.
Q2% ~ 4GeV? or 50) [31]. One can also generate steep behaviour dynamically
starting from the non-singular “valence-like” parton distributions at some
very low scale Q3 = 0.35GeV? [32]. In the latter case the gluon and sea



Small & Physics in Deep Inelastic Lepton Scattering 1951

quark distributions exhibit “double logarithmic behaviour” (18). For very
small values of the scale Q3 the evolution length £(Q?, Qg) can become large
for moderate and large values of Q2 and the “double logarithmic” behaviour
(18) is, within the limited region of z, similar to that corresponding to the
power like increase of the type z—*, A ~ 0.3. This explains similarity
between the theoretical curves presented in Fig. 6. The theoretical results
also show that an inclusive quantity like F, is not the best discriminator
for revealing the dynamical details at low z. One may however hope that
this can be provided by studying the structure of the hadronic final state in
deep inelastic scattering and this possibility will be briefly discussed in the
next section.

5. The structure of the hadronic final state
in deep inelastic scattering at low z

It is expected that absence of transverse momentum ordering along the
gluon chain which leads to the correlation between the increase of the struc-
ture function with decreasing « and the diffusion of transverse momentum
should reflect itself in the behaviour of less inclusive quantities than the
structure function F3(z,Q?%). The dedicated measurements of the low z
physics which are particularly sensitive to this correlation are the deep in-
elastic plus jet events, transverse energy flow in deep inelastic scattering,
production of jets separated by the large rapidity gap and dijet produc-
tion in deep inelastic scattering. The diagrammatic illustration of these
measurements is presented in Fig. 7.

pory ot

current
je

iy 4)

{b) tc) {d1

Fig. 7. Diagrammatic representation of the processes testing the BFKL dynamics.
(a) Deep inelastic scattering with the forward jet. (b) Er flow in deep inelastic
scattering. (c) Production of jets separated by the large rapidity gap Ay. (d) Dijet
production in deep inelastic scattering (the figure is taken from Ref. [33]).

In principle deep inelastic lepton scattering containing a measured jet
can provide a very clear test of the BFKL dynamics at low z [34, 35, 37]. The
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idea is to study deep inelastic (z,Q?) events which contain an identified jet
(=5, k'%]) where z < z; and Q? ~ k#;. Since we choose events with Q* =~
k?z‘j the leading order QCD evolution (from k%«j to Q%) is neutralized and
attention is focussed on the small z, or rather small z/z; behaviour. The
small z/z; behaviour of jet production is generated by the gluon radiation
as shown in the diagram of Fig. 7a. Choosing the configuration Q% ~ k2, ; We
eliminate by definition gluon emission which corresponds to strongly ordered
transverse momenta ¢.e. that emission which is responsible for the LO QCD
evolution. The measurement of jet production in this configuration may,
therefore, test more directly the (z/z j)__’\ behaviour which is generated by
the BFKL equation where the transverse momenta are not ordered. The
recent H1 results concerning deep inelastic plus jest events are consistent
with the increase of the cross-section with decreasing = as predicted by the
BFKL dynamics [38].

Conceptually similar process is that of the two-jet production separated
by a large rapidity gap Ay in hadronic collisions or in photoproduction as
illustrated in Fig. 7c [39, 40]. Besides the characteristic exp(AAy) depen-
dence of the two-jet cross-section one expects significant weakening of the
azimuthal back-to-back correlations of the two jets. This is the direct con-
sequence of the absence of transverse momentum ordering along the gluon
chain in the diagram of Fig. 7c.

Another measurement which should be sensitive to the QCD dynamics
at small z is that of the transverse energy flow in deep inelastic lepton scat-
tering in the central region away from the current jet and from the proton
remnant as illustrated in Fig. 7b. [41]. The BFKL dynamics predicts in
this case a substantial amount of transverse energy which should increase
with decreasing z. The experimental data are consistent with this theoreti-
cal expectation [38]. Absence of transverse momentum ordering also implies
weakening of the back-to-back azimuthal correlation of dijets produced close
to the photon fragmentation region (see Fig. 7d) [42, 43].

Another important process which is sensitive to the small £ dynamics
is the deep inelastic diffraction [44, 45]. Deep inelastic diffraction in ep
inelastic scattering is a process:

e(pe) + p(p) — €'(pe) + X +P'(p"), (58)

where there is a large rapidity gap between the recoil proton (or excited
proton) and the hadronic system X (see Fig. 8a). To be precise process
(58) reflects the diffractive dissociation of the virtual photon. Diffractive
dissociation is described by the following kinematical variables:

Q2

ﬁz?@—ﬂn’

(59)
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Fig. 8. (a) Kinematics of the large rapidity gap processes e-+p — ¢ + X +p'. The
wavy line represents the virtual photon. (b) The pomeron exchange diagram for
diffractive production of the hadronic system X by a virtual photon. The wavy
and zigzag lines represent the virtual photon and pomeron, respectively.

zp = % (60)

t=(p-p'). (61)

Assuming that diffraction dissociation is dominated by the pomeron ex-
change as shown in Fig. 8b and that the pomeron is described by a Regge
pole one gets the following factorizable expression for the diffractive struc-
ture function [47-49, 52, 50]:

HFSif

P 2
= 62
9z pot f(zpat)FZ (ﬁaQ ,t)3 ( )
where the “flux factor” f(zp,t) is given by the following formula:
B2(t) 1-2ap(2)
f(xp, t) = N_w—w—zp *P (63)

with B(t) describing the pomeron coupling to a proton and N being the
normalization factor. The function FF (83, Q?,t) is the pomeron structure
function which in the (QCD improved) parton model is related in a standard
way to the quark and antiquark distribution functions in a pomeron (see
Fig. 9).

FY(8,Q%t) =8> eXeF(8,Q% 1)+ aF (8,Q% )] (64)
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P l p

Fig. 9. The hand-bag diagram for the virtual Compton diffractive production. The
wavy and zigzag lines represent the virtual photon and pomeron, respectively.

with ¢; PB,Q%t) = P(,B, Q?,t). The variable 3 which is the Bjorken scaling
variable appropriate for deep inelastic lepton-pomeron “scattering”, has the
meaning of the momentum fraction of the pomeron carried by the probed
quark (antiquark). The quark distributions in a pomeron are assumed to
obey the standard Altarelli-Parisi evolution equations:

Qzan = qq®qP+qu®gP (65)
with a similar equation for the evolution of the gluon distribution in a
pomeron. The first term on the right hand side of the Eq. (65) becomes
negative at large 8, while the second term remains positive and is usually
very small at large § unless the gluon distributions are large and have a
hard spectrum.
In Figs. 10a,b we show the theoretical results for the quantity

D TPH 3Fd1ﬂ'
P07 = | dzp/dt o (66)
ZpL

with 2pr, = 0.0003 and zpy = 0.05 based on the “conventional” parton
distributions in a pomeron vanishing as (1 — ) at 8 = 1 and compare these
results with the experimental data from HERA [46]. The data suggest that
the slope of Fff as the function of Q2 does not change sign even at relatively
large values of 3. This favours the hard gluon spectrum in a pomeron [53,
54|, and should be contrasted with the behaviour of the structure function
of the proton which, at large z, decreases with increasing Q2. The data
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Fig. 10. Theoretical predictions based on the soft pomeron exchange with low
intercept agem = 1.1 [50, 51] for the diffractive structure function FZ,D (3)(:0 P, 3, Q%)
defined by Eq. (67) and their comparison with the data from HERA [46].

on inclusive diffractive production favour the soft pomeron with relatively
low intercept. This is illustrated in Fig. 11 where we plot the theoretical
prediction for the quantity

FA

0
FzD(a)(zP, B,Q%) = dt??z_l;a_t ,

-0

(67)

based on the “soft” pomeron with low intercept asoq¢ = 1.1 and compare
these predictions with the experimental data from HERA [46]. The diffrac-
tive production of vector mesons seems to require a “hard” pomeron contri-
bution [55-57] . It has also been pointed out that the factorization property
(62) may not hold in models based entirely on perturbative QCD when the
pomeron is represented by the BFKL ladder {58, 59]. There exist also mod-
els of deep inelastic diffraction which do not rely on the pomeron exchange
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Fig. 11. Theoretical predictions [50, 51] for the diffractive structure function
FP(B,Q?) defined by Eq. (66) and their comparison with the data from HERA
[46]. The structure function F5 (3, Q?) is plotted (a) as the function of Q? for fixed
values of 3 and (b) as the function of 8 for fixed values of Q2. The figure is taken
from Ref. [50].

picture [60, 61].
The structure function FZD (3)(2: P, B3, Q%) is plotted as the function of
z,, for different values of 3 and Q2.

6. Summary and conclusions

In this lecture we have briefly described the QCD expectations for deep
inelastic lepton scattering at low = which follow from the BFKL dynamics.
It leads to the indefinite increase of gluon distributions with decreasing z
which is correlated with the diffusion of transverse momenta. This increase
of gluon distribution implies a similar increase of the structure functions
through the ¢ — ¢ transitions. Besides discussing the theoretical and
phenomenological issues related to the description of the structure function
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F, at low z we have also emphasized the role of studying the hadronic final
state in deep inelastic scattering.

The indefinite growth of parton distributions cannot go on forever and
has to be eventually stopped by parton screening which leads to the parton
saturation. Most probably however the saturation limit is still irrelevant for
the small 2 region which is now being probed at HERA.

We have limited ourselves to the large Q2 region where perturbative
QCD is expected to be applicable. Specific problems of the low QZ%, low z
region are discussed in Ref. [62]. Finally, let us point out that the change
of the dynamics with the relevant scale is clearly visible in the data (see
Fig. 2) and its satisfactory explanation is perhaps one of the most challeng-
ing problems of to-day.

I thank the organizers of the Jubilee XXXV Cracow School of Theoret-
ical Physics for organizing an excellent meeting. I thank Barbara Badelek,
Krzysztof Golec—Biernat, Alan Martin and Peter Sutton for most enjoy-
able research collaborations on the problems presented in this lecture. I am
grateful to Grey College and to Physics Department of the University of
Durham for their warm hospitality.
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