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this school. We describe the parton picture of structure function evolu-
tion both for increasing @2 and for decreasing = and discuss the leading
logarithmic approximation of QCD on which this picture is based. The
steep rise of the parton density towards smaller = gets saturated by par-
ton recombination. An essential improvement of the leading logarithmic
approximation has to be worked out in order to satisfy the unitarity condi-
tions and in this way to describe the parton recombination in perturbative
QCD. We introduce the high-energy effective action, discuss reggeization
of gluons and the remarkable symmetry properties of the reggeon interrac-
tions. Using this symmetry the solution of the BFKL pomeron equation
and also the appearence of the pomeron poles are considered in some de-
tail. We outline the construction of the 2 — 4 reggeon vertex and of
amplitudes which can be used to derive predictions about the hadronic
final state.
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1. Deep inelastic scattering at small
1.1. Structure functions and Regge region

Let us recall the kinematics of deep-inelastic scattering ep — eX, Fig. 1,
in particular the relation between the Bjorken variable z to the external
momenta. ke(k.) are the four-momenta of the in (out) going lepton and p
is the momentum of the proton, the mass of which is denoted by m,.
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Fig. 1. Kinematics of deep-inelastic scattering.
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The essential variables are the momentum square of the virtual photon Q2
and the Bjorken variable 2. The square of the invariant mass of the hadronic
final state X is given by

s=(p+ke— k) =my —Q*1-3). (1.2)

The cross section of unpolarised deep-inelastic scattering is written in the
following standard form, which is obtained relying on Lorentz, parity and
gauge symmetries,

d%o
dQ? dz
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(1.3)

The structure functions F /5(z, Q?) carry essential informations about the
dynamics of the interaction of the virtual photon with the proton. This

(2,Q%y) =
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dynamics can be interpreted as point-like interactions with partons inside
the proton. The structure functions are related to the parton densities
Qi(x, Q2)1
Fp(2,Q%) =2 ) elgi(z,Q%). (1.4)
k3

Here 7 runs over all (active) parton types (quark and anti-quark flavours),
e; stands for the electric charge of the parton i.

The parton densities ¢;/,(z, Q?) are process independent attributes of
the hadron A and enter all cross sections of hard scattering involving h.
In QCD the values of the parton densities at arbitrary Q2 > mzz, can be
calculated from its values at some Q3 by a standard evolution equation.

Hard processes at increasing energies are dominated by parton densities
at decreasing z. This strongly motivates the study of the parton densities at
small ¢ and shows the significance of the HERA experiments investigating
deep-inelastic scattering down to z ~ 10~%. Moreover, at small = the
standard QCD evolution scheme has to be modifies. Here we enter a new
field of QCD phenomenology.

From (1.2) we have at small z the relation s ~ Q%/z > Q. In this case
the virtual Compton amplitude, the forward imaginary part of which deter-
mines the cross section (1.3), is in the Regge regime. The large s behaviour
of this amplitude, which is determined by the leading Regge singularities,
implies the small z behaviour of the parton densities. In particular we have

o(2,Q%) ~ (1)”(0) . Aq(z,0%) ~ (E)QR(O) L)

z z

ap(0) stands for the intercept of the pomeron, i.e. the leading singularity
in the exchange channel with vacuum quantum numbers, and ag(0) for the
leading singularity in the exchange channel with meson quantum numbers.
Ag(z, Q%) stands for a combination of parton densities corresponding to the
flavour non-singlet structure functions. Referring to conventional hadron
phenomenology [1] one would take the values ap(0) = 1.08, ag(0) = 0.5.

Because of the large Q% in deep-inelastic scattering the situation differs
from the usual Regge asymptotics. Q% can be choosen large enough to
Jjustify the application of perturbative QCD. The perturbative Regge region
is characterized by two large momentum scales:

s> Q%> m?, . (1.6)

In perturbation theory the Regge asymptotics in gauge theories has been
investigated in the leading logarithmic approximation. In the case of SU(V)
gauge group the leading vacuum channel singularity is located at [2]

Na
agrkL = 1+ —W£41n2. (1.7)
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With a scale kK ~ 10 GeV for the running coupling as and with N = 3
one estimates agppky, = 1.5. In this way one arrives at a prediction for
the small z behaviour of the strucure functions much steeper compared to
the expectations from conventional hadron phenomenology. The behaviour
differs also from the small 2 asymptotics induced by the usual evolution of
parton densities in Q2 (called r-evolution below).

It is not obvious where the corrections to the leading logarithmic ap-
proximation or the non-perturbative contributions become important. The
strong increase of the structure function Fp(z,Q?) with decreasing z ob-
served at HERA [3-5] indicates that the perturbative Regge result (1.7)
can be applied in the range of present experiments as a first approximation.
The perturbative Regge behaviour shows up not only in the z dependence
of the structure functions but also in certain features of the hadronic final
state in deep-inelastic scattering. In HERA experiments one is studying
for example the transverse energy flux, jet rates at large transverse and
longitudinal momenta, and diffractive events, in particular v*p diffraction.

Deep-inelastic scattering at small z is a special case of semi-hard pro-
cesses, which are characterized by two large momentum scales. Quasi-elastic
scattering at relatively large momentum transfer (s > |t| > mf,) or inclu-
sive mini-jet production with transverse energy Er (s > E% > m;",) are
other examples, where the perturbative Regge regime applies. There are
semi-hard processes of non-Regge type like fragmentation of jets (with en-
ergy Ey ) at small energy fractions zg (Ey > zgEj > m,) or at large
energy fractions (Ey > (1 - zg)E; > m;). At small 1 — zg large correc-
tions sum up to the Sudakov form factor [6, 7] and at small zg coherence
effects become important, which are appropriately described by angular or-
dering (8].

1.2. The parton picture

Let us draw the parton picture of the structure function evolution before
we discuss some details about how it emerges from QCD.

The parton hit by the virtual photon can be considered as emerging
from an evolution starting from the hadron constituents and proceeding by
parton radiation. At each step £ of the radiation process the transverse
momentum K, and the longitudinal momentum fraction z, of the parton
change. z is the value of z, at the final step (£ = n) of the evolution and @
is the upper bound for |x|. If = is small then there is room for this process
to evolve both in r = 1n({n2|/m12,) as well as in y = —Inz. The y — r plot
Fig. 2 serves as an useful illustration. The features of the evolution in r
are well known. At higher steps in this evolution the partons appear in
higher multiplicitiy and at higher resolution (a reasonable measure of which



Small z Physics 1965

is just r). The new partons cover a negligible fraction of the transverse
space occupied by the parent parton.

The evolution in y proceeds without essential changes in the resolution.
The new partons appear with about the same size as the parent parton.
According to Eq. (2) the multiplicity grows exponentially in y. The partons
tend to cover the space inside the proton. The rapid growth of the multiplic-
ity in the first stage of the y-evolution becomes saturated by recombination
effects before the partons come too close to each other. The region where
the recombination is essential is bounded by the critical line in the y — »
plot Fig.2.

0 T

Fig. 2. Parton evolution in r and y. Left to the y axis is the non-perturbative
region. The dashed line indicates the critical line and the parabola shows the r
range broadening due to the diffusion in the y evolution.

During the evolution in y the value of » undergoes a random walk and
may run into the non-perturbative region (r < 0). This means in particular
that the value of the parton density at given r and y becomes influenced
by non-perturbative contributions if y becomes large enough even if r is far
from the non-perturbative region. '

In both the r-evolution and the y-evolution the process starts with the
proton constituents inside the non-perturbative region. Measuring a jet
with k;,2; in the hadronic final state one detects an intermediate state of
the evolution in the perturbative region (provided x; is not small). In the
case z; > z, |K,§I ~ Q2 this measurement selects a nearly ideal perturbative

y-evolution, all features of which are calculable [9].
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1.8. The leading logarithmic approzimation

In certain kinematical regions large perturbative corrections in each
order arise from the integration over x or z of (real or virtual) partons, if
the range in « is large or if the range in z extends to small values and if the
whole range contributes uniformly. In this case the corresponding integrals
are approximately of logarithmic form.

In the leading Ink? approximation one picks up the logarithmic con-
tributions from the transverse momentum integral of each loop. Graphs
with non-logarithmic loops are neglected. Applied to the structure func-
tions at » > y this is the appropriate approximation which can be improved
systematically. The leading contribution can be represented as a sum of
ladder graphs ( in an axial gauge, with propagator and vertex corrections
included). There is a strong ordering of the transverse momenta in the
loops which leads in particular to trivial transverse momentum integrals.
Summing these graphs leads to the known GLAP equation [10]. The itera-
tive structure of the ladders implies in particular the following form of the
structure functions, exhibiting their universality.

do1*J z
Fy(z,Q%) = T|g=0 ® Dji(i,Qzan) ® Fi(o)(zz,Qg) (1.8)

® abbreviates a convolution integral in the longitudinal momentum frac-
tion. A summation over the parton types %, j is understood. The first factor
represents the forward cross section for the virtual photon - parton scatter-
ing . Replacing it by other hard scattering cross sections allows to relate
the structure functions to distributions in those processes. The second fac-
tor represents the r-evolution, the solution of the GLAP equation with the
initial distribution §;;6(Z — 1) at Q2.

Because the first two factors are calculable from QCD all experimental
information about structure functions and hard processes can be reduced

to the distributions Fi(o)(:c, Q%) of partons in the hadron at Q3.

In the leading In z approximation the integrations over z and « inter-
change their roles compared to the above case. For structure functions it
is the appropriate approximation at y > r. Again the leading contribution
can be represented as a sum of ladder graphs, Fig. 3.

Now the lines in the t-channel direction represent reggeized gluons and
the interaction is determined by effective vertices. A strong ordering holds
now in the longitudinal momenta. More precisely, the loop momenta &,
obey the conditions of multi-Regge kinematics which can be written using
the Sudakov decomposition,

2
k:\/;(k_ ¢ +kip)+r, ¢ =gq-2p, (1.9)
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Fig. 3. Gluon ladder graph contributing to the structure function at small z.

(¢ and p are the 4-momenta of the photon and the proton), in the following
form

k-&-n .K k+1, F_n>..>k_q,
kyek_y < |K3), se = kyo_1k_gy1 > |63,
n n
II Sg =35 H ke — Kp_1]%. (1.10)
=1 =2

The longitudinal momentum integrals become trivial. The iterative
structure of the ladders leads to the following form of the resulting structure
functions,

Fa(z,Q?) = w*(%,cz,n) ®f( K, no) ® O (zy,k0).  (L11)

Unlike in Eq. (3) here ® denotes a transverse momentum integration besides
of a trivial z-integral. The universality of the structure functions holds in
the y-evolution with this modification. It is also called kg factorization
and its phenomenological relevance has been discussed recently [11]. Here
the first factor represents the impact factor coupling (via a quark loop)
the virtual photon to the gluon ladder. The second factor describes the
y-evolution. Because the first two factors are calculated in QCD the non-
trivial information is reduced to the third factor, the hadron impact factor.
The y-evolution is calculated as the solution of the BFKL equation (2,
12], a simple form of which (at vanishing momentum transfer) is given by
d - d’k' 2|k :
gm0 = 5 | [ o (s = 1))
(1.12)
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The asymptotics of the solution at large v,

- K - Il2 h',z K,2
PR . R exp( In?(|<%)/| 0|)>,

(2r D2y)1/2 2D%y
2 2
_g°N 2 9°N
wo=%2me,  D?=L1 (@), (1.13)

exhibits the power-like increase in % and the diffusion in r mentioned above.
The critical line, beyond which parton recombination is important, is
estimated by using the simple unitarity argument [13] that the v*p cross
section must be bounded by the geometric cross section. This should still
be true if v* would interact strongly, i.e. if aqgp is replaced by as(Q?).

22X Py(2,Q%) < wa,. (1.14)

Substituting the result of the BFKL equation we obtain the limit of ap-
plicability of this equation. Unitarity demands to go beyond the leading
logarithmic approximation. A minimal way to improve the unitarity prop-
erties of this approximation will be discussed in the following.

Since the publication of the original papers [2, 12] several approaches to
the y (BFKL) evolution have been proposed, a modern one will be discussed
below. We mention the colour dipole approach to diffractive processes [14]
which has attracted much interest recently. The idea of the colour dipole
radiation is discussed in the lecture by B.S. Anderson.

There is an equation based on the work by Catani, Ciafaloni, Fiore and
Marchesini [15) which interpolates between the r- and the y-evolutions (see
also the lecture by J. Kwiecinski).

In the case if both the integrals over the longitudinal and over the trans-
verse momenta are approximated by logarithms the calculation becomes a
simple exercise. The double logarithmic contributions to the structure func-
tions arise from gluon ladders. Both the contributions to coupling renor-
malization and to gluon reggeization are single-logarithmic effects. The
dominant range of integration over longitudinal and transverse momenta is
characterized by the strong ordering conditions

LK ... K21 K1,
Q%> k> ...> QF. (1.15)

The sum of ladder graphs is easily calculated.
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mm,qz):z(":ﬂ"]‘i’:/‘i":: / / et
x (P >”~exp[<N:st:ml>‘”]
(1.16)

The following replacement going beyond the double-log accuracy leads to a
form compatible with the renormalization group,

2

Q
%1 9 o7 Q) = [ Hast)

Q2 k2 7
Q3

(1.17)

One should be aware that this is a fairly rough approximation. Nevertheless
the result is of interest because it represents the small z asymptotics of the
r evolution according to the GLAP equation. We see that ( provided that
the initial 2 dependence at Qg is not steeper) the GLAP equation induces
an increase in y = ln% faster that any power of y but less than any power
of %

Parton density paramentrizations rely on the GLAP equation. One
tries to obtain the optimal distributions g;(z,@3) describing all data on
hard processes. The small z data are well described using an input distri-
bution behaving like (1.5) but with the effective intecept a.g = 1.3 [16].
There is a parametrization approach [17] which manages to describe the
rise at small z without assuming a rising initial parton distribution like
Eq. (1.5). The point is that the small z asymptotics induced by the GLAP
equation ~ exp(B(—Inz)!/?) can be close to the rise originating from an
input distribution like Eq. (1.5) at not too small z by choosing the starting

point Q2 correspondingly (actually B = MmQ_ ). However a choice

of Q¢ deep in the non-perturbative region which is necessa.ry to describe the
data in that way cannot be justified.

In the small-2 region a complimentary approach to the parametriza-
tion can be considered, relying on the y-evolution Egs. (1.11)-(1.12) and
parametrizing the hadron impact factor 45(0)(9:0, k) at some initial yo =
In ::1_0 as a function of x. The behaviour of this impact factor at large x* has
to be compatible with the GLAP equation.
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Relying on the double-logarithmic approximation one obtains the dou-
ble scaling behaviour [18] in terms of the variables
/2
— (1020 ¢(02 2)1/2 :( In 2 )1 1.1
o= (n76@%) " o= ;g (1.18)
In the lectures by S. Forte it will be shown how corrections can be incorpo-
rated and that the present data obey this scaling behaviour.

The r evolution of the structure functions can be well described down to
small z by the GLAP equation if the anomalous dimensions or the parton
splitting functions are improved by including the sum of terms next-to-
leading in Q2 but leading in the In % approximation [19].

Both logarithmic approximation schemes discussed above approximate
perturbative QCD. It is obvious that improving one of the leading log ap-
proximations by corresponding next-to-leading corrections one comes closer
to the result of the other approximation scheme in some range of  and Q2.

1.4. Preasymptotics

Comparing the BFKL behaviour of the deep-inelastic cross section to
the behaviour of hadronic cross sections at high energies or — in order to
emphasize the contrast — to the real photoproduction cross section ques-
tions may arise about the uniqueness of the Regge limit or whether there
are two (“soft” and “hard”) pomerons. In order to understand the situation
one should think of the Regge region as the broad region where

s> |t|,m2,Q2%. (1.19)

and should not think of the ultimate asymptotics only. The asymptotics is
approached gradually by passing through several preasymptotic stages.

In hadron phenomenology this idea allows to understand the data up
to present collider energies. A pomeron with the intercept ap(0) = 1.08 fits
well the rise of the cross sections, of the central rapidity distribution etc.
[1]. Unitarity corrections (incorporated by reggeon calculus) ensure that in
the asymptotics the Froissart bound is obeyed, oiot(s) ~ In? s for s — oo.

In QCD we have to consider two aspects concerning the preasymp-
totics. Above we have seen that non-perturbative contributions enter at
large y even if Q2 is not small. Therefore, the perturbative results apply
to a preasymptotic stage only. For increasing Q2 the range in s of this
preasymptotics, i.e. the perturbative Regge region, becomes broader.

Within the perturbative Regge region one has to distinguish several
subregions. For not too small # the double log behaviour of the GLAP
equation still applies before the BFKL behaviour sets in. The power-like
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rise in 1 is related to the fact that the leading In z approximation does not

obey the s-channel unitarity conditions.

It turns out that the unitarity conditions in all sub-energy channels can
be saturated by s-channel multi-particle intermediate states which obey
the multi-Regge kinematics. This provides the basis for an approach to
the next-to-leading In # corrections which we call generalized leading loga-
rithmic approximation {22, 23]. It is possible to calculate separately those
corrections which improve unitarity. They can be expressed in terms of the
multiple exchange of reggeized gluons, where the gluon trajectory and the
reggeon interactions are in the first approximation the ones of the leading
log approximation (where two reggeons are exchanged). The gluons in the
s-channel intermediate states obey the multi Regge kinematics. In some
sense the subregions can be related to the typical number of exchanged
reggeons.

The remaining next-to-leading Inz corrections are then accounted for
as corrections to the reggeon interactions and to the trajectories [49]. In
particular these corrections account for the contributions of s-channel in-
termediate states with groups of gluons or quarks being not in multi-Regge
kinematics, i.e. having restricted invariant mass, whereas such groups are
separated by large rapiditiy gaps. The latter configuration is called quasi
multi-Regge kinematics.

The relation to the operator product expansion and the renormalization
group gives a clear prescription for improving the leading In Q2 approxima-
tion and much work has been done in that direction. In the case of the Inz
approximation only some first steps beyond the leading approximation have
been done. The generalized leading Inz approximation provides a reason-
able concept for a systematic improvent of the leading In 2 approximation
which will be discussed in some detail in the remaining part of these lectures.

1.5. Regge concepts and notations

The general idea of reggeistics is the separation of scattering and ex-
change. Depending on the quantum numbers the exchange is universal: It
is independent of the scattering particles and (approximately) of the energy
/3. Deviations from the universality in preasymptotic regions are described
by superpositions of contributions with different exchanges.

More technically, the exchanges are related to singularities in the com-
plex angular momentum plane. Simple poles moving with the momentum
transfer ¢ correspond to reggeons. Like particles the reggeons are charac-
terized by quantum numbers. Unlike particles there is no spin attributed
to them. On the other hand they carry signature, which denotes the parity
of the scattering amplitude under the interchange of s and u channels. In
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our context it is important that the exchanged gluons and quarks in QCD
become reggeons.

We introduce some useful notations.
Consider the scattering amplitude A(s,t) for the process AB — A'B'.

Let A(u,t) be the amplitude for the process AB — A'B and introduce the
amplitudes of definite signature ¢ = +,

A%(s,t) = 1(A(s,t) £ A(u, 1)) . (1.20)

The amplitudes A(°)(s,t) are related to their partial waves at large s by

too0+6
dw 14w
A (s, 1) = / L) (55) | Eel@). (L21)
—i00+68

M is determined by the momentum transfer ¢ and the masses. £;(w) is the
signature factor. The transverse vector of the momentum transfer will be
denoted by g (t ~ —|g|?). In the case of the virtual Compton amplitude one
should not confuse this momentum transfer with the virtualness @ of the
photon (Q? = — (k. — k.)?).

The partial wave of the scattering amplitude can be considered as a
sum of multi-reggeon exchange contributions,

FfOw,0) = 3 8P ({r4a}) ® famm({ral {x8}) ® 857 ({x5}) . (1.22)

n,m

The impact factor 4 describes the coupling of the scattering particle A
to n reggeons with transverse momenta K4,,...,K4,, 64; = ¢- foom
is the n — m reggeon Green function. ® denotes the integration over
the transverse momenta {k4} or {kp}, respectively. The BFKL pomeron
corresponds to the exchange of two reggeized gluons, n = m = 2. In this
case (1.22) is the same as (1.11).

The vertex connecting the particle A to n reggeons is given by

DP(w,{ka})= Y8 & from. (1.23)
£
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2. The multi-Regge effecive action
2.1. General remarks

There are several methods for the investigation of the high-energy be-
haviour of gauge theories. Conventionally one studies directly the contri-
bution of individual Feynman graphs to the Regge region [20] The Sudakov
method (light-cone parametrization of momenta, use of the analytic struc-
ture for calculating the longitudinal momentum integrals) is appropriate
for evaluating the asymptotics of graphs [21]. The construction of higher
order amplitudes from multiparticle amplitudes of lower order by unitarity
is a powerful approach [22, 23, 25, 35]. Some results have been obtained
or checked by starting from the corresponding string amplitudes and taking
the limit of vanishing string tension [30, 31]. White proposed [24] to work
with a reggeon calculus with coloured odd-signature reggeons.

The methods mentioned work successfully in the leading logarithmic
approximation. Lipatov has proposed [26] to use the multi-Regge effective
action, which summarises the leading log results in a simple form, as a
starting point for a systematic improvement of this approximation.

The effective action can be obtained from the effective vertices of scat-
tering and production by inventing convenient fields descibing scattering
or exchanged gluons (and quarks). The effective vertices take a particular
simple form in the helicity basis and in complex notations for the trans-
verse vectors. In the leading log approximation these vertices can be read
off from multi-particle tree amplitudes. The latter can be obtained from
elastic amplitudes by t-channel unitarity [26] or from corresponding string
amplitudes [30, 31].

There is an approach [27] which relates the effective action directly to
the original QCD action. One starts formally from the functional integral
where redundant field components have been eliminated. The essential step
is the separation of modes with respect to the multi-Regge kinematics. The
“heavy” momentum modes which correspond neither to scattering nor to
exchanged particles in this kinematics are integrated out approximately. In
the following we outline the main steps of this approach for the case of
SU(N) gauge theory without quarks.

2.2. Eliminating redundant field components

We start from the Yang-Mills action and impose the ligh-cone axial
gauge condition A_ = 0. We describe the two longitudinal projections of a
vector by light-cone components and the transverse projections by complex
numbers,

Ay = Ao+ Az, A= A" + 4% A" = A —i4®. (2.1)
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This convention will be adopted for the vector potential A#, for momen-
tum vectors k* and positions z#. For the derivatives with respect to the
coordinates the definition is slightly modified in order to obey the relations

Oye_=0_24 =0z =0%"=1. (2.2)

In the gauge A_ = 0 the component A enters the action only in first and
second power and therefore can be integrated out exactly. The result can
be written in terms of currents

J® = i(A*T®3_A), j°*=(A1T°4),
T = (A" TG A), J®=i(A*T°3 A), (2.3)
and the field combinations
Ay =871 04+ 9%4%), A =i(0A-0"4"). (2.4)
We shall use the abbreviation
(AT*B) = —ifebc4®B°. (2.5)
fob¢ are the structure constants of SU(N).

L=1L3 404 @
L3 = _24°*(5,8_ — 88*)A%,
(3):_g a g0 _ 9.0 gia

@ _ 9 jag-250 _ 9 aa 2.6
L =J2870 2 - =505 (2.6)

The meaning of the non-local operator 8- is to be specified. However
the region of very small longitudinal momenta will not be important in our
analysis.

With the elimination of redundant field components we have prepared
the action for the next step. The separation of modes would be ambiguous
under arbitrary gauge transformations.

2.8. Separation of modes

We consider once more the conditions of multi-Regge kinematics (1.10).
If the momenta k; of the s-channel particles are close to mass shell then from
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the strong ordering of the longitudinal momenta follows that the momentum
transfer vectors are essentailly transverse,

j
G =pa- Y ki1, girg- < lgil*. (2.7)

=1

This characterizes the typical momentum range of the exchanged particles.
It motivates us to separate the modes of the field A in the following way,

A— A+ A+ Ay,

Ap: kik-| < |8]?,

Ay kb - |8 < |52,

Aq: |kpk_| > |&|2. (2.8)

A¢ denotes the modes of the exchanged gluons and A, the ones of scattering
gluons. The “heavy” modes A; are to be integrated out approximately.
The subscripts will be omitted in the final expressions after introducing
appropriate notations.

Introducing the separation of modes into the action each term splits off
into a number of terms. We obain separate kinetic terms for each 44, 4,, A;.
In order to analyse the triple terms resulting from L£3) we consider first
their contribution to the scattering of a gluon with large k_ and then the
scattering with large k..

The contribution of L3) where two fields are of types A, or A; carrying
large k_ (A = A; + A1) and one field is of type A; or A, with relatively
small k_ can be written as

LoD = Ljefis - gje ke 4 YFe Aot 4 Jr A 1 OGTY. (29)

The first term gives a contribution to scattering of order k_, the next two
terms of order k% . The first term is just the leading effective scattering

vertex for gluons with large k_, if we restrict the fields in J_ to A, and
the fields in A} to A;. As we shall see the first term also contributes to
the effective production vertex and is the relevant term for the approximate
integration over “heavy” modes. The next two terms become important if
one studies the corrections suppressed by one power of s, or equivalently,
the Regge singularities in the vicinity of angular momentum j = 0.

Now we pick up the terms in L£3) which are relevant for the scattering
with large k. This are the terms where two fields are of type 4, + A1 = A
carrying large k., and one field of type A;. The latter should carry k_ of
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the same order as the largest k_ of the first two fields. We split the result
into two parts, £L3~) = £B—1) 4 £B3=2) where

L3~ = i90_ AHA*T0=Y (04 + 8" A*)) + ig AH(A*T*9A) + c.c. (2.10)

Contracting this vertex £37) with £(3+) (with the exchange of A:) we
obtain lowest order contributions to the high-energy 2 — 2 scattering. Also
L®) contributes to scattering. It turns out that the latter contributions are
cancelled from the ones from £371), £(37:2) contributes to the effective
scattering vertex for gluons with large k.

2.4. Imtegration over “heavy” modes

We assume that the fluctuations A; are small and linearize £2) 4 £(+)
in A;. At small coupling the integration over A; is dominated by the saddle
point determined by the equation obtained from the latter part of the action

(A=A, + 4,),
~20,6_ A3 + (A, T0_A,) = 0. (2.11)
With the solution A(®) we obtain the following quartic term in the action,
24{9%5,6_4" = —%(A:T“g_Aa)(O;IA+T“A+). (2.12)

The first factor is proportional to J_. Therefore, it is natural to interprete
the result as induced by £(?) + £(3%) and the induced triple vertex

) = 2oomae (077 A ToA4)
A_ = 10_(00*)"1(04; + 8* A7), (2.13)

The induced vertex is essential for obtaining the effective vertices of pro-
duction and of scattering with large k.

At the first sight A, and A_ seem to be not independent. However the
cancellation of the contribution of £(31) against £(4) means also that A
couples to particles with large k_ whereas .A_ couples to particles with large
ky. In this way as a reflection of the multi-Regge ordering of longitudinal
momenta the ¢-channel exchange aquires an orientation along the rapidity
axis.
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2.5. The effective vertices

We write the contribution ,Cfn— d+) of the induces vertex £} ; (2.13) for
the case where one A; is restricted to A; and one to A,. For the latter we
substitute AE:) = 3:1(3A, + 0*A}). Likewise we write the contribution
LB=1) of the leading term in £(3%) for the case if A is restricted to the
modes A; and one field in J_ is restricted to A, and the other to 4;.We
substitute here A, in terms of A_ (2.13). The sum of both contributions
yields the effective vertex of gluon production,

Lp=LSD 4 L0 = ig (8" A_T®0AL )07 A% + cc.  (2.14)

The non-locality can be shifted from the effective production vertex into the
kinetic term by substituting

A, =10%. (2.15)

Now we write the contribution [,f;d) of the induced vertex £fr1“)i (2.13)

for the case where both A, are restricted to modes A, and substitute
AS:) = BZI(BA, + 0*A}). Also from £3-2) we write the contribution
where A are restricted to A,. Here we express A; in terms of A_ (2.13).

The sum of both contributions is the effective scattering vertex of gluons
with large k.,

(-) -, ) _ (9" ety O a
) =6 2)+££n3:-2—(3A T“3+5;A).A_. (2.16)

This is to be compared with the effective scattering vertex for gluons with
large k_, i.e. the first term of £L3+) (2.9),

£ = %(A*TGE_A)Ag. (2.17)

The vertex L:g_) is obtained from the vertex £S+) by interchanging the
indices + and — and by replacing
a*

A - —-A" 2.18
aA b ( )

which is just the gauge transformation leading from the gauge A_ = 0 to the
gauge A = 0. Also regarding this gauge relation it is natural to represent
the scattering gluons by the complex scalar ¢ (2.15).
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Besides of the considered contributions the induced vertex involves still
the case £; where all three fields are in the modes A, of exchanged fields.

2.6. The effective action for gluons
The multi-Regge effective action for gluons is given by

£=£kin+£a+[»p+£ta
Lyin = —1(0*¢*)0(94%**) — 245 00* A%,
Ly = —%(BqS*T“g_B*qS)Ai + g(3*¢*T“3+8¢)A‘1 :
Cp = g8 (DA-T 0" Ay) + g4 (9"A_T°0AL),
L= 500" A% (07 AL T Ay) + 506" A3 (021 A-T"A) . (2.19)

The non-local operator {2 suppresses the propagation of modes of ¢
which are outside the vicinity of the mass shell, |k k_ — |&|?| < |&|%.
Likewise Y suppresses the propagation of modes of AL which are not in
the range appropriate for exchanged particles, |k k_| < |k|?. The effective
vertices are represented by the graphs Fig. 4.

a b c

Fig. 4. Vertices of the effective action. a — Effective vertex of emission; b —
effective vertex of scattering; ¢ — triple vertex of exchanged gluons.

The result (2.19) has been extended to QCD with quarks included.
Massless spinor fields ¢ are decomposed into light-cone components ¥+ =
i—'yi-y;ﬁb. In the gauge A_ = 0 the component ¢4 decouples. The separa-
tion of modes is introduced in analogy to (2.8), ¥— — ¥1_ + ¥s— + ¥:—.
In the effective action the scattering quarks are represented by two com-
plex fields x—, x*, where 8x_,8*x* are components of ¢,_ in a standard
basis. The exchanged fermions are described by the complex fields a4, a%
which are related to the components of ¥; in the same basis. The fermion
exchange depends on the transferred helicity.

The exchanged quarks and gluons behave like reggeons. The triple
vertex of exchanged gluons £ carries the essential features of White’s triple
vertex of odd-signature reggeons [24, 34].
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There are supersymmetry relations between the fermionic and the glu-
onic effective vertices, which hold if one replaces the fundamental representa-
tion of the quarks by the adjoint one. Further there are Weizsacker-Williams
type relations between the effective vertices of scattering and production.
The effective action shows a separation of longitudinal and transverse sub-
spaces. The interaction terms are symmetric separately with repect to di-
latations and Lorentz boosts or rotations in these subspaces.

The substitution (2.15) of A, by ¢ erases the traces of the initial gauge
choice. There is no doubt about the gauge indenpendence in the considered
approximation because there is a derivation operating merely with ampli-
tudes on mass shell [26].

A gauge symmetric appraoch has been proposed recently [29]. The
gauge potentials in the axial gauge A, and the ones in an arbitrary gauge
V. are related by

Ao(2) = U V)(2) (Ve + g'aa)v-.[vuz),

U_[V)(z) = Pexp[—ig / e, V_]. (2.20)

-0

Consider the effective action without the production vertices £, and the
triple vertices of exchanged gluons £;. The exchanged fields .44 enter this
truncated action bilinear and can be eliminated by using the equations of
motion. For example, by variation with respect to A we obtain

400 A_ = gJ_[A]. (2.21)
Both sides can be expressed in terms of V.
J-[A] = U VI [VIU-[V],
A_ = —é—&.U- v]. (2.22)

Elimiating .A4 we obtain the current-current interaction,
J_[A)(88*) " I [V].

We express this vertex in terms of V), by using (2.22) and the equations of
motion (2.21) (and the analogous equation for J ) and obtain

Ly — t1(0-0U_[V] 048*UL[V]). (2.23)
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In the case of quasi-elastic scattering the scattering particles can be de-
scribed by Wilson lines, ¢.e. path-ordered exponentials of the type U4 [V].
Then one can restrict the action to (2.23). In this approximation we have
classically 04 8_U4[V] = 0. This allows to do the integrals over the longi-
tudinal coordinates in the action. One arrives at a two-dimensional ¢ model
and reproduces in this way the effective action by E. and H. Verlinde [32].

3. Reggeization and reggeon interactions
3.1. Reggeization of gluons

We consider the high-energy behaviour of an odd signature amplitude
with gauge group octet exchange (A) and use the partial wave representation
(1.21), (1.22) in terms of impact factors and (reggeon) exchange Green
function. In lowest order we have one-gluon exchange and the corresponding
Green function is

2
0 q
) (w,q) = 1. (3.1)
The triple vertices of exchanged gluons L; give rise to self-energy type graphs
(Fig. 5a),
__¢°N / d'klg|* (3.2)
2200 | krk_<Plg— R

a b ¢

Fig. 5. Reggeization. Interpretation of the longitudinal momentum integral.

The range of integration over k1 has to be defined by taking the dumping
factors Y in the propagators into account. We recall that £; arised from
the heavy mode intermediate states. Therefore the graph of Fig.5a can
be interpreted as the one in Fig. 5b, where the heavy lines represent the
heavy modes. This is reminicent of a two reggeon exchange graph, Fig. 5c.
However the heavy mode intermediate states do not correspond to impact
factors with normal analytic properties. Including the intermediate states of
gluons close to mass shell the analytic properties are restored and the graph
Fig. ba can be evaluated as a reggeon diagram, i.e. referring to Fig. 5¢ and
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using the dispersion relations for the impact factors A and B. This gives a
definite prescription for evaluating the longitudinal momentum integral,

2(27)22 ) [(pa - k)? +i€l(pp + k)* + ie]|xl%|g — x| '

Now the intergral over k4 is done by taking the residue in one of the poles.
The integral over k_ then yields the necessary logarithm of s,

2N d2 4
-5 hl"s_i/——_—_z adll 5. (3.4)
2(27)3 g2 J |x|%|g — |

In the partial wave representation (1.21)-(1.22) this result corresponds to
the following contribution to the exchange Green function,

1
—5(=9*Nlgl*ac(a), (3.5)
where ag(g) is the gluon trajectory integral,

1 d2 4
0(0)= 50505 | g (36)

which has to be defined e.g. by dimensional regularization. The gluon
trajectory is 1 — g2 Nag(q).

The sum of all loops of the considered type results in the exchange
Green function of one reggeized gluon,

fawg) = — (37)
AU o g Nag()” '

The derivation of the gluon reggeization relies on the vertex £, and
includes contributions from L, in specifying the longitudinal momentum
intergrals. Some doubts could arise, whether we have accounted for all con-
tributions in the leading log approximation correctly. Therefore we perform
a consistency check and show that the exchange of two reggeized gluons in
the channel with the quantum numbers of one gluon by summing over all
interactions via £, results again in the Regge singularity of one reggeized
gluon. This result is one aspect of the important reggeon bootstrap prop-
erty.

The momenta of the scattering gluons are restricted to be close to mass
shell. Relaxing this condition the vertex £, represents all interactions of
the exchanged gluons. Indeed, in this case there is no room left for the
heavy mode contribution resulting in £¢. Since the parameter defining the
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Fig. 6. The transition kernel 2 — 2 in s-channel — a, and ?-channel — b represen-
tations.

closeness to the mass shell does not enter the final result we should be able
to reproduce it relying on £, only.

The exchange of two reggeized gluons without interaction (Mandelstam
cut) corresponds to the following Green function (k1 + k2 = ¢),

k1) 1k2|?8(k1 — R1)b(Ke — R2)

= . 3.8
w + g2Nag(k1) + g Nag(kz) (3:8)

0 _
fé,,l(w, K1, K2, K1, R2)

The vertices £, lead to the interaction Fig. 6a. The transverse momentum
factors corresponding to this graph (two vertices of type £, and the ¢
propagator) are given by

K1k K3KY + c.c.

K2—>2(K'17K/2’K"19K',2) = (39)

&1 — &3 ]2

The sum of all interactions of this type is obtained as the solution of the
following integral equation,

1
w+ g:Nag(k1) + g2Nag(k2)

fz,A(W, "7»1,'92) =

2 N d2 1 d2 1

X (1 + g 3 / K,l ; :2
2(2r) |K] K5

For simplicity we wrote the equation for the Green function convoluted

with one impact factor, f = f ® $p with &5 = 1. The result for the Green

function of two reggeized gluons with all interactions in the channel with
single gluon quantum numbers is given by

K2—>2(K'19 K2, ""/Ila K’2)f2,A(wa K'Ils K'Z)) . (3'10)

k12| k2|2
w+ g?Nag(k1 + K2)

J2,4(w, K1, K23 R1,R2) = 6(Kk1 —F1)8(k2—F2) (3.11)

We find the same Regge pole in w as for one reggeized gluon according to
the reggeon bootstrap.
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3.2. Multi-reggeon exchange

Now we consider the positive-signature gauge group singlet channel,
which is relevant in particular for the structure functions. The minimal
number of exchanged gluons in this channel is two. The interaction be-
tween the exchanged gluons is given by the vertices £, and L¢. Since their
contributions corresponds to complementary longitudinal momentum ranges
(close and far from mass shell) and since the result does not depend on the
parameter dividing these regions the transverse momentum dependence of
the interaction can be described equally well by either £, or L;.

The transverse momentum kernel of the two reggeized gluon interac-
tion does not depend on the gauge group quantum numbers. It has been
obtained above as the product of two vertices £,. Alternatively one can
obtain this kernel by a t-channel approach starting from L. [33, 34]. The
contribution of 3 intermediate exchanged gluons to the 2 — 2 reggeon Green
function is given by the last two graphs in Fig. 6b. A condition following
from the Ward identity leads one to add the quartic vertex (A_A_ AL A})
represented by the first graph in Fig. 6b. In general this condition requires
the Green function of reggeized gluons to vanish together with any of the
transverse momenta. The graphs Fig. 6b stand for the expression (in the
same sequence)

2

Ko ,a(Kk1, K23 kY, k%) = —|ky + rcg{z + (3.12)

It is not difficult to check the coincidence of the expressions (3.9) and
(3.12).

Now we go a step beyond the leading logarithmic approximation and
consider the exchange of an arbitrary number of gluons. We assume here
that the number of reggeized gluons in all t-channel intermediate states is
the same. The situation of a changing number of reggeons will be discussed
below in Section 4.3. According to the concept of the generalized leading
log approximation these reggeized gluons interact pairwise via K3_,, and

|
|
f
&

Fig. 7. Equation for the n-reggeon Green function.
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their trajectory is determined by ag(«) as in the leading log approximation.
Therefore the n — n reggeon Green function obeys the equation (Fig. 7),

fn—»n(w; {K,[}, {EK}) = [w + 92N Z aG(K'l)]a—l
(TI 1xelo(se - %) + 3 (T @ THHS © faan) - (3:13)

1<J
The interaction is described by the kernel K3 _.,

g2 d?k' d?k!
i K
ng) ® frn—n(w; {Ke}, {Ke}) = (21r)3 |""1|;l'°’2‘§

KZ—»Z("’I) ’9235,135*2)f2—>2(w’ K,'l,K,'z). (3'14)

The latter integral as well as the trajectory integral ag(q) involve infrared
divergencies. In the gauge-group singlet channel these divergencies cancel.
In this case we multiply both sides of (3.13) by the inverse of the n-reggeon
propagator (w + g2N 3" ag(x¢)) and combine the terms proportional to
ag(x) with the interaction kernel K_,3 in such a way that the result defines
a finite operator.

To show how this works in detail, we write the gauge group structure
explicitely. Let {a,}, {a;} be the gauge group indices of the n incoming (left
side in Fig. 7) and n outgoing reggeized gluons in fr, ..

(71 ® T2)f ) ey} ) = Tarat azaznéata'f{%} (a0} - (3.15)

The condition of singlet exchange means that an arbitrary group transfor-
mation acting on the incoming indices {a,} only does not change the Green
function. For a small transformation the second order in the transformation
parameter gives

ST T)f + Z(Ti ®T:)f =0,

i#j
n
(T2 ® T1)f)qag} a0y = Tgle:a’l Izlgat%f{“t} {a¢}
= Nf{ap a2 (3.16)
The latter relation allows to write the equation as

Wlnon = H |K‘l|26(n£ - k_l) + Z(T"- ® TJ)HW ® frons (317)
1<J
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where the integral kernel defining the finite operator My is given by

Hiz(K1, K25 K, 85) = Kp—s2(K1, K2, K1, K5) — 8(k1 — k1)|k1|? (k1)
- 6(&2 e n’z)lnzlzag(l‘éz) .
(3.18)

3.8. Conformal symmetry and factorizability

We change to the impact parameter representation by Fourier transfor-
mation with respect to the transverse momenta. The two-reggeon interac-
tion is now represented by an operator acting on the transformed partial
wave being now a function of the impact parameters z,,{ = 1,...,7. The
operator is obtained from (3.18) by applying the substitutions

k1 — 07, K3 — 02,
k1 = K412 o —Inferal?,  ag(n) — —In(030]) + (1), (3.19)

01 is the differentiation with respect to z;, —9(1) is the Euler-Mascheroni
number and z13 = 21 — 2.

It is remarkable that the resulting operator decomposes into a holomor-
phic and an antiholomorphic part.

Hee = He + HE,
Hg =2¢(1) - 8; ' Inz1261 — 0; 'Inz120; ~Ind; —In8;. (3.20)

In the case of two reggeized gluons we obtain the homogeneous BFKL equa-
tion in the form

g*N
872

Because of the decomposition (3.20) this equation allows a holomorphically
factorized solution.

In the case » > 4 the gauge group structure of the interaction prevents
in general such a factorization. However in the large N approximation this
factorization holds. Then the holomorphic part of the r-reggeon equation
Fig. 6 corresponds just to the Schrédinger equation of a r-body system in
one dimension with the interaction restricted to the nearest neighbours and
given by the unconventional hamiltonian —Hg in (3.20). We shall see that
it is really an extraordinary hamiltonian.

We use operator relations expressing the derivative operator § as a

similarity transformation of z~1,

8="r(zd+1)"'27(28 + 1) = ['(-zd)2 ' I'(~28)~!,  (3.22)

wf(w, 31,32) = 7:(GG.f(“')) 21,22)- (321)
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in order to obtain [38]

Ind = 1(¥(z8) + (1 — 29)) + (z0) ' ~Inz. (3.23)
The commutation relations between z and 9 imply
8! Ilnz 8= (20)"! Inz (28) =lnz — (28)~". (3.24)

Using (3.23) and (3.24) we obtain
Hg = 2¢(1) — 3 (¥(21201) + ¥(—21202) + ¥(1 — 21201) + Y(1 + 21202)) -

(3.25)
1(z) is the digamma function,
— [ 1 1
$(1) - ¥(z) = Z:O ( o - m) . (3.26)

We neglect the operator z33(01 + 02) in the following transformation.
This is justified in our kinematics, because (01 + 02) is the momentum
transfer operator and z;2 is Fourier conjugated to x. Then (3.25)—(3.26)
imply [38]

Hg = x0(23,0102),

= 20+ 2)+1 2
X’\(Z)_;((t+)\)((1+,\)+1)+z £+1)' (3:27)

We have obtained Hg as a function of the Casimir operator, z§231 8y, of
holomorphic linear conformal transformations acting on functions of z; and
z2. There is another way to show that Hg is conformally invariant. There-
fore the result (3.27) holds in general irrespective of the approximation done
in the last step.

The symmetry properties hold in the more general case where the (sub-
leading) exchange of reggeized quarks is included. The reggeon interaction
in the generalized leading log approximation of QCD is symmetric with
repect to linear conformal transformations and allows for holomorphic fac-
torization at large N. After the holomorphic factorization the system of
n reggeons can be represented as one-dimensional quantum mechanics of n
bodies ordered along a closed (for gluons only) or open (quark and antiquark
at the endpoints) string with nearest neighbour interactions.

Infinitesimal conformal transformations of the n reggeon Green function
are generated by

n
M* = Zl\lzCL s
=1
M} =220, + 24,2t
M[_ =04,
M) = 2,0, + Ay. (3.28)
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z4 is the impact parameter and A, the conformal weight of the {th reggeon.
The anti-holomorphic generatoxls M?* are given by analogous relations with
zy,0p, Ay replaced by zj,0;,4, Reggeized gluons have the conformal

weights Ag = AG = 0 and reggelzed quarks (depending on helicity , F, F)
have Ap = 0, Ap = 3 2 a.ndAF: AF—O
A1l pair interactions of reggeons allow factorization [39]

Hee = He + HE,

H = B + PpH)" Prs,

Hrr = He + Hp,

Hre = Hg + Pleg’)*Plz ,

Org = (21,03) 7! = —P12D} ™' Pry. (3-29)
Py, denotes the operator of permutation of 1 and z2. We use the notation

Dy = 2120, and D; = z129;. The holomorphic parts are functions of the
holomorphic Casimir operator,

0)2
Caa, = _M( 2 (Ml-;MIZ + M, M)
=21,010; + 22312(-4132 - A2<91) + (41 + A3)(1 - Ay - A4z).
(3.30)
The holomorphic operators of reggeon interactions are

Hg = x0(Coo) »
(w) _

B = 3 (352 (Ouy) 32 () )
HF = xo (C%%) : (3.31)

and the square of G is the inverse of the antiholomorphic Casimir operator
Ci1.
0 F3

2

3.4. Complete integrability

We have seen that the system of n reggeons can be viewed as a chain
with n sites, where the Hilbert spaces of states at each site £ are just rep-
resentation spaces of SL(2, R) with weight A,. The case where the Hilbert
spaces are representation spaces of SU(2) and in particular the homogeneous
case, where all A, are equal, is well known. For a particular pair interaction
the systen is completely integrable and called Heisenberg X X X spin chain.
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The SL(2, R) commutation relations obeyed by the generators (3.28)
can be expressed in terms of the following r-matrix relation,

(Le(61) ® Le(62)) R(61 — 62) = R(61 — 62) (Le(62) ® Le(61)) ,  (3.32)

where L,(0) is the following 2 x 2 matrix

(0) —_
0+ M M
Ll(g) = ( B ;_ 6 B 4 l(o)) . (3.33)

® denotes the tensor product and R(f) is a 4 X 4 matrix with the non-
va.nishjng entries: Rll,ll(g) = R22,22(0) = + 1,R12,12(0) = R21'21(0) =
1, R12,21(0) = R21,12(0) = 6.

R(6) obeys the trilinear Yang-Baxter relation [42]

R(61)R(62)R(6: — 62) = R(6; — 02)R(62)R(61) (3.34)

from which one obtains that the operators

(8) = tr [] Le(9) (3.35)

=1

with different 6; # 6, commute. Therefore, 7(0) generates a set of n — 1
mutually commuting operators.

These operators act non-trivially on all sites £ = 1,...,n. It is possible to
find another set of commuting operators commuting also with 7(8), which
are sums of terms, each of which acting only locally, i.e. on a few sites £.
To this end we consider a second R-matrix relation, involving now L,(8) of
two sites connected by usual matrix multiplication,

(L1(61) - L2(82)) R(61 — 62) = R(6y — 62) (L2(02) - L1(61)) . (3.36)

R is an operator acting on functions of z; and z; and has the property
(3.34) of an R-matrix. With R another generator of commuting operators
can be constructed in analogy to (3.35), where the multiplication and the
trace are defined in the space of functions of z. The first operator appearing
in the 6 expansion is a sum of operators acting on two neighbouring sites.
It is natural to view it as the hamiltonian of the system. It can be obtained
by expanding R(6).

R(6) = Py2 (1 - 6Hg + O(6?)) . (3.37)

From this expansion and (3.36) one can easily calculate this operator and
check that it is just the operator of reggeized gluon interaction (3.27).
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We have outlined the way how one establishes the complete integrability
of the reggeon interaction in QCD. Unfortunately the standard procedure
for deriving the eigenstates and eigenvalues, the algebraic Bethe ansatz,
does not work here. An approach based on the functional Bethe ansatz has
been proposed and shown to reproduce the known result in the case of the
two-gluon exchange. More details are given in the talk by G. Korchemsky.

4. Applications of the perturbative pomeron
4.1. The BFKL pomeron

In our notations the BFKL pomeron is represented by the Green func-
tion f(w,z1,z2;Z1,%2) of two reggeized gluons in the leading log approxi-
mation, which is the solution of the equation

N
wf = £+ T5Hee!,
161121822 FO)(w, 21, 29; Z1,2) = 8(21 — Z1)8(2z2 — F2).  (4.1)

The solution is now straightforward after having understood the properties
of conformal symmetry and factorizability of Hge and using its represen-
tation (3.27) in terms of conformal Casimir operators.

Eigenfunctions of the homogeneous equation are the conformal 3-point
functions,

E(z10, 220) :<¢(A1,/31)(@1)¢(A1.A'1)(z2)0(m,rh)(zo)>

m—Ay—-A4A
_( Z12 ) 1o ~24, —2A2

Zio T2p

* h—A; -4,
_Ti2 *— 2A1 *—24,
: Z10 Z29 .

(4.2)

They form a twofold overcomplete set of functions of two impact param-
eters z1,z2, which transform under the linear conformal group generated
by M#(A1) + MZ(Az), ME(A;) + MZ(Az) (3.28). In the unitary series
of representations the conformal weights of the two-reggeon state m, 7 are
given by

m:l+iu+2, ﬁz:—1-+iu—~ (4.3)

2 2 2 2’
where n takes all integer and v takes all real values. The eigenvalues of
the holomorphic and antiholomarphic Casimir operators are m(1 — m) and
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(1 —17m), respectively. The impact parameter zq labels the states the states
within one representation.

Thus the eigenfunctions are given by (4.2) for the gluon case, A; =
Ay =0, Al = Az = 0. From (3.27) we have for the eigenvalues

HG(;E(n’u) = Qgg(n, V)E(n’u) s
Rga(n,v) = xo(m(1 — m)) + xo((1 — m)). (4.4)

For xo(m(1 — m)) we have the following expression in terms of ¥(z),
xo(m(1L —m)) = 2¢(1) — p(m) — $(1 - m). (4.5)

We use the completeness relation of the eigenfunctions (4.2),

E(")* (249, 220) E(™Y)(Z10, F20)

8(z1 — T1)0(22 — Z2) /du z Gn,v

= 212|212/ ’
2 n?
Gn,u = 16(1’ + T)9510 =Z) — 2o, (46)

to obtain the solution of the inhomogeneous equation (4.1), [36]

f(w, 21,225 %1, 72) /du E GnvB;} E(n (210, 320)E( ) (Z10, fczo)
n=-o° w - LT'Q("" v)

1
Gn—l,an+1,V . (47)

B,,=—

n,v 16

This is the Green function of the BFKL pomeron. The singularities in w

emerge from pinching of the v-integration path by poles at t+iv(n,w) at the
positions

N 266(n0). (4.8)

They are square-root branch points. The leading singularity is the one for
conformal spin n = 0. We use (4.5) and ¥(3) = %(1) — 2In2.

Wn =

g°N g9°N
wo = —ﬂgg(o 0) = -—2]112. (4.9)
8pi?
We have reproduced the well known result [2], which we have used already
in (1.7).
The eigenvalues can be obtained more easily in the momentum rep-
resentation, if one restricts to the particular case of vanishing momentum
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transfer, ¢ = 0. In this case the eigenfunctions E(™) are replaced by the
following complete set of eigenfunctions,

K\
B s () = [/ ()] (#.10)

and the pomeron Green function is given by

. < oo 211/2+w : |R2|1/2 =i E -n
f(wm,k,O)—-zi/ ;oo E 'ZS—N.Q(n p (i 1) _

(4.11)
We recall that x is the Fourier conjugate to 212 = z1 — 22 and ¢ is conjugate
to R = (Z] + 32)/2.
Sometimes the mixed representation is useful, with the variables ¢ and
P =212,
EM)(p, q) = / e'Bep(ny) (g _ g,R + g). (4.12)

In this representation the 3-point fuctions have a simple asymptotics at
P 1,

EC)(p,q) ~ (10172 + lg2pf2e 000} (4.13)

Tn,v and §(n,v) are known.

This asymptotics has been used to calculate the coefficients in the com-
pleteness and orthogonality relations [37]. The two-reggeon Green function
in the mixed representation is given by

oo oo

S E(™ ”)*(p q)E(" Npra)
1Py q) = d Bnl, 4.14
flwp,,9) ‘[o RV e o (414)

4.2. Renormalization group and pomeron poles

The above results concern an approximation to perturbative QCD which
is a good approximation in the perturbative Regge region. In particular con-
formal symmetry (and related to this the Regge singularities appearing as
fixed branch points) holds only in this approximation. In general conformal
symmetry is broken by renormalization.

We recall that in the range of applicability of this approximation all
transverse momenta are of the same order |¢| and that this scale obeys
s> |g|* > m2.
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In the following discussion it is convenient from the general case of
non-vanishing momentum transfer, |¢|? = |k1 — k2|% ~ [k1|? ~ |k2]? ~
|&41? ~ |k4|2. The result for the Regge singularities does not change in the
particular case of vanishing momentum transfer.

In deep-inelastic scattering we encounter the situation

Q% > |s> > |&'|* ~ |g?, (4.15)

where kK = (K1 + K2)/2. The perturbative Regge result (leading In z appre-
oximation) is still applicable if the logarithm of the transverse momentum
ratio is not too large,

as(n')ln|%]2 <1. (4.16)

The large & behaviour of fo_,2(w, &, &', ¢) is described by the GLAP equa-
tion [10], which is based on the renormalization group. In an intermediate
range, where the logarithm of the transverse momentum ratio is still not
too large, the perturbative Regge result (In z approximation) and the renor-
malization group (In k? approximation) have to match approximately. This
matching condition restricts in particular the allowed scaling dimensions v
compared to the perturbative Regge result, where v takes all real values
(4.14). The integral over v reduces to a discrete sum and as a consequence
the branch cuts in w convert into series of poles. This is the way how
the breaking of conformal symmetry by renormalization affects the Regge
singularities [36, 37].

The effect of scale breaking can be incorporated also by modifying the
BFKL equation by infrared and ultraviolet cut-offs in the transverse mo-
menta [50].

To reproduce the result for the pomeron poles in some detail we start
with the representation (4.14) of the BFKL Green function, restrict to the
leading term n = 0 and do the v integral by taking the residue in one of the
two poles

2 2 1/2
g 147%¢(3) e ——
V(w, E) =4 (gZ—N wog — W, (4.17)
where wy is given in (4.9). We obtain the approximate perturbative Regge
solution,

fa(w, p, 7, q) = EFN*(p, ) E@)(p, q) . (4.18)

The large x asymptotics corresponds to the small p asymptotics in this
representation. The latter asymptotics is given by (4.13) applied to the first
factor in (4.18). We have two terms fr4 with scaling dimensions differing
in sign,
1o =2 = :t_( g 2) 4.19
z|p| a_lp'lffRi(w’p)" v waz; fR:l:(wap)' ( . )
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We encounter the standard situation in the renormalization group analysis.
To become compatible with the renormalization group we have to replace
the coupling by the running coupling,

70, £) ~ 7(w,as(iel ™)
as( L ) _b f‘—"-:u—ng. (4.20)

o2/~ In(lpl?4%)" B 3

This corresponds to summing the leading logarithms in the ratio of the
transverse momenta.

For our purpose it is more convenient to rewrite the scaling relation
(4.19) in the following form close to the eigenvalue equation,

2
g“N
W — 870(0, V) = 0, (421)

: . - 2
the solutions of which are +7 (w, 39—7;) ,

(w - %g-n(o,ialn‘?w)) falp) = 0. (4.22)

This form is valid for both scaling terms fr,

— 2 . 2 _ 2
FR(p) ~ PP 8D 4|2 p| P I LD (4.23)

According to (4.20) the modified scaling relation compatible with the renor-
malization group can be written as

(v- rastel (0555 ) ) fortp =0, (428)

The solution is given by the integral

) gy, BN
1) = [ dvexp |~ivta(lp4%) + 5o

—oo 0

NG\ n)dv'| . (4.25)

The behaviour for small p, where the modified scaling relation is to be
applied, is given by the saddle point approximation of this integral. The
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saddle point is at 7(w,as(|p|"%)). At not too small p, where wp is still
larger then w, we have

7(““"C‘S)
r _ Nb
forle) ~ cos | § —wlw,as(lo ) (42 - 512 [ a2,
0

(4.26)

The condition of continuity of the logarithmic derivatives of both solutions
1

at p ~ p ~ ¢~ ' can be written by using the approximations for £2(0,r) and
§(v) at small v,
172(0,v) =2In2 - 7¢(3)v2 + O(v?),6(v) = = + O(v). (4.27)

We obtain the following restriction on the allowed scaling dimensions v (r
is integer),
1/3
3rin2(r + 3/2)

7¢(3)In %y

In the solution (4.7) for the pomeron Green function the integral over
v has to be replaced by a sumn over v, and therefore we obtain the pomeron
poles

2\ —2/3 1/3
wr(q) = i‘gmzas(q) (1 ~ (m %5) (;—CI%)) (r + 3/4)2/3) )

(4.29)
This holds for k > & ~ ¢. For the particular case of vanishing momen-
tum transfer the scale g is to be replaced by &, the smaller of the external
momenta of the reggeon Green function.

By this continuity argument we find the scale of the coupling in the
BFKL intercept and a correction. Estimating the leading (r = 0) pole
position by substituting for ag the value resulting in the usually quoted
aprir — 1 = 0.5 we obtain that the correction factor in (4.29) reduces this
value by (1- 0.3). We notice also that due to the correction factor the scale
dependence of the result (4.29) is less than that of the first factor.

(4.28)

4.8. The 2 — 4 reggeon vertex

We describe the construction [43] of the 2 — 4 reggeon vertex in the
generalized leading log approximation. This vertex enters as a building
block the perturbative contribution to diffractive amplitudes. It determines
the weight of the 4-reggeon correction to the structure function at small z,
because the virtual photon couples via a quark loop dominantly to 2 gluons.
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The construction is non-trivial mainly due to the bootstrap property
discussed in Section 3.1. First one constructs the particie-reggeon vertices
D,, (1.23) for n = 2, 3,4 reggeons. Then the reducible contributions Dy,
which are not true 4-reggeon states, have to be removed. Finally the result
is factorized,

(08" - D) = Do VB0 AR, (a0

R)

in order to extract the vertex V2(_>4-

The four reggeized gluons are in the overall gauge group singlet and
signature even state. To specify further this state we use the basis with
a definite signature ¢ = + and the gauge group representation R of the
pair (34) of the reggeons £ = 1,2,3,4. In the case of SU(3) the tensor
product of two adjoint representations decomposes into the singlet O, the
antisymmetric A and the symmetric V octets, two decuplets A, conjugate
to each other, and the symmetric 27 dimensional representation 5. We are
going to explain some details for the subchannel with the pairs (12) and
(34) in the positive signature singlet state (O+).

In the leading log approximation we have

Dy =22 ® a2, (4.31)

where fy_,7 is the solution of the BFKL equation (4.11). #3(x1,k2) is
the impact factor [20] coupling 2 reggeized gluons to the external (in- and
outgoing) virtual photon via a quark loop. ® denotes the integration over
the gluon transverse momenta k3, k2 with the momentum transfer ¢ = k3 +
Ko fixed.

The state of three exchanged gluons in the overall signature even singlet
state is specified e.g. by the signature ¢ = + of the pair (23).

D{7 = (8{) + D, @ K$7,) ® £, . (4.32)

f3(‘23 is the solution of (3.13) for n = 3. The 3-reggeon impact factor of the

virtual photon reduces to the 2-reggeon impact factor,
- V3
Q( )(K,I,K,2,K,3) g—QZ(nlaK'Z +K'3)’

§g+)(n1, K2, K,3) = g%(@z(nl -+ K2, ls',3) - Qz(&l + K3, nz)) . (4.33)

Similar to the two-reggeon interaction kernel (3.12) the transition kernel
K, .3 can be obtained both from the transverse momentum parts of the
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Fig. 8. The transition kernel 2 — 3 in s-channel — a, and ¢-channel — b represen-
tation.

vertices £, and L, Fig. 8. In the latter case higher vertices have to be
introduced which can be understood as emerging from graphs with triple
only vertices by contracting lines, the propagator of which are cancelled by
factors in the adjacent vertices.

K1k K3 KRG
(K1 — & )*(K2 — K3)

EELARLTS

1 ! !
Ki ,3(K1, K23 K1y Koy K3) = + c.c.

2
=—|k1 + K2|" +
| k1 2| "CZ_K'HZ
L Y LY R LV T
WD) KPRy — K2
|51 — &3] k2 — K3 |%k1 — Ky
(4.34)

The projection K§23 is obtained from this expression by symmetrizing
or antisymmetrizing in the momenta (23) similar to (4.33). Due to the
bootstrap property D3 can be expressed in terms of D2 by the relations
(4.33) with &, replaced by Da.

Now the particle 4-reggeon vertex is constructed as

DF? = (8% + D, @ K9 + (D3 ® Ky} B @ 157 . (4.35)

Also the 4-gluon impact factor of the virtual photon reduces in the leading
log approximation to the 2-gluon impact factor. For the subchannel (O, +)
one finds
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2
g 3 [(P2(k1, 82 + K3 + K4)

+ cycl.perm. of K1, K2, K3,K4)

— (B2(k1 + K2, K3 + Kq)
+ cycl.perm. of k3, k3, K4)]. (4.36)

o
Q‘(l +)(’51’K'2,K'3’ 54) = -

The transition kernel K;_,4 can be obtained in analogy to K23, Fig. 9,

K1k K3 KY
— &1)* (K2 — Ky)
|%3 + K + K3 [*|a
K2 — ry?
|85 + &5 + mgl*|ka|®
|1 — Ky |2
_ s Plma? sy + w52
R AL AL

! ) 7 H
K2.4(K1, K25 Ky, K3, K3, K4) . +c.c.

= — |Kk1 + x2|* +

+

(4.37)

L

a

b

Fig. 9. The transition kernel 2 — 4 in s-channel — a, and t-channel — b transitions.

The projections K gffz) are obtained by (anti)symmetrizations and by
multiplication with group factors. The third term in (4.35) are the contribu-
tions from transitions of a pair out of 3 reggeons into 3 with the projection
to the 4-reggeon subchannel (R, 7).

The contributions of the signature odd octet states (4, —) in the pairs
(13), (24) or (14), (23) has to be eliminated, because they reduce to a 2-

reggeon state. For the subchannel (O, +) this reducible part Dgg_+)
by the analogous expression (4.36) with &, replaced by Ds.

is given
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According to [43] the result for the vertex can be expressed in terms of
a modified two-reggeon interaction kernel (3.18)

ﬂGG("‘"la K2, 539’5'2) :HG’G(RI,K‘Z, K'lla “'2)
+ ag(k1 + k2)(8(k1 — £})8(k2 — K)) . (4.38)

V1929324 (k) Ko, K], Kp) = 5919289304 o x (K1, K23 K], K)

L{
122
+ Haa(k1, K23 £, K5) + Hag(k1, K23 kY, £%) + Hag (K1, K25 kY, Ky)

- ﬁgg(m,ng; Ky, K + Ky) — ﬂgg(nl,ng; Kby K + Ky)

~ Haa(k1, k23 £) + &5, 85) — Haa(k1, K25 K] + K, Ky)

+ Haa(K1, k23 k4 + Koy ks + K4)]+ (2 0 3) + (2 = 4)}. (4.39)

4.4. Amplitudes for the hadronic final states

Data about the hadronic final states in deep-inelastic scattering provide
tests of the interaction mechanism in particular at small 2. Consider the
one-jet inclusive distribution, i.e. fix a jet with £, z; and sum over all other
produced hadrons. As pointed out by Mueller [9] the most interesting con-
figuration at small z is the case where z < z; but |x;|2 ~ @%. This selects
a parton evolution starting from the radiation of the parton j producing
this jet up to the quark struck by the virtual photon, which goes essentially
in the y direction. In this case the Kancheli-Mueller amplitude describing
this inclusive distribution has the form

@g ® fo2 @ Ppr. (4.40)

The impact factor $ps describes the coupling of the 2 reggeized gluons to
the in forward direction in- and outgoing parton (which is dominantly a
gluon g¢) and to the proton, Fig.10. According to [44] it can be substituted
by the convolution of the parton distribution g;/p (s, |k ;|2) with the parton
splitting kernel ¢ — gz with a sum over the parton type 1.

& Ja2 3y

Zjs Ky

Fig. 10. One-gluon (jet) inclusive distribution.
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p

Fig. 11. Proton diffraction.

The preliminary data [5] on jet rates in this kinematics seem to be
compatible with the expectations of (4.40) and by a factor 2 higher than
models simulating the r-evolution.

The inclusive amplitude (4.40) can be used to calculate the transverse
energy flow at small z. It has been shown [45] that the energy flow expected
by the perturbative Regge calculations is significantly higher compared to
the predictions of “conventional” r-evolution (parton shower) models. The
data confirm the perturbative Regge predictions.

Rapidity gap events originating from proton diffraction have attracted
much attention [47]. The diffractive cross section is given by the Kancheli-
Mueller graph, Fig. 11, and has the form

Fp(;-,@) @ (fp(ep) © 25p)" (4.41)

p' is the momentum of the scattered (low-mass excitation of the) proton

2
and 8 = :—c?’; = WP——I"C)Z(_k;——k’T' The latter can be considered as the Bjorken
variable of the deep-inelastic scattering off the pomeron P and then Fp

is considered as the pomeron structure function [46]. Because there is not
necesserily a large transverse momentum in the pomeron Green function fp
it cannot be replaced by the perturbative BFKL Green function F3_,2. The
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p

Fig. 12. 4" p diffraction.

analysis of the data shows that the zp dependence (at fixed ) follows the
“soft” pomeron intercept of the hadron phenomenology.

The perturbative contribution to this process has been calculated [43].
It involves the 2 — 4 reggeon vertex discussed above. Additional kinematic
restrictions, e.g. relatively large t = (p — p')?, have to be imposed in order
to enhance the perturbative contribution.

In the deep-inelastic diffractive process v*p — V X, where V is a vector
meson, the perturbative contribution dominates without additional condi-
tions. The corresponding Kancheli-Mueller amplitude has the structure
(Fig. 12)

(8yv ® fa2)’ @ DT, (4.42)

where Dy, stands for the vertex function coupling 4 reggeized gluons to the

scattering proton. If Q% or the y*V momentum transfer are large compared
to m2 or if V consists of heavy quarks then the perturbative calculations
apply [48]. The preliminary data [5] show that indeed the z dependence is
of BFKL type.

The author is grateful to the organizers of this interesting school for
invitation. He likes to thank R. Engel, L.N. Lipatov, L. Szymanowski and
A. White for useful discussions.
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