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We present the BFKL equation as a reggeon Bethe-Salpeter equation
and discuss the use of reggeon diagrams to obtain 2-2 and 2-4 reggeon
interactions at O(g*). We then outline the dispersion theory basis of
multiparticle j-plane analysis and describe how a gauge theory can be
studied by combining Ward identity constraints with the group structure
of reggeon interactions. The derivation of gluon reggeization, the O(g?)
BFKL kernel, and O(g*) corrections, is described within this formalism.
We give an explicit expression for the O(g*) forward “parton” kernel in
terms of logarithms and evaluate the eigenvalues. A separately infra-red
finite component with a holomorphically factorizable spectrum is shown
to be present and conjectured to be a new leading-order partial-wave
amplitude. A comparison is made with Kirschner’s discussion of O(g*)
contributions from the multi-Regge effective action.

PACS numbers: 11.55.Jy, 12.38.Lg

1. Introduction

In the leading-log approximation, the small-z behavior of parton dis-
tributions in QCD is derived from the BFKL evolution equation [1]. It is
well-known that the BFKL kernel is (and was derived as) a 2-2 reggeon inter-
action — with the reggeon being a reggeized gluon. For general t (= —g¢?)
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the BFKL equation becomes a reggeon Bethe-Salpeter equation as illus-
trated in Fig. 1.1

ONNIGIONEI N

Fig. 1.1. Reggeon Bethe—Salpeter equation.

where F = F(w,ky,k2) is (the Fourier transform of) a two-reggeon am-
plitude which becomes a parton distribution when k; + k2 = 0. The two-
reggeon intermediate state integration is

ki AN / d%ky d2ky 82(K + kY — k1 — k2) (1.1)
k, MWV T ] k2 k2 w- Ak - ARR) '
where I2 = [w — A(k%) — A(k2))~! is a two-reggeon propagator and
Ng? d*k
2) = Ng*Jy (%) = o / : 1.2
A(q ) g Jl(q ) 1673 kz(k _q)z ( )

The 2-2 reggeon interaction K(ki, k2, k, k}) is given by

, 2 2112
k™M k1 2 Kiky" + R3E 2
K _N — (kg + . 1.
Ky Aad—han Kk § ( (k1 — )2 (k1 + k2) (1.3)

The familiar BFKL kernel is
KBFKL(kl,k2) ;, :'l) = K(klyk%kll) :'l)
— A8 (ky — ) — A8 (ks — k). (1.4)

Generally reggeon interactions have been studied by s-channel unitarity
calculations [1-5]. For example, calculation of the BFKL kernel can be
represented schematically as in Fig. 1.2
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Fig. 1.2. Calculation of the BFKL Kernel via s-channel unitarity.
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Alternatively we can “sew” reggeon amplitudes together via t-channel
unitarity. The derivation of the BFKL kernel in this manner will be a core
part of these lectures. It is illustrated schematically in Fig. 1.3.
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Fig. 1.3. Calculation of the BFKL Kernel via t-channel unitarity.

The “sewing” of Fig. 1.3 is well-defined if it is done in the j-plane (where
J = 1+ w) by treating the particles appearing in the intermediate states
also as reggeons [6, 7]. The analytic continuation of multiparticle unitarity
equations in the j-plane is a powerful formalism [8, 9], essentially because
of the underlying exploitation of multiparticle dispersion theory (10, 11]
involved. We will briefly describe the full formalism later. First we observe
that a simple (but “too naive”) way to sew reggeon amplitudes together
with reggeons acting as particles is to use reggeon diagrams directly.

1.1. Reggeon diagrams

t-channel unitarity is satisfied at the level of reggeon unitarity (see the
later discussion) if we construct a set of reggeon diagrams as follows [12].
We introduce a triple regge vertex

i 3 kl
VW\< ~ geijr Vol [w—-a'k] - a'k3], (1.5)
k kg

where g is the gauge coupling, ¢; ;i is a structure constant color factor, and
[...] is a “nonsense zero”. We introduce propagators

k, ANAN
x, MV 1 ) 1
- = H??_. . 1.6
. = I_-'n =1 (a'k? w — Z?:l alk? ( )
k, AN\

We then combine vertices and propagators by integrating over transverse
momenta — with momentum conservation imposed. (A subtlety is that we
actually have to construct “cut” reggeon diagrams for the imaginary part
of amplitudes, but we will not elaborate on this).

The nonsense zeroes cancel many reggeon singularities leaving only par-
ticle singularities generating arbitrarily high-order reggeon interactions. The
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outcome is a very simple formalism [12] for generating reggeon interactions.
The interactions are automatically obtained in terms of transverse momen-
tum diagrams which we introduce via the vertices and phase-space integra-
tions illustrated in Fig. 1.4.

k, k‘l Ky ——
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Fig. 1.4. (a)Vertices and (b) intermediate states in transverse momentum.

The rules for writing amplitudes corresponding to the diagrams are the
following

o For each vertex illustrated in Fig. 1.4(a) we write a factor

16m382(> ki — > KO ki )?
e For each intermediate state illustrated in Fig. 1.4(b) we write a factor

d*ky...d%,

(167%™

The reggeization, of the gluon, is illustrated in Fig. 1.5

Fig. 1.5. Reggeization of the gluon from reggeon diagrams.

The origin of the BFKL kernel is illustrated in Fig. 1.6
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Fig. 1.6. The BFKL kernel from reggeon diagrams.
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and the transverse momentum diagrams derived as O(g?) interactions in
[12] are shown in Fig. 1.7.
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Fig. 1.7. O(g*) reggeon interactions.

In all of the above cases it can be shown [12] that if reggeon diagrams
are used to generate the possible transverse momentum diagrams then, in
color zero channels, gauge invariance determines the relative coefficients
uniquely. Gauge invariance is imposed by requiring that

e all infra-red divergences cancel,
e reggeon interactions vanish when any transverse momentum goes to
zero.

The cancellation of infra-red divergences is, essentially, an obvious conse-
quence of gauge invariance. As we now elaborate, imposing the vanishing
of reggeon amplitudes at zero transverse momentum is directly equivalent
to imposing the defining Ward identities of the theory [13].

1.2. Gauge invariance and reggeon Ward identities

A reggeon amplitude is defined via a multi-Regge limit in which, say,
s; = 0o = 1,...,4. Schematically we can write

S1 S2

~ I8

ﬁ - = H?:l s?i Aoy ,az,a3,04 - (1.7)
s

~/

s3 1

We can always find a Lorentz frame in which the limit s; — oo is defined
by p+ — o0,k — k, where p and k are as labelled in Fig. 1.8.

S1 1{4
\
Z{E = E@E

P ->0w k,->0

Fig. 1.8. Reduction of a reggeon amplitude to a gluon amplitude.
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The further limit k| — 0 is then equivalent to setting k¥ = 0. Reggeization
implies the reggeon amplitude must give the ¥ = 0 gluon amplitude. There-
fore, we obtain the zero momentum limit of an amplitude which satisfies a
Ward identity [13]

ky(Au(k)..)=0, (1.8)

where (A,(k)...) is the amplitude involving a gluon with momentum k,.
Differentiating

.. O0(4,..)
:><A“'”)(k,‘_—:o)0 if 3k,

4 00. (1.9)
If there are no internal infra-red divergences occurring explicitly at zero
transverse momentum (as will be the case in the absence of massless fermions
[14]), then this identity requires the amplitude to vanish. Clearly the same
argument can be applied to each of the reggeons in (1.7).

1.3. Questions

A number of closely related questions arise from the reggeon diagram
construction of reggeon interaction kernels. We can list some of the more
obvious as follows.

1. The kernels are scale-invariant in transverse momentum — what is the
significance of this “approximation”?
2. How is a scale(s) to be added?
2) g2/47 > au(Q*/u2)!
b) A k; cut-off?
¢) An “average” rapidity (n) as a normalization [15]? It is generally
anticipated that a full next-to-leading order calculation [3] will pro-
vide an answer to this question.
3. Why are there only transverse momentum integrals representing ¢-channel
states?
4. What is the significance of properties related to conformal invariance?

In the following we will briefly describe a more fundamental derivation of
O(g*) reggeon interactions directly from ¢-channel unitarity [16]. This for-
malism provides a solid basis within which to ask these questions and, at
least partly, answer them. A major outcome will be the suggestion that
scale-invariant contributions that are well-defined by unitarity are necessar-
tly conformally invariant.
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2. Multiparticle j-plane analysis

To introduce language, we first recall the simplest elements of Regge
theory for elastic scattering amplitudes. The partial-wave expansion is

oo
A(z,t) =) (2] + 1)a;(t)Pi(2) (2:1)
=0
where
+1
aj(t) = % / dzA(z,t)Pi(2). (2.2)
-1
Using the dispersion relation
1 dz' ,
az0=5 [ GEmAE, (2.3)
IRy L

we obtain

/ d'A(, 1) / B, (2.4)
IR+IL

giving “signatured” continuations from even and odd j
i(t /dz Q;()A(Z,t) £ (- l)J /dz'Qj(—z')A(z',t) . (2.5)
1L

The asymptotic behavior of A(z,t) can be studied via the Sommerfeld—-
Watson transform

A(z,t)_Z/ (2it+1) i(t)(P( )+ Py(— z)) (2.6)

4smw3 %
and a Regge pole in a;-t(t) at j = aft) gives

A(z,1)) ~ 258, (2.7)
The simplest example of “j-plane unitarity” is elastic unitarity.

aj - = ip(t)ajaj* T=x. (2.8)
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This equation is inconsistent with a fixed pole in the j-plane. But appar-
ently
Qi(2) — I+~ = aF(t) ~ ——  (29)
AP it+1 IV a1 +1 :
and so there is a “nonsense” pole at j = ny + ny — 1 where, in this case,
n; = nz = 0. In a gauge theory n; = ny = 1 is possible and so there is a
“nonsense fixed-pole” at j = 1. The conflict with unitarity is resolved by the
fixed pole mixing with the elementary gluon and producing Reggeization.
To analyse multiparticle unitarity in the j-plane, we need to generalize
all of the elastic scattering formalism. We require

e Multiparticle, many-variable, dispersion relations.

The analyticity properties of multiparticle amplitudes are very compli-
cated but (20 years ago) it was shown [11, 10, 9] that, in multi-Regge
asymptotic regions, the necessary dispersion relations hold. This is
sufficient to obtain analytically continued partial-wave amplitudes [9].
Spectral components of the (asymptotic) dispersion relations are la-
beled by hezagraphs. These are tree graphs having the form illustrated
in Fig. 2.1.

(a) (b)

Fig. 2.1. (a) A hexagraph for the six-particle amplitude (b) cuts through the
hexagraph.

Possible cuts through a hexagraph, as illustrated, give the multiple

discontinuities of the spectral component that the graph represents.
e Continuations to complex angular momenta and helicities.
For each hexagraph component, distinct continuations are possible and
the hexagraph notation also indicates this. For example, introducing
angular momenta and helicities corresponding to the elements of the
hexagraph as in Fig. 2.2, a continuation can be made to complex ji,
n2, and n3 with j2 —ny and j3 —n3 (which are coupled in the hexagraph)
held fixed at integer values.

Fig. 2.2. Angular momenta and helicities associated with a hexagraph.
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The complete set of hexagraph j- and n-plane continuations are suf-
ficient [9] to write Sommerfeld-Watson transforms and obtain multi-
Regge asymptotic behavior. These continuations are also sufficient to
obtain the t-channel unitarity contributions of multi-Regge pole states
that we discuss below. We shall find that reggeon singularities are
generated as Regge cuts and that particle singularities give reggeon in-
teractions.

Our ultimate aim is to construct “Yang—Mills reggeon theories” by using
j-plane unitarity directly. We can bypass momentum-space calculations
completely by using the following elements.

[A] Gauge invariance is input via the Ward identity constraint — that
reggeon interactions vanish at zero transverse momentum.

[B] The “nonsense” zero/pole structure required by general analyticity prop-
erties is imposed, in addition to Ward Identity zeroes.

[C] The group structure is input via the triple reggeon vertex.

[D] t-channel unitarity is used to determine both j-plane Regge cut discon-
tinuities and particle threshold discontinuities due to “nonsense” states.

[E] The j-plane and t-plane discontinuity formulae are expanded simulta-
neously around j = 1 and in powers of g2.

2.1. Reggeon unitarity

We first go through a 30 year old [8, 9] manipulation of ¢-channel uni-
tarity which, a-priori, is independent of gauge invariance. Consider the
four-particle intermediate state as illustrated in Fig. 2.3.

(DD - <R

Fig. 2.3. The four-particle intermediate state.

The i denotes an amplitude evaluated on the unphysical side of the four-
particle branch-cut. (We will avoid discussing subtleties associated with the
definition of ¢ amplitudes, in particular the specification of the additional
boundary-values involved.) We use multiparticle partial-wave amplitudes
corresponding to the “coupling scheme” illustrated in Fig. 2.4.

p RS Pt S Y
t 1,
n2 tz

Fig. 2.4. Partial-wave coupling scheme for the 2-4 production amplitude.
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l1(I2) and n1(—ngy) are respectively the angular momentum and helicity (in
the overall center of mass) of the two-particle state with invariant energy

iy (tz ).
The partial-wave projection of Fig. 2.3 is

a,-(t)-a;'.(t)zfdp Y Y Y st et ), 210)

In1+n2|<j 1 2|ny] la>]na]

where, if all particles have mass m but are not identical,

/dp(t9t1’t2) = (—27?'f)"5¥/dtldt2
x [’\l/z(tsthtz)} [Al/z(thmz»mz)} [Al/z(t%mz’mz)] (2.11)

t t1 ty

with the integration region defined by A > 0, for each of the three A func-

tions.

Fig. 2.5. Hexagraph contributions to the unitarity integral.

Temporarily ignoring signature problems, the continuation to complex j for
the hexagraph contributions of Fig. 2.5 is given by

Z , __sm'lr]/ ' . dnlodng. , (2.12)

22 sinTnysinTngsinw{j —n; —n
n3>0,n32>0 C; 1 2 (4 1 2)

jZnitng

where the integration contour is defined so that, for j ~ —1/2, C; = [n, =
-1/4+ivp,—00 < vp < 00,7 = 1,2].
We consider the contribution of Regge poles as illustrated in Fig. 2.6.

:G@: = @v\/\<>«wv\

Fig. 2.6. Regge poles in the production amplitude.
We consider, specifically, Iy = ny and I, = ny. Writing

1
1— oq)llz — az2)

ajn]_nlnznz(t’ tlatZ) = Aalaz [l :31132 a; = a(ti) ’ (2'13)
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utilizing two-particle unitarity, and picking out the nonsense pole at j =
n3 + n2 — 1 gives

1

sinwj . dnydng
4 —8 =7 53, dp sinwngsintng(j —ny —n2 +1)
Cj

Aq AL,

* (n1 — a1)(nz — az2)’ (2.14)

: 1/2
/ dp = —— / dtydt, [i—m-)} : (2.15)

2573 t

where now

Using the threshold behavior

A(t, tl,tZ) (j"'al'_a2)
~ | Z2AD D e 2.16
< A—»O[ t ’ ( )
we obtain
i -.,Sinﬂ'j dt]dtz i
aj —a; =12 2713 /Al/z(t,tl,tg)A’%A"%
L +....(217)

sinraysinraz(j — a1 — az +1)

This leads to the two-reggeon branch-point at j = 2a(t/4) — 1 generated by

| = a(t;) + a(tz) -1, A(t,t/4,t/4)=0. (2.18)
Since dbdt
1GL2 2
— =2 [ dk, 2.19
/ A1/2(t, 84, t2) / ( )

the two-reggeon contribution can naturally be written as a transverse mo-
mentum integral. The threshold behavior (2.16) at the nonsense point j =
ny +ng —1 is crucial for this. Specializing to j ~ 1, taking a(t) = 1+ A(t) =
1+a't+... (and absorbing factors of a' in Ai‘, and A%, ), gives for the two-

reggeon discontinuity

1 d*k
- QA% 6w — Ay — As). 2.20
%{%} wWZ/k%k—qVA~Az““ A1 = 42) (2.20)
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Comparing with (1.1) it is clear that introducing a general 2-2 reggeon
interaction will lead to a generalized form of the BFKL equation.

The above analysis of the two-reggeon cut generalizes straightforwardly
to the analysis of the N-reggeon cut — which originates from a nonsense
state of N-reggeons z.e. j = Ef_’__l ar — N + 1. A self-contained set of
reggeon unitarity equations can be written [8, 9] for multireggeon scattering
amplitudes. All the multireggeon discontinuity formulae can be written
in terms of transverse momentum integrals. We emphasize that this is
a property of the phase-space generating the branch-point and is not a
perturbative result.

Until this point we have effectively ignored signature in our discussion
of the two-reggeon cut. However, for the branch-point to actually be gen-
erated there must be no “nonsense-zero” of 4 a at 7 = aj + az — 1. The

dispersion integral representation for partial-wave amplitudes implies that
odd-signature amplitudes have such zeros and so the cut appears only in the
even signature amplitude.

2.2. Reggeization

Before specializing to a gauge theory we consider, in general, the “two-
reggeon contribution” in the odd-signature channel that (in the gauge theory
case) will contain the reggeized gluon. We again consider Regge poles in
the four-particle unitarity integral as illustrated in Fig. 2.6. Before allowing
for (square-root) nonsense zeros the j-plane contribution is (with signature
effects now included)

AgA*g

350 [ o IR T )

We focus on the threshold singularity in ¢, which is generated when

a;=a(t)=1, az=a(tz) =1,
Aty t1,t2) = 0. (2.22)

We take a3 ~ az ~ 1 and consider the leading ¢t-dependence for j ~ 1.
Since j = 1 is the nonsense point relevant for the phase-space integration, we
obtain a transverse momentum integral — for the leading threshold behavior.
The two-reggeon phase-space gives (forw =j — 1 ~ 0)

e{ou(®)} = 26, {Jl(qz)AgAg } : (2.23)
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where J;(g?) is defined by (1.2). As illustrated in Fig. 2.7,
E - O = e == b

Fig. 2.7. Discontinuity of the 2-2 reggeon amplitude.

the discontinuity formula obtained holds also for the 2-2 reggeon amplitude
Ao = Aujazagay defined at the nonsense point j = ayj4az—1 = az+ays—1.

We now consider a gauge theory specifically. We input gauge invariance
and the color structure of the theory, as we have discussed, by requiring

¢ Regge pole behavior

e the color structure of the triple Regge vertex
® a nonsense zero

e the Ward identity constraint.

The lowest-order form of A, is then determined to be

2N .. 2
A = 9 Dn=i CnirigCnigisWq” (2.24)

& (w—A(g%))

The discontinuity formula of Fig. 2.7 gives directly

AP)=¢*D e 1d?T1(d%) = 9’ Ng*J1(d) (2.25)
ik

which is the familiar leading log form of the gluon trajectory function.

2.3 The BFKL kernel

We consider the six-particle unitarity integral and analyse it with partial-
wave amplitudes corresponding to the coupling scheme shown in Fig. 2.8.

1
n ir_l@tl
. Ny
t>—1—<t4 n,—2t,
n,

{t3

1,

Fig. 2.8. Coupling scheme for the 2-6 production amplitude.
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The partial-wave projection of the unitarity integral is
s0-g0=[» ¥ ¥ ¥ ¥ ¥ ¥
Ing+na|<j In1+na|<ly h2|na| l32>]na| 13>[ng| a2 |ny
X ajln(t, L)a;ln(t’ L) . (2'26)

The helicity integrals arising from the continuation to complex j of the
helicity sums in (2.26) are (from even signature in j and odd signature in

the n,)
i_ sin E] / dnzdng
2827 ) sinJ(j — na — ng)sin F(n3 — 1)
dnldng
2.27
/ sin 3(n4 —ng —n2 + 1)sin Z(ny — 1)sin F(ng — 1) (2.27)
and
/dﬁ(t,tl,tz,ts,tn;) =/ dﬁ(t,ts,t4)/ dp(ts,t1,t2).
A(t,t3,t4) >0 A(t4,11,22)>0

(2.28)
We are interested in the three-particle threshold generated by Regge
poles at n; = a;,7=1,2,3 when

Q] = a2 = o3 = 1 5
A(ta,t1,t2) = M2, t3,84) = 0. (2.29)

and in the two reggeon cut generated by Regge poles at ng = as and
n4 = a4 combining with the nonsense pole at j = n3 + n4 — 1. A nonsense
zero prevents a two reggeon cut involving a; and a2 from occurring in the
l4 channel and so no three reggeon cut is generated in the overall j-plane.
Nevertheless, for j ~ 1 we have

ag~j—az3+l~2—-—az~1l~aj+ax-1 (2.30)

and so the nonsense condition Iy = ng = ny+nz —1 is satisfied (even though
no two reggeon cut is generated). This second condition holds in addition
to the j = n3 + n4 — 1 nonsense condition required for the Regge cut. Since
both conditions hold, threshold factors combine to give the right Jacobian
factors to change to transverse momentum variables. (This implies that
in the following derivation, the BFKL kernel arises entirely from nonsense
states.) The three-particle discontinuity is then

¢ {aun(t)} = 6q2 {JZ(QZ)AQA:%} s (2.31)
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where

J2(¢%) = (2.32)

1 / d?k1d%k;
(167(‘3)2 k%k;‘;(q - k] - k3)2 )

There is a factor of w™! missing compared to (2.23) because we have ex-
tracted nonsense zeroes from the amplitudes.

The lowest-order two-particle/three-reggeon amplitude is determined
by factorization. Since ng = (j — a3 + 1) and (ng — ag) = (w — Az — Ay)
we have

ky
R Cis
g = =D sl v (233
X R, (n-x,) R, 3T 4

where Rp is the triple reggeon vertex (except that since we have extracted
a nonsense zero there is no momentum factor) and Ry, is an external vertex
which we can take to be a constant carrying zero color i.e. we write Rf, = 4;;.

Working to O(g?) in the overall discontinuity and summing over colors
we obtain

%{ﬂj(qz)} =
g’N d?’kyd%k 1
E’éﬁ?‘sqz{ / k2k2(g — k1 - k3)? (w — a'k% — o' (g - ks)z)z}
$°N {/d2k3 J1((g — k3)*) } (2.34)

- (1673%) k2 (w— o'k - a'(q — k3)?)?

This is the discontinuity of the reggeon diagram shown in Fig. 2.10

> X

Fig. 2.10. A reggeon diagram.

if the reggeon interaction is the disconnected part of the BFKL kernel.
We must also consider the off-diagonal product of reggeon diagrams

shown in Fig. 2.11.
ky
Xﬂf -
ks

Fig. 2.11. An off-diagonal product of reggeon diagrams.
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The right-hand amplitude has a simple form in the partial-wave coupling
scheme illustrated in Fig. 2.12. Unfortunately, this partial-wave projection
is quite distinct and it is non-trivial to express the new amplitude in the
coupling scheme of Fig. 2.8.

Fig. 2.12. Alternative coupling scheme.

However, if we consider the leading threshold behavior at ¢ = ¢% = 0,
there is a simplification. To obtain ¢? = 0 from three “massless” particles,
i.e. with k2 = 0, i = 1,2,3, all three momenta must be parallel. This
implies that in this special case the relevant variables of Figs 2.8 and 2.12
degenerate. The helicities of the three particles can be identified, the angles
conjugate to 7 and n4 can essentially be identified within each scheme and
also in the two schemes. In this special kinematic configuration we can write

kl
k
2 RLRp
~ 2.35
k3

where Agz = a'(kz + k3)%, Rg = 6;j and Ry, is the triple reggeon vertex.

Combining (2.35) and (2.33) and inserting in (2.31) we again obtain
a reggeon diagram of the form of Fig. 2.10. Adding the two possible off-
diagonal products we obtain the forward connected BFKL kernel (1.3). The
sign is determined by a detailed discussion of the helicities of the reggeons
involved [6]. The remaining (k; + k2)? component has no discontinuity in
¢? and can not be determined by unitarity. It is immediately determined
as the first correction away from ¢?> = 0 once we impose the Ward identity
constraint that is our input of gauge invariance. Therefore the full, confor-
mally invariant, BFKL kernel is determined by the combination of ¢-channel
unitarity and Ward identity constraints.
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2.4. O(g*) 2-2 reggeon interactions

We study the eight-particle intermediate state and consider the reggeon
contributions shown in Fig. 2.13.

ae=RLW:
<

Fig. 2.13. Reggeon contributions to eight-particle unitarity.

Naively we might expect the previous analysis to generalize straightfor-
wardly as illustrated in Fig.2.14.

o ) (S S
wq:: AAAAAA :,\gnw AAAAAS

‘>a_©_+b_4-+c&_+d‘@s+e—®_

Fig. 2.14. Reggeon interactions.

This would be the kernel given by the reggeon diagram analysis. The
coefficients a, b, c,d,e are determined by the Ward identity and infra-red
finiteness constraints and might be expected to emerge simply from the
unitarity analysis. It is not so simple. We can summarize the subtleties as
follows.

(i) The diagram (with coefficient) a is not present, it can be reduced to
a sum of reggeization contributions. In fact this diagram requires a
minimum rapidity cut-off for it is definition.

(#) ¢,d and e all involve the 1-3 reggeon coupling (which in principle) could
be zero. As a result nonsense conditions do not follow and only the
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combination of infra-red finiteness and Ward identity constraints implies
that all the diagrams are present as transverse momentum integrals in
the infra-red region.

(#2) In the infra-red region, diagram b directly generates a transverse mo-
mentum integralbut only for the leading threshold behavior in the reggeon
mass variables. Also, the product of distinct partial-wave amplitudes
involved generates an overall normalization ambiguity in transforming
from one partial-wave to the other.

We shall see in the next Section that the component of diagram b that
emerges as most unambiguously defined indeed has special importance.

3. Properties of the O(g?) kernels

We now return from the unitarity analysis to the kernels that we initially
constructed using reggeon diagrams [12]. We first discuss the properties
of these kernels and then return to the issue of how they contribute as
higher-order corrections to the BFKL kernel. As we outlined above, and
is described in more detail in [12], the construction procedure is to use
reggeon diagrams to generate all possible transverse momentum diagrams
and then use Ward identity and infra-red finiteness constraints to determine
the relative coefficients.

3.1. The O(g*) 2-4 kernel
We discuss this only briefly. The complete 2-4 kernel is given by
K§ a(k1, k2, k3, kg, ks, ke) = z 273k3 (52(k2 - ks)K (kl, k3, k4, ks)

1<—->2

1 62(kz — ks)K\%)(k1, ks, ka, ke) + 62(kz — ka)K$%)(k1, ks, ks, k)
+ 6% (k2 — ks)K§'f§(k1, kg, ks, ks)) - K-,,(»i;)(kl, ka, k3, kay ks, ke)e,  (3.1)

where the first four terms are disconnected components and involve
K g? (k, k1, k2, k3), which is given by the reggeon diagrams of Fig. 3.1

w W“
{j\ /\/\/‘/ ! V\_\b_ N ’

"\'\,\j@,\/
J\IJ\/

ol

Y \‘/‘\/

5%

Fig. 3.1. Reggeon diagrams giving K{?g.
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and can be written as

k252 (k — ky — kg)

1 d?ky d%k
Kg?a)(’% kl9 k2’ / ! 2

k3) :(21;-)3 k% k%
X Kg‘,lli)(kl,k% k3’k4a k5)’ (32)

where

_ k2(kyq + k5)?
K (b, ks kg k) = 3 ((k1+k2)2— (H

1<->2

(k1 — k4)? (k1 — ks)? (k2 — ks)?

L BB B )2 K2E2E3
(k2 — kq)? = (k2 — k3)2 3\ (k1 — k3)2(k2 — ks5)?

(k1 — ka)?(k2 — k3)? (k1 — ks)?(k2 — kq)?

kg(k3+k5)2+k§(k3+k4)2) 1( k2 k2

K g? (i, .., ke)c is the connected part of the kernel and is generated by
the reggeon diagrams shown in Fig. 3.2

. N
o~ e v
- ~ NN IANEN NN VAN M s
; Hfff\w - DA N
S TS ’
A A~ ’ ’ -
Vv, ANAAATIR AN AAAATA AN, N
\.-\/\
i~ A VA
Jar ™ Y
’\/y\._‘("f . \/\/‘JZ”%J/\\/\ A/ e f}‘ JUNV N N"“,ﬁj\r\f\/’*/
M., "{4\/::\ ~ , j’ftv\ A , 4;\/\,.\‘,\ , ~
- - —\A
AN AN AN AAASAN
I~
m/'\'/ N"'/\/ N \;_,\J \,\/f\/\/\/\/\/
o o <
ang! VRSBV . INAN , LA
Pt ’ '-ZL . A:/:'\/x\ <
g ~ e o / ~
- 7 Ny FATaN ~,
AR AR, AN MRS,

Fig. 3.2. Reggeon diagrams for the connected 2-4 reggeon kernel.
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The resulting transverse momentum diagrams have already appeared
in Fig. 1.7. In detail we have

B k3(kq + ks + ke)?
9 4K2.(",12(k1,k27k37k4,k5,k6)c: Z ((k1+k2)2_( 1( 4 5 6)

2
1<=>2 (k1 — ks)
k3 (ks + ks + ke)® | k3(ks + ka + ke)® | k3(ks + ks + ks)?
(k1 — ka)? (k1 — ks)? (k1 — kg)?
RYERL L kK3 kikg
4\ (ky — k3)? ' (kz —ka)2 ' (k3 — ks)2 | (kz — ke)?
L _Ki(ks +ke)® . Ki(ks+ka)®  ki(ka + ko)’
2 (kz — k5 — ke)z (kz - k5 — k4)2 (k2 — k4 - k6)2

+_@m+mf*_ﬁ%+mf+_@m+my)

(kg - k3 - ks)z (kz — k5 - k3)2 (kz - k3 — k4)2
1 ( B3 (ke + k) | KERG(ks + ks)? k2k2 (k3 + ks)?

T o\ ot —ka)2(ka — ke)? | (b1 — ka)2(ks — ko)2 | (k1 — ks)2(kz — ko)Z

k%k%(’% + ka)z n k%k%(k4 + kﬁ)z n k%k%(ks + k6)2
(k1 — ka)2(kz — ks)2 (k1 — k3)?(kz — ks)? (k1 — k3)?(k2 — k4)?

YR "
2\ (b1 — k)2 (ks — ks — )2 | (ks — k3)2(kz — ka — ko )2
N k2 k2 k2 N k2k2 k3
(k1 — k3)2(k2 — kg — ks)2 (k1 — ka)%(k2 — ks — k¢)?
k2k2R2 K3E2E2
+ +
(k1 — kg)2(ky — k3 — k6 )2 (k1 — ka)?(k2 — k3 — k5)?
k2 k2 k2 k2 k2 k?
+ +
(k1 — ks5)?(ka — k3 — ke)2 (k1 — ks)?(k2 — ka — k¢)?
k2k2K2 k2 k2 k2
+ +
(k] — k5)2(k2 — kg — k3)2 (k] — ke)z(kz — kg — k3)2
21,2 1.2 21.21.2
n kik3ks —+ fl k3k3 ). (3.4)
(k1 — ke)?(k2 — kg — k3) (k1 — k)2 (k2 — kg — ks)

It is straightforward to check [12] that all the Ward identity constraints

are satisfied by K 5?4) . This vertex is essentially that calculated directly by
Bartels and Wiisthoff [17], although to obtain precisely the same result it
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is necessary to include the relevant color factors correctly. Note that the

existence of K 1(> 4) immediately implies that there is no closed BFKL equation

at O(a?). To obtain such an equation we have to artificially restrict the
discussion to 2-2 reggeon interactions.

3.2. The O(g*) 2-2 kernel

As we discussed earlier, reggeon diagrams containing four-reggeon in-
termediate states generate the sum of transverse momentum diagrams for
the 2-2 kernel shown in Fig. 1.7 and give five kinematically distinct terms.

o N)zxg“;’(kl,kz, ks k) = KD+ E® + kW 4 kD 1 £ (3.5)

with
KM = > kk3T1 (k3 )1 (k3)(167%)6% (ks — k3), (3.6)
KM = —g > k§ T (k]R3 (167°%)6% (ks — ks) (3.7)
(4 _ _ k';’h(k%)k%k% + k3 k3 J1(k3)k]
K = 3 kR0 (k1 - ka)?), (3.9)
and
K(4) Zk2k2k3k2‘[(klsk2, k35k4) (310)

where Jq(k?) is defined by (1.2) and

2 1 / 2 1 2
d 3.11
and
I(k1, ko, k3, ky) = L/dzp ! . (3.12)
P T 1673 P2(p+ k1)*(p+ k1 — ka)%(p + k3)?

We can demonstrate, diagrammatically, that the Ward identity infra-
red finiteness constraints are satisfied as follows. For an external k;-line

e k; — 0 gives zero if the line carrying k; is the single line of a 1-2, 2-1,
or 1-1 vertex,

e in general, k; — 0 gives the subdiagram obtained by removing the line
carrying k;.
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Infra-red divergences occur when the momentum k; of an internal line
vanishes. If we use a mass regulation, then, as m? — 0, this gives

27
2, J(ki) 1 dk}
/d i Gy oy ™ i/m!d(}f(o)  rlogm?£(0), (3.13)

where (apart from a factor of (16x3)~!) f(0) is obtained from the original
diagram by removing the line carrying k;.
The Ward identity constraint is satisfied by the relation

(3.14)

(with the notation — — — = k; — 0) and so determines the relative weight
of K2 and K3. There are two infra-red finiteness requirements, leading
to three constraints that determine the relative weights of the remaining
components. First we require that the connected part of the kernel is infra-
red finite before integration. This gives

‘K“ q>+‘¥+%(ﬂ ) =P (3.15)

and determines K4 relative to K5 and K3. Taking the Ward identity zeroes
into account, infra-red finiteness after integration requires cancellation, by
the disconnected parts, of two divergences due to the connected part. First
the poles of K; require the cancellation

= 0

O - (-

(3.16)

Secondly K3 generates a divergence, when both exchanged lines carry zero
transverse momentum, which requires the cancellation

This last constraint determines K §4) relative to K 54) + K §4) + K £4) and the
(4)
0 -

(3.17)

previous constraint then determines the relative weight of K
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The most complicated part of K(4™) is clearly K£4) since it contains
the box diagram I4. Using the notation illustrated in Fig. 3.3

kq kg
p "pl
v + P-P
P-P, 4
pP-P
3
ko kg

Fig. 3.3. Notation for the box diagram
we write

1
[(p - ps)? —m?)’

I4 can be evaluated [16] as a sum of logarithms, i.e.

I4(P1,p2,p3,p4,m2)= /dzpule

Is= ) AjxFj, (3.18)
i<k

where the A;; are “tree-diagrams” obtained by putting internal lines j and
k on-shell and

F il Log Pl = 2m? = X2 (g%, m?, m?) (3.19)
ik = 0, .
! ’\I/Z(P?k’ m?, m?) P?k - 2m? + )‘l/z(P?k, m?, m?)
with
pix = (pj — P&)*. (3.20)

To obtain explicit expressions for the Aj;, requires introducing dual
vectors to the p;; and leads to

Ajp = 2% (3.21)
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where, e.g.
a2 = [kl - ko? — ky? kzz]
X [kl-k22—kl-kgkl-k3—k12k22+k12k2-k3
+(ky ko + k) (ky ko — kg - k3 + k2% — 2kg - k3 + ksz)] ,  (3.22)
b1z = [_kl k2 + ka?k2? 4 (ky ko + k22)2]
X [—(k1 ka® — ky - koky - ks — ka2ka® + ke2ks - k3)”

+ (ky - ko? — ky2k2®))(ky - by — ky - k3 + ko? — 2ka - k3 + k32)2].
(3.23)

In this way we obtain the box diagram as a sum of six logarithms of
two types:

(1) external line “reggeon mass” thresholds, — four logarithms.
(2) “s” and “t” thresholds, — two logarithms.

The complete kernel can then be written in terms of logarithms with
rational polynomial factors. (In fact a greatly simplified expression can be
found in [18]).

3.3. The O(g*) parton kernel

For parton evolution, we require only the much simpler “forward” kernel

kAN v K

= K{ (b, —k, k', —K') = KW (k, k). (3.24
K

- K A hA— K7

In the forward direction it is straightforward to combine the type (2) loga-
rithms from the box with the logarithms of the connected components K. 54)
and K §4), giving

4 1 { k2?2 (k— k')
()(k k) — o= (k—k')ZLog 2

k2k'2 (k + k')4
T k')zLog[ e D - (Kz) (329
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where

2512012 12 2
P S —k)LO[_k_]
472 (k + kl)2(k — kr)z p'2
is separately infra-red finite as m? — 0 and contains only the type (1)
logarithms, i.e. the external reggeon mass thresholds. X, will be very im-
portant in the following. It is the part of the boz-diagram that emerged as
a well-defined transverse momentum integral contribution via the unitarity
analysts.
To obtain the full set of eigenvalues of K(4) we first show diagrammat-
ically that

1
K® = (KprkL)’ - Kz, (3.27)
where Kprki, = KsrrL(k, —k, k', —k') is given by (1.4). We have

2

(KBrkL)? = Z (~ : . -3 >< ) (3.28)
- VA IR e S T
SO RIVANE = e
Using the forward identities
9.0 v x5-©
N >©<=\;'<= >< =0 (3.30)

(3.29)

then gives

(KprkL)® = > <—O~:-24§>——2—? +2I) (3.31)

and (3.27) follows.

3.4. Figenvalues and holomorphic factorization
We use the complete set of orthogonal eigenfunctions

bun(k) = (K?)1/2Hein8 e (—o0,00), n=0,+1,42,..., (3.32)
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k = (|k|cosd,|k|sin@). The eigenvalues of Kppx, are (Ng?/2n%)x(v,n),
where

x(v,n) = (1) — Re ¢(|n|+1+iu) (3.33)

with ¥(z) = £ InI(z). From (3.27) the eigenvalue spectrum of K®) is
given by N2g*£(v,n) where

E(v,n) = ;16["(”’ n)? — A(v,n). (3.34)

and A(v, n) are the eigenvalues of X,.
To find the A(», n) we use the dimensionally regularized form of K3, i.e.

1 K2R (k2 - ') 2
D(1 LNy — 2\D/2-1 12\D/2—-1
ky k') = _ _
K2 K) = 55 e e o () (k*)P/21)
(3.35)
We first evaluate
27 ot
& ezne
I =
olnl / 1— z(k, k')sin? (8 — 6')
0
24,12
o K] = —F R (3.36)
(k2 — k'2)2
where cos@ = k- & and cosd' = k' - 3. We get by residue (for n > —1)

ind wn+1
I = —4ze*
oln] e fd'w 2wt +2(2 - 2)w? + 2z

: k2 — k' E\" E\™
iné
= 27r6n,2Me (k2 n k’2> [(—k,) @[k' _ k] — (_k) @[k — k']:] .

(3.37)

2M is an even integer — this will be important in the following.
It is then straightforward to show that

/deI D
ez e (ks k)by,n(k') = A(v,n)by,n(k), (3.38)

where, as D — 2,

1 |n| D 1
A(v,n) —>2‘K—_)<IB(— +=+v-13)

2(D-2 2 2 2
SR S N CC R RS

+ﬁ(|_"_|_ _,,+§))), (3.39)
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B(z) is the incomplete beta function, i.e.

1
B(z) = /dyy“_1[1+y]_1
0
1
2

and so, at D = 2,

o = (2 0) (1),

where we can write
a=3(+(5) -+ (3))

> 1
Vi)=Y ——.
(2) ;(wz)?

with

2031

(3.40)

(3.41)

(3.42)

(3.43)

Using (3.42) we can show that the A(v,n) have the important prop-
erty of holomorphic factorization that is very closely related to conformal

symmetry [19]. That is we can write

Av,n) = G[m(1 - m)] + G[m(1 - m)],

(3.44)

where m = 1/2 + iv + n/2 and % = 1/2 + iv — n/2 are conformal weights.

We use

167 A(v,n) = —4 (ﬁ’ (m) +B'(1 - ﬁ%))

(759 -v(5) =+ (557) -

it 1

I
<.

r=0 r=0

1

1
:Z(+ +2 +“’)2—Z(r+ +242)

[e)
+ - v )
72:;3(7,4____*_2_1,1/)2 Z(T-l— _*_4_7)2

(3.45)
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We next show that this expression is unchanged if we simultaneously send
m-—-1-~mand m — 11—, t.e. n - —n,v — —v. At this point it s
cructal that n is an even integer. Writing n = 2M, we obtain

>, 1

o0
1
167 A(—v, —n) = — — -
TR e R i

+ ' _ '
e SR e e

(3.46)
and so
167 (A(—l/, —n) — A(y, n))
_ i 1 _ ‘Zl L
Ry R e Ay P CE S o DK
1 1
+ _ _ .
e R R RNy £ E
M/2-1 1 M/2-1 )
1—21;4/2 t+i-% 7)? t:-EI\:l/z (—t-%- %)2
M/2-1 1 M/2-1 .
* z - Z 1 w2
t=—M/2 (t ti 1t w) t=—M/2 (-t-g+ 7”)
=0. (3.47)

From this symmetry, we can write

167 A(v, n) = —2(5'(m) F B (1—m)+ B (- m)) 18 (ﬁz))
= G[m(1 — m)] + G[m(1 — m)] (3.48)

as required.

We conclude that K, shares many of the nice properties of the leading-
order BFKL kernel. It is infra-red finite, scale-invariant and has a new
eigenvalue spectrum satisfying holomorphic factorization. It is very inter-
esting to ask whether there is a new conformally invariant, non-forward,
kernel associated with K. (In fact it is shown in [6] that KC; is the forward
component of a new partial-wave amplitude that appears for the first time
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at O(g*) and in [18] a candidate for the non-forward conformally invariant
kernel is constructed.)

3.5 Numerical evaluation

We consider now the numerical significance of the elgenva.lues of K(4),
The leading eigenvalue is at v = n = 0, as it is for the O(g ) kernel. Using
the reggeon diagram normalization, the correction to ag is given [16], by

4 5(090)

9g T (3.49)
Since
1 1
©00=-5.7(3)
1 [ o 1
B ”é‘(; T+ 1/4)2 a ; (r+ 3/4)2)
mtatoms gt
9 49 7
~_ 1 (3.50)
we obtain from K, alone
R
.51
T6r3 (3.51)
The complete K(47) gives
9¢* 2
~Tord ([21112] - 1.81) ,
994 C!,z
~ 3.52
~Tond X011~ —5 (3.52)

giving a very small positive effect.

At this point we note that the disconnected part of K (4) contains di-
agrams, the first kind appearing in (3.31), which can not be interpreted
in terms of reggeization effects. Since reggeization is the only consistent
interpretation of disconnected pieces, these diagrams can not be present
in the full kernel. Elimination of the unwanted diagrams, while retaining
scale-invariance, gives [16] uniquely

2
9 < k6 (Keea) (3.53)
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This is a consistent scale-invariant O(g*) kernel which can be added to the
O(g?) kernel. In this case, we replace £(v,n) by &(v,n) where

E(v,n) = —;[x(u, n)]? — A(v,n). (3.54)

This gives, as a modification of ay,

£(0,0) 944
1673 1674

9g* x (~5.76 — 1.81)

2
Qs

~ — 68
2

(3.55)

which is a substantial negative correction — of the order of 50%.
Unfortunately as we have discussed in the last Section there is, even in

the best determined component X, an overall normalization uncertainty

which reduces the immediate significance of these numerical estimates.

4. The O(g?) kernel from the s-channel effective action

Kirschner [15] has discussed the relationship of the “t-channel” reggeon
diagram construction of non-leading kernels to the “s-channel” multi-Regge
effective action [4] derived from the leading-log approximation. The full
effective action is written as a sum of components

L=Lyin+Ls+Lp+Ls. (4.1)

L contains the triple-gluon vertex for longitudinal gluon fields A4, A_,
describing “t-channel” exchanged gluons (“s-channel” produced gluons are
described by 4 fields), i.e.

Ly = %86*A1(6;‘A+T“A+) +00* A% (0T A_T®A ). (4.2)

In momentum space the triple vertex has the form

ky + k2)?
igcane 2l (k) < - > (k1) (43)

and is, essentially, the three-reggeon vertex that we use to construct reggeon
diagrams.

Kirschner has shown that graphs involving triple-gluon vertices can be
regarded as reggeon diagrams, if contributions with s-channel gluons close
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to mass-shell are added. The O(g*) kernel we have discussed arises from
the product of interactions shown in Fig. 4.1

/ iy - //\ / = e —~

( \\+ +—( )( = +/*——\I
\ = = =)
N

Fig. 4.1. Reggeon interactions from the multi-Regge effective action.

together with additional contributions from s-channel gluons. (This is
clearly analogous to the product of reggeon diagrams illustrated in Fig. 2.14.)
If the resulting diagrams are written as transverse momentum integrals, the
formalism suggests that the original presence of additional rapidity integra-
tions produces both

e an overall normalization uncertainty
e additional (perhaps slowly varying) transverse momentum dependence.

Since these results are completely consistent with our results, the ef-
fective lagrangian gives a valuable understanding of the reggeon diagram
approximation.

Kirschner also gives an interesting representation for ;. Introducing
complex momenta x whose real and imaginary parts are the two components
of conventional transverse momenta

2x2 k' 1

2. .1
(27r)3 / K /c"(n” — K+ K‘l)(nu _ n)*(n" + R:)*

Ka(s, k') = + c.c.

(4.4)
This formalism is used in [18] to construct the non-forward extension of
K2 and is anticipated to be very useful for studying conformal symmetry
properties.

5. Conclusions

Used directly, the scale invariant O(g*) transverse momentum kernel
gives a large reduction of the BFKL small-z behavior of parton distribu-
tions. However, both t-channel unitarity and the multi-Regge effective ac-
tion imply that the in/troduction of scales will modify the normalization and
significantly modify the kernel at large ¢ k3 k! 2. Indeed the outcome of
the non-leading t-channel unitarity that we have outlined in Section 2 can
be compactly summarized [6] by writing, for the full kernel K2 2(g, k, k'),

K2,2(q,k, k') ¢ K2 K20 g’ KprkL + O(¢*)(KerkL)® + 0(9*)Kz, (5.1)
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indicating that both the overall normalization and the relative normalization
of the new K kernel to (Kppky)?, are not determined.

A reggeon interaction derived from t-channel unitarity, is necessarily
scale-invariant and only an infra-red approximation. Extrapolation away
from the infra-red region is controlled by the Ward identity constraints and
in [16] we conjecture that these constraints lead to conformal invariance.
The BFKL kernel, the triple Regge kernel [17, 12, 20}, and the K, kernel
we have derived, are the only interactions studied so far and existing results
are consistent with this conjecture.

In [7] we have outlined a program whereby the scale-dependence of non-
leading reggeon amplitudes can be studied via the Ward identity constraints.
We hope to study this possibility in the future. Of course, completion of the
full O(a?) calculation [3] should greatly clarify the role of scale dependence
in the 2-2 kernel. Comparison with the reggeon diagram formalism may then
suggest how yet higher-order contributions can be suitably approximated.

We are grateful to J. Bartels, R. Kirschner and L. Lipatov for valuable
discussions of this work.
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We present the BFKL equation as a reggeon Bethe-Salpeter equation
and discuss the use of reggeon diagrams to obtain 2-2 and 2-4 reggeon
interactions at O(g*). We then outline the dispersion theory basis of
multiparticle j-plane analysis and describe how a gauge theory can be
studied by combining Ward identity constraints with the group structure
of reggeon interactions. The derivation of gluon reggeization, the O(g?)
BFKL kernel, and O(g*) corrections, is described within this formalism.
We give an explicit expression for the O(g*) forward “parton” kernel in
terms of logarithms and evaluate the eigenvalues. A separately infra-red
finite component with a holomorphically factorizable spectrum is shown
to be present and conjectured to be a new leading-order partial-wave
amplitude. A comparison is made with Kirschner’s discussion of O(g*)
contributions from the multi-Regge effective action.

PACS numbers: 11.55.Jy, 12.38.Lg

1. Introduction

In the leading-log approximation, the small-z behavior of parton dis-
tributions in QCD is derived from the BFKL evolution equation [1]. It is
well-known that the BFKL kernel is (and was derived as) a 2-2 reggeon inter-
action — with the reggeon being a reggeized gluon. For general t (= —g¢?)

* Presented by Alan R. White at the XXXV Cracow School of Theoretical
Physics, Zakopane, Poland, June 4-14, 1995.
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