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We give a short review on the application of perturbative QCD to the
description of the Regge asymptotics of hadronic scattering amplitude.
Considering as an example the small  behaviour of the structure func-
tions of deep inelastic scattering in the generalized leading logarithmic
approximation, we show that the Regge asymptotics are governed in per-
turbative QCD by the contribution of the color-single compound states
of reggeized gluons. The interaction between Reggeons is described by
the effective Hamiltonian which in the multi-color limit turns out to be
identical to the Hamiltonian of the completely integrable one-dimensional
XXX Heisenberg magnet of noncompact spin s = 0. We discuss the pos-
sibility to find the spectrum of the Reggeon compound states within the
Bethe Ansatz approach.
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1. Introduction

The aim of these lectures is to give a short introduction into one of
the most challenging subjects in the high-energy physics which can be for-
mulated as understanding of QCD Pomeron. The recent interest to this
problem was inspired by new experimental data which indicate a steep rise
of the structure function of deep inelastic electron proton scattering at small
values of Bjorken variable z.

Fy(z,Q%) ~ 2703, for 107% <z < 1073.
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The structure function is defined as the total cross section of deep inelastic
scattering 7*(@) + p — X and using the optical theorem one can relate it
to the imaginary part of the elastic forward photon proton scattering

F(z,Q%) = ?];'ImA.Y*p(s,t ~0) (1.1)

with the center-of-mass energy s = Q%(1 —z)/z and photon virtuality — Q2.

The structure function has a simple interpretation in perturbative QCD.
It measures the distribution density of partons inside proton which carry
the fraction z of the proton momentum and have transverse size ~ 1/Q.
At intermediate z and large Q?, the density of partons is small and their
interaction is weak since it is proportional to as(Q%). As a result, at the
intermediate z the proton can be thought of as a dilute system of quasifree
partons. The situation is changed however at small z. The rise of the struc-
ture function as ¢ — 0 indicates that the density of partons increases and
although the interaction between partons is still weak we are not allowed
to neglect multiparton correlations anymore. Thus, at small z one has to
describe the dynamics of strongly correlated system of partons in perturba-
tive QCD. Having in mind famous example of similar systems in statistical
mechanics, it is natural to expect that the description of the process using
the “bare” degrees of freedom, partons, is not appropriate and one has to
identify instead a new collective coordinates in terms of which the dynamics
becomes much more simpler. As we will show below, the reggeized gluons
or Reggeons play the role of such new coordinates at small z.

One possibility to study the small z asymptotics of the structure func-
tion is to explore the dependence of F(z,Q?) on the photon virtuality Q2.
At large Q? the structure function can be expanded in powers of 1/Q? us-
ing the operator product expansion. In the leading In Q—approximation,
as < 1 and asIn(Q?%/m?) ~ 1, this expansion looks like

mZ

! o0
FUQ) = [dea* 10N = 5 Y (7
] k=1

k=144
) ,(12)

where the k—th term is associated with the contribution of twist—2k oper-

k . . . .
ators, CS, ) are dimensionless coefficients and m? is a mass scale of proton.
The matrix elements of twist—2k operators have the anomalous dimensions

7£,k) which can be calculated perturbatively as

1P = 3 e (%) (14 0(a) (13)
I>1
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with some coeflicients agk). The small # asymptotics of the structure func-
tion is translated now into w — 0 behavior of the complex moments F,,(Q?).
Taking the limit w — 0 in the r.h.s. of (1.2) we find that the perturbative
series (1.3) for the anomalous dimensions 7£,k) becomes divergent. As a re-
sult, there is no meaning of the twist expansion of the structure function
at small z and one has to find an effective way of taking into account the
contributions of all terms in (1.2).
There is however another approach to the small # asymptotics of F(z, Q2).

Let us notice that as z — 0 the scattering amplitude in (1.1) has to be evalu-
ated in the extreme limit of high center-of-mass energies s = Q%(1—=z)/z >
@2, in which the famous Regge model emerges [1]. The Regge model inter-
prets the increasing of the structure function at high energies, or equivalently
at small 2, by introducing the notion of the Pomerons as Regge poles of the
moments (1.2) in the complex w—plane. The contribution of the Pomerons
to the structure function is given by

F(z,Q%) =) z(ee=1) gl (@7 (1.4)

P

where summation is performed over “quantum numbers” of the Pomerons
IP. Here, app is the Pomeron intercept and ,le,P and ﬁﬁ are the so-called
residue factors corresponding to proton and photon, respectively. Although
the Regge model gives a successful phenomenological description of the ex-
perimental data in terms of “hard” (perturbative) and “soft” (nonpertur-
bative) Pomerons [2] it is still unclear whether the model is consistent with
QCD.

The first attempts to understand the status of the “hard” Pomerons
within perturbative QCD were undertaken more than 20 years ago and they
have led to the discovery of the BFKL Pomeron [3]. The BFKL Pomeron
was found in the leading logarithmic approximation (LLA), a; < 1 and
aslnz ~ 1, and at arbitrary small = it leads to unrestricted rise of the
structure function, or equivalently of the parton densities in proton, and
violates the unitary Froissart bound [1]

F(z,Q%) < const. x In? 2 for z—0. (1.5)

This means that at # — 0 the BFKL Pomeron alone is not sufficient to
describe the small—z asymptotics of the structure function. One has to
identify the “nonleading” Pomerons whose contribution to the structure
function is suppressed in the LLA by powers of as with respect to that of
the BFKL Pomeron but which become important for smaller values of z.
In the next Sections the recent progress on this problem will be reviewed.
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2. Perturbative QCD Pomeron

In perturbative QCD approach to the Pomeron, for the sake of sim-
plicity, we replace the incoming proton by a perturbative onium state built
from two heavy quarks and created via the decay of the photon with invari-
ant mass m. Then, in deep inelastic scattering, photon and onium scatter
by exchanging soft gluons in the t—channel and we treat their interaction
using the S—matrix of perturbative QCD. Calculating the corresponding
Feynman diagrams in powers of as we obtain the following general form of
the perturbative expansion of the structure function of DIS at small ¢ and

fixed Q2 [4]

F(:l:, Qz) = Z [(as In z)mfm,m(Qz)

m=0

+og(asInz)™  fr i 1(Q2) + ... + a;nfm,o(m)] . (2.1)

Here, a; < 1 and aglnz is a large parameter at small z. The coefficient
functions f,, ,,—k(Q?) depend on the internal structure of the incoming
hadron as well as the photon virtuality Q% and they can be calculated
perturbatively for the onium state. It is clear that the number of different
terms in (2.1) rapidly increases in higher orders in a5 and in order to find
the structure function at small = one has to develop a “good” approximation
to F(z, Q%) which, first, correctly describes the small—z asymptotics of the
infinite series (2.1) and, second, preserves the unitarity constraint (1.5).

To satisfy the first condition, one can neglect in (2.1) the terms con-
taining fm,m—1, ... fm,0 as suppressed by powers of as with respect to the
leading term fp, . The resulting series defines F(z,Q?) in the LLA and it
was resummed by BFKL [3] to all orders in ay

FLLA(:E, Q2) — Z (aslnfc)mfm,m(Qz) ~ z—(ach/r)4ln2 (22)

m=0

with V. the number of quark colors. As was stressed before, this expression
violates the unitary bound (1.5). In order to preserve the unitarity of the
S-matrix of QCD and fulfill (1.5) we have to take into account an infinite
number of nonleading terms in (2.1). This means that with the unitarity
condition taken into account the series (2.1) does not have any “natural”
small parameter of expansion like os. However, instead of searching for
this parameter one may start with the LLA result (2.2) and try to identify
the nonleading terms in (2.1), which should be added to (2.2) in order to
restore the unitarity. At present, the following three unitarization schemes
are known:
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— effective reggeon field theory [5-7]
— generalized leading logarithmic approximation [8, 4, 9]
- dipole model [10].

Each of them was developed to resum special class of corrections which are
expected to dominate at small z and which are closely related to identifica-
tion of a new collective degrees of freedom in QCD at small 2. Namely, in
the first two unitarization schemes, the reggeized gluons (or Reggeons) [3]
play the role of such degrees of freedom while in the last scheme one deals
with the color dipoles [10]. The difference between the first two schemes
is that in the generalized LLA the unitarity is preserved only in the direct
channels of DIS but not in subchannels corresponding to the different groups
of particles in the final state.

2.2. Generalized leading logarithmic approzimation

In what follows we will analyze the structure function at small z in
the generalized LLA. Once we identified the Reggeons as a new collective
degrees of freedom in QCD at small ¢, we may try to develop a new diagram
technique for calculation of the structure function (8, 4, 9]. Namely, an
infinite set of standard Feynman diagrams involving “bare” gluons can be
replaced by a few Reggeon diagrams describing propagation of reggeized
gluons and their interaction with each other. Each Reggeon diagram appears
as a result of resummation of an infinite number of Feynman diagrams with
“bare” gluons.

We begin the construction of the structure function F(z,Q?) in the
generalized LLA by summarizing the properties of the leading logarithmic
approximation (2.2) in which one retains in (2.1) only the coefficient func-
tions fr,m(Q?). In this approximation the structure function is given by
the contribution of diagrams with only two Reggeons propagating in the
t—channel, the famous ladder diagrams {11, 3.

However, two Reggeon diagrams do not satisfy the s—channel uni-
tarity condition. Once we allowed for two Reggeons to propagate in the
t—channel, the s—channel unitarity requires the existence of 3-, 4-, ...
Reggeon exchanges. In the generalized LLA, one restores unitarity by
adding multi-Reggeon diagrams to the LLA result [4, 8]. This minimal
set of diagrams is obtained from the two Reggeon diagram by iterating the
number of Reggeons in the t—channel. For example, the first nonleading
correction corresponds to the diagram with three Reggeons propagating in
the t—channel. Continuing this procedure, we obtain that the scattering am-
plitude is given in the generalized LLA by the sum of the diagrams shown
in Fig. 1. These diagrams have a form of generalized ladder diagrams {4, 8|,
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in which summation is performed over all possible numbers of rungs repre-
senting the Reggeon interaction, and over all possible number of Reggeons
in the t—channel, n = 2, 3,.... The scattering of each two Reggeons is
described by the same effective theory as we started with in the LLA.

* *

v v

g ~

P : P
Fig. 1. Unitary Reggeon diagrams contributing to the structure function of DIS

at small « in the generalized LLA in the multi-color limit, N, — oco. For finite N,
one has to add similar diagrams with pair-wise interaction between n Reggeons.

One of peculiar features of the Reggeon scattering is that it is elastic
and pair-wise. This means that the number of Reggeons is not changed
and the diagrams of Fig. 1 describe the propagation in the t—channel of the
conserved number n = 2, 3,... of pair-wise interacting Reggeons.

For n = 2 the diagram of Fig. 1 represents the leading logarithmic result
for the scattering amplitude and it contributes to the coefficient functions
fm,m(Q?) to all orders of perturbation theory. The contribution of the
diagram with n = 3 is suppressed by a power of as with respect to that for
n = 2 and it determines the first nonleading coefficient ,’,‘:f,‘_,‘z_l in (2.1). In
general, the contribution of the diagrams of Fig. 1 to the structure function
can be represented in the following form

F(z,Q%) =) ar™? F(M(s,Q%), (2.3)

n=2

where n is the conserved number of Reggeons in the t—channel and the
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functions F(")(z, Q?) have the following form

F(n)(z’ Q2) = Z (aslnz)m_n+2fm,m—n+2(Q2) . (2'4)

mz=n-2

Comparing (2.1) and (2.3) we notice that both expansions are similar and,
moreover, the nonleading corrections to the structure function can be asso-
ciated with the contribution of the n—Reggeon diagrams.

The calculation of the n—Reggeon diagrams requires the resummation
of the whole perturbation series (2.4) and it can be effectively performed
using the Bartels—-Kwiecinski-Praszalowicz resummation technique [4, 9].
As we will show in the next Section, the resummed functions F(") have the
following Pomeron-like behaviour

F("')(:c,Qz) ~ g~ (@n—1) , n=23,... (2.5)

which appears as a contribution of the compound states of n reggeized
gluons with vacuum quantum numbers and intercept as,.

In the LLA, the functions F(™) are of the same order for different n
and the contribution of the n—Reggeon diagrams to (2.3) is suppressed by
powers of a; with respect to the leading term, F(2) which describes the
propagation of two reggeized gluons. At smaller values of z, the growth
of the functions F(™) overwhelms the suppression by powers of as in (2.3)
and one has to take into account all functions F(™) in the expansion (2.3).
This is a scenario of how nonunitarity of the LLA result is restored in the
generalized LLA.

2.2. The Bethe-Salpeter equation for the partial waves

In the Reggeon diagram of Fig. 1, the photon and onium scatter by
exchanging n Reggeons in the t—channel. The Reggeons carry the color
charge of gluons and they couple to the colorless states, v*(Q%) and p,
through quark loop. The scattering amplitude corresponding to the dia-
gram of Fig. 1 can be represented as a convolution of the probabilities to
find n Reggeons inside incoming particles, .+ and &,, and the n Reggeon
scattering amplitude, T,. Calculating the complex moments (1.2) one can

find

@, Q%) = [(%H] [182H] 8. n) ({RD) Tul{kh, (Fhi) 2((K)
(2.6)
Here, {k} = (k1,...,kn) and {k'} = (k},...,k},) are 2-dimensional trans-
verse momentum of n Reggeons emitted by photon and onium, respectively.
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The functions €. o2y and &, describe the distribution of Reggeons inside
incoming particles and they can be calculated perturbatively. In the limit
z — 0 or equivalently w — 0, both functions depend on the transverse mo-,
menta of Reggeons [11, 3] and not on the energy s, or equivalently on w.
The function T, describes n to n scattering of Reggeons in the t—channel,
and is the main object of our consideration. In (2.6), the integration is
performed over transverse momenta of n Reggeons, while integration over
longitudinal components is performed inside Ty, (w),

[d%k] = d2ky ... d%kp 6P (ks + ... + ky)

and similar for [dzk' ] , with a delta-function included to ensure the condition
t = 0 for the total transferred momentum in the t—channel. The partonic
distributions and the Reggeon scattering amplitude depend on the color
indices of Reggeons and summation over these indices is implied in (2.6).
Considering the distribution functions .. g2y({k}) and &,({k'}) as
states in a two-dimensional transverse phase space for the n Reggeons, one
can rewrite the scattering amplitude (2.6) as the following matrix element

F™(0,Q%) = (&, (gn) Ta(w)|5), (2.7)

where the transition operator Tp(w) describes the elastic scattering of n
Reggeons. To find the transition operator T, we notice that diagrams of
Fig. 1 have a ladder structure, which suggests a Bethe—Salpeter-like equa-
tion for Tp,(w) shown in Fig. 2.

= + X To(w)

1<i<ksn

Fig. 2. The Bethe—Salpeter equation for the transition operator T}, (w), describing
n — n elastic scattering of reggeized gluons in the ¢--channel. Iterations of this
equation reproduce the ladder diagrams of Fig. 1.

The corresponding equation has the following form [4, 9]
WTp(w) = TS + HyTn(w), (2.8)
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where T( ) corresponds to the free propagation of n Reggeons in the t-
channel, while the operator H, describes the pair-wise interactions of n
Reggeons. The Reggeon scattering amplitude, T,,({k}, {k'}; w), depends on
the transverse momenta and the color indices of n incoming and n out-
going Reggeons. The Hamiltonian H,, acts in (2.8) only on the incoming
Reggeons, and is given by

Hn = _235‘ Z H‘L] t?t? ’ (29)

n>i>j>1

where the sum goes over all possible pairs (7,j) of Reggeons. Each term
in this sum has a color factor, which is given by the direct product of the
gauge group generators in the adjoint representation of the SU(N) group,
acting in the color space of i-th and j-th Reggeons,

=I®.‘...®ta®---®l, (ta)bc:_ifabc’
i

with fyp. the structure constants of the SU(N). The Reggeon interaction
(2.9) is described by the two-particle Hamiltonian H;;, which depends only
on the transverse momenta of Reggeons. If {k1,...,k,} and {k},..., k. } are
the transverse momenta of incoming and outgoing Reggeons, respectively,
then the operator H;; acts on Reggeon momenta as follows

(kls“:akn}Hij[kga""k:z)

= H(ki kj|k}, k)82 (ki + ks — k- ;) [ 8*(ki— k), (210)
I=1,l#1i,j

where H(k;, kj|k., k;) is given by [3]

k2(p — k)% + (p — k:)2k2 — (ki — k})?p?
k2 (p — k;)2(k} — k;)?

28 k2 (p— ki)*
~ 62(k; — ki )/ k; — k')2 [krz oy R P )y v ’“')2} }

(2.11)

Hij = H(ki,kj]k k') = {

with p = k; + k; = kj + k;. The operator T is equal to the product of
n Reggeon propagators and in momentum representation it can be written
as

n
1
(ks o k| TS IR, o kL) = T 8%(k; - ) (2.12)
j J
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Iteration of the equation (2.8) reproduces the ladder in Fig. 1, and gives the
perturbative expansion of T',(w) as series in as/w. Using the Bethe-Salpeter
equation (2.8), we find the general solution for the transition operator

Tp(w) = ——T. (2.13)
— Hn
We recall that the Hamiltonian H,, corresponds to the pair-wise interaction
(2.9) of n Reggeons and it describes the evolution of the n-Reggeon state in
the ¢-channel.
Suppose for a moment that we know the spectrum of the Reggeon
Hamiltonian

H‘ann,{q}) = En,{q}an,{q}) s (2.14)

with {¢} being some set of quantum numbers, which parameterize possible
solutions of the equation. Then, the eigenstates of H, can be identified
as compound states of n Reggeons, |x,), and the corresponding eigenval-
ues, F,, determine the energies of these states. The simplest example of
such states is the BFKL Pomeron [3] which is built from n = 2 Reggeons.
When we solve (2.14), we can expand the transition amplitude (2.13) over
eigenstates of Reggeon Hamiltonian as

1
To(w) =), w—TE——{_}IXn,{q}HXn,{q}lTr(zo) , (2.15)

{q} e

where the sum over ¢ means the summation over discrete and integration
over continuous q. Combined with (2.7), this expression implies that, in ac-
cordance with the Regge model expectations, the moments of the structure
function F(™)(w, Q?) have singularities in the complex w-plane and their
positions are determined by the eigenvalues F,, {q} of the Reggeon Hamil-
tonian H,. Moreover, performing the Mellin transformatlon and inverting
the moments as

6+ioco
F("')(:c, QZ) -

§—1i00

dw
w p(n) 2
27:_1: z F ((J),Q )9

we substitute (2.15) into (2.7), take formally a residue at w = H, and get
the following expression for the structure function in the generalized LLA

F(z,Q%) =Y o ?F(™(2,Q%),
n=2

F)(2,Q%) = (8|~ T |8,) = 3 12 g3, 2~ Friad (2.16)

n——vy

{q}
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Here, the residue factors 13;5‘1_3: o and ﬂ;[,q_}.p measure the overlapping between
distribution functions of Reggeons inside photon and onium and the wave
functions of the compound states of Reggeons

ﬂiq—];y = (é‘)’* |Xn,{q}> ’ ,B';{tﬁp = <Xn,{q}lT7(10)!¢P) . (2'17)

Although the definitions of the residue factors look different, one can show

[12] that they are closely related to each other via complex conjugation and

differ only by a constant. We recall that the scalar product of states, used

in (2.7), (2.16) and (2.17), implies integration over transverse momenta kj,
, kn of n Reggeons as well as summation over their color indices

i . —/[dzk] e N N P (S

Thus, in the generalized LLA the structure function of deep inelastic scat-
tering has the Regge behavior (2.5) and it is defined by the properties of
the Reggeon Hamiltonian (2.9). The structure function (2.16) is given by a
sum of F(™)(z,Q?) over all possible numbers of Reggeons in the ¢—channel.
With each individual F(*)(z, Q?) we associate the family of the compound
Reggeon states that appear as solutions of the eigenstate equation (2.14).
The expression (2.16) is very similar to the predictions of the Regge model
(1.4) provided that we identify the Pomerons as the compound states of the
Reggeons and define their intercept as the maximal energy of the n Reggeon
states

Qp — 1= maX{q}En’{q} . (2.18)

The simplest example of such states, the n = 2 Reggeon state, defines the
structure function in the LLA and it is identical to the BFKL Pomeron with

the intercept (3]
asN.

az —1= (2.19)
The structure function (2.16) is given by an infinite sum of terms corre-
sponding to the diagram of Fig. 1 with fixed number n of Reggeons in the
t—channel. The first term, n = 2, describes the leading logarithmic asymp-
totics and, taken alone, it violates the s—channel unitarity of the §—matrix.
Each next term in the sum over n in (2.16) defines a nonleading contribu-
tion, which is suppressed by a power of the coupling constant with respect
to that of the (n — 1)-th term. Examining the high-energy behavior of
the n-th term, Fy,(z,Q?), we recognize that the contribution of compound
Reggeon states with positive energy E, > 0 to (2.16) grows as a power of
energy, and thus violates the Froissart bound (1.5). We recall however that
these nonleading terms have been defined from the very beginning in such a
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way that to restore unitarity of the total scattering amplitude. This means,
that, although each term in the sum (2.16) violates the unitarity bound,
unitarity is restored by their sum. Thus, the original problem of calculating
the scattering amplitude F(z,Q?) in the generalized LLA is reduced to the
problem (2.14) of the diagonalization of the Reggeon Hamiltonian H,, for
an arbitrary number of Reggeons.

3. Properties of the Reggeon Hamiltonian

We turn now to the solution of the eigenstate problem (2.14) and (2.9) in
order to find the spectrum of the compound Reggeon states. The Reggeon
Hamiltonian (2.9), (2.10) and (2.11) has been found from the analysis of
Feynman diagrams contributing to the hadronic scattering amplitude in
the generalized LLA, and it inherits the properties of high-energy QCD in
the Regge limit.

The Reggeon Hamiltonian was defined in (2.9), (2.10) and (2.11) in
the two-dimensional space of transverse momenta of Reggeons. It is more
convenient however to analyze equation (2.14) in two-dimensional coordi-
nate space, the so called impact parameter space, rather than in momen-
tum space. To this end, we perform a two-dimensional Fourier transfor-
mation, and replace in (2.6), (2.10) and (2.11) the two-dimensional trans-
verse momenta ki,...,k, and k},..., k], by two-dimensional impact vec-
tors b1,...,bn and b},...,b!, which describe the transverse coordinates of
Reggeons. Then, for the impact vectors b; = (2;,y;) we define holomorphic
and antiholomorphic complex coordinates (z;, Z;) as

zj = zj +1y;, zZ;=zj; —1y;, (j=1,...,n),

and analogous coordinates (z;-, Z;) for the impact vectors b'j. Now one can
use (2.10) and (2.11) to find the two-particle Reggeon kernel H;; in the im-
pact parameter space. It turns out that, expressed in terms of holomorphic
and antiholomorphic coordinates, the kernel H;; becomes holomorphically
separable [17], i.e.,

H;, = H(zi, zk) + H(Zi, Zk) . (3.1)

Here, two operators on the r.h.s. act separately on holomorphic and an-
tiholomorphic coordinates of Reggeons. After Fourier transformation of
(2.10) and (2.11) they are given by the following equivalent representations

H(z,zp) = —Pi“1 log(z; — zx)P; — Pk_1 log(z; — 2) Py — log(P;Pr) — 27g
= —2log(z; — z1) — (2 — 21) log(P; Py )(2zi — 2zi) ™! — 27, (3.2)
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where P; = i0/0z; and 7 is the Euler constant. The same operator can be
represented as [17]

oo
21+ 1 2 o?
H iy = — , L2 = —(z: — 2 .
(=3, 2%) ; (l(l +1) - L?k I+ 1) ik (2 = 2k) 8z; 0z,

(3:3)
Substituting this expression into (3.1) and (2.9), we find that the Reggeon
Hamiltonian H,, is invariant under the conformal transformations {11]
az +b
=, 34
£z; +d (3.4)

az; +b
- 3
cz; +d

Z; —

with ad — bc = ad — b¢ = 1. Indeed, the generators of these transformations,

n

n n
$3= a0,  ST=-3 8,  ST=) 4% (35
k=1 k=1 k=1

and the analogous antiholomorphic generators 53, §~ and §* form the
SL(2,C) algebra and commute with L?, and, as a consequence, with M.

Let us consider the properties of the eigenstate x, (4} of the Reggeon
Hamiltonian (2.14) in the impact parameter space. These states are pa-
rameterized by quantum numbers {g}, which should appear as eigenval-
ues of some “hidden” integrals of motion, and by a two-dimensional real
vector by, which represents the center of mass of the compound Reggeon
state. In this notation, the wave function X, (53 = Xn,{g}({0i};b0) =
:ln,{ql}({zi, Z;}; 20, Zo ) satisfies the relations (2.14), (2.9) and (3.1), or equiv-

ently

_ _ ag kid o
EogapXn ({25l 20,20) = =52 30 [H(zj2) + H(zj, %))
J)k=1,1>k
X t;tz Xnv{q}({z’l:’ 21}; 20, 20) ] (3.6)

which can be interpreted as a two-dimensional Schrédinger equation for
a system of n pair-wise interacting particles with coordinates {z;, Z;} and
internal color degrees of freedom. One may try to rewrite the total Hamil-
tonian in (3.6) as a sum of holomorphic and antiholomorphic parts using
the fact that H(zj, zx) and H(Z;, Z;) commute. However, the resulting two
terms do not commute with each other due to nontrivial color factor in (3.6),
and as a consequence holomorphic and antiholomorphic sectors become cou-
pled to each other via color degrees of freedom. It is this interaction which
makes difficult the solution of the Schrédinger equation (3.6).
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The equation (3.6) has a form of (2 + 1)-dimensional Schrédinger equa-
tion for the system of n particles with additional color degrees of freedom.
One should notice that this equation has been solved in the special case of
n = 2 Reggeon states [3] and it remained unclear whether it could be solved
for an arbitrary n. Recently, a significant progress has been achieved [3, 14]
after it was realized that in the multi-color limit, N. — oo, the Schrédinger
equation (3.6) has an interesting interpretation in terms of exactly solvable
lattice models [15].

8.1. Multi-color limit

Each Reggeon carries a color charge t7, and the total charge of n

Reggeons is equal to their sum ) 7, t?. Since the compound Reggeon
states propagate in the t--channel {)etween two hadrons, they carry zero

color charge, unchanged by the Reggeon interaction,

[H‘n’ Z t?] =0, Z tg" |Xn,{q}> =0. (37)
j=1 i=1

An essential simplification occurs in (3.6) in multi-color limit, N — oo
and asN is fixed, [17, 16]. In this limit, only planar diagrams of Fig. 1
survive, which have the form of a cylinder attached by both edges to the
hadronic states [16]. Reggeons propagate along the sides of the cylinder and
it makes them possible to interact only with two nearest Reggeons. Using
the double line representation for Reggeon color charge and applying the
standard rules of large N counting, one finds that the color structure in
(3.6) can be simplified as

tit3 — —N, for n = 2; tft‘; — —%61-’]41 , forn >3,

where 4,7 = 1,...,n and the Reggeons with i = 1 and 7 = n + 1 are
considering as coinciding. Then, in the multi-color limit we find that, first,
the color factors become trivial in (3.6) and as a consequence holomorphic
and antiholomorphic sectors become decoupled and, second, inside each
sector in (3.6) the pair-wise Reggeon interaction is replaced by a nearest-
neighbour interaction with periodic boundary conditions. Thus, in the large-
N limit, the two-dimensional Schrodinger equation (3.6) is replaced by a
system of two one-dimensional Schrédinger equations [17],

Hrpn (g1({zi}i 20) = €n (3 Pn a1 ({2} 20) 5
Hn¢n,{q}({2i}; 20) = é_'n.,{q}()577,,{q}({2i}; 20) . (38)
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The Hamiltonians H,, and H,, are defined as
n _ n
Hn = EH(zkazk-}-l), Hn = ZH(Zk,2k+1), (3.9)
k=1 k=1

with two-particle Hamiltonians given by (3.2) or (3.3) and 2,41 = 2z1. Once
we know the solution of (3.8), the eigenstates (2.14) of the Reggeon Hamil-
tonian in the multi-color limit can be found as

Xn,{q}({Zis Zi}; 20, 20) = @, (53({2i}; 20) Pr 13 ({Zi}5 20) (3.10)
and the corresponding eigenvalues are given by

asN _
Eniq) = e (8n’{q} + En’{q}) . (3.11)
We conclude that starting with the calculation of the structure function of
DIS at small z in (3 + 1)-dimensional multi-color QCD in the generalized
LLA we came to the solution of the system of (1+1)-dimensional Schrodinger
equations (3.8).

4. Multi-color QCD at small # as XXX Heisenberg magnet

For fixed number of Reggeons, n, each of the Schrodinger equations in
(3.8) describes the system of n one-dimensional particles on a line interacting
with their neighbours via Hamiltonian (3.3). It is of no surprise now that
this quantum-mechanical system can be exactly solved for n = 2 particles
leading to the BFKL Pomeron, but it is not obvious that the same could be
done for an arbitrary number of Reggeons. The famous example of the one-
dimensional exactly solvable multiparticle system is the XXX Heisenberg
chain of n interacting s = 1/2 spins with the Hamiltonian [15]

Hi(XXﬂz — _ i (§m§M+1 - 41) y (4.1)

m=1

where §,, are spin s = 1/2 operators defined in the m—th site. It turns out
[18] that this simple model admits nontrivial generalizations to the XXX
magnets for an arbitrary complex value of the spin s. The unique feature
of these models is that they are completely integrable, that is, that they
contain additional integrals of motion whose number is equal to the number
of degrees of freedom. The reason why we might be interested in considering
complex spin s is that the one-dimensional lattice models (3.8), (3.9) and
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(3.3), which describe the Regge behavior of multi-color QCD, turn out to be
identical to the XXX Heisenberg magnet in the special case of spin s = 0.

To explain this correspondence let us consider the one-dimensional lat-
tice with periodic boundary conditions and with the number of sites n equal
to the number of Reggeons. Each site is parameterized by the holomorphic
coordinates z;, (k = 1,...,n) and the spin s operators are introduced in all
sites as the following differential operators

S,': = 220y — 252, S, = =0, §3 =210 — 5, (4.2)

with §* = §1 + 452, The total spin of the lattice § = k=1 § coincides
for s = 0 with the generators of conformal transformations, Eq. (3.5). The
definition of the integrable XXX spin chain is based on the existence of a
fundamental operator Ry,,()), which acts on the holomorphic coordinates
in sites k and m, depends on an arbitrary complex parameter A and which
satisfies the Yang-Baxter equation [20-23]

Rim(A=p)Rpi(A—p)Rmi(p—p) = Reni(pt—p)Rit( A~ p) R (A— 1), (4.3)

with A, p and p being arbitrary complex spectral parameters and k, m and
l three different sites on the lattice. The solution of this equation for an
arbitrary complex s is defined up to an arbitrary c-number function f()
and it is given by [18, 19]

I(id—2s)I(iA + 25+ 1)

where the operator Jy,, acts on the holomorphic coordinates in the sites k
and m and satisfies the equation

Tiem(1 + Jkm) = (S + Sm)? = 25,5 + 2s(s + 1) (4.5)

Then, the Hamiltonian of exactly solvable XXX magnet of spin s is defined
as [18]

n
H'r)r.(xx’ = Z Hm,m+1 )

me=1
d

Hm,m+1 = -*Z'——lan‘m+1(/\) . (46)
dA A=0

Let us show first that for s = 1/2 this definition leads to the spin-1/2
XXX Heisenberg magnet (4.1). Using the well-known rules for the sum
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of two s = 1/2 spins, we find from (4.5) that the operator Ji,, has two
eigenvalues: 0 and 1
chm =0-Ig+1-1I

with ITy and II; being the projectors onto corresponding subspace
Oy = -5, Sm+1/4, Iy =55n+3/4, 1=1Iy+1I,.
Applying this decomposition to the R-operator in (4.4) we find

iA+1
tA-1

Rim(X) = I

where we fixed the ambiguity in the definition (4.4) by choosing f(A) = 1.
Substituting the last two expressions into (4.6) we recover the Hamiltonian
(4.1) of the XXX magnet of spin s = 1/2.

Let us consider now the case s = 0. Using the explicit expressions (4.2)
for the spin operators for s = 0 and choosing f(A) = A in (4.4) we obtain
from (4.6) the two-particle holomorphic Hamiltonian as

Hy kg1 = —9(—Jrkt1) — (1 + Jiet1) + 29(1),
Tk er1(1+ Tk k41) = (2 — 2k41)?0kOk11 (4.7)

with 9(z) = (dI'(z))/dz. Comparing (4.7) and (3.3) we find that both
expressions for the two-particle Hamiltonians coincide after we identify
Jik41(L+ Jr ky1) = L?c,k-%—l and perform summation over [ in (3.3). This
means that the holomorphic Reggeon Hamiltonian (3.9) is identical to the
Hamiltonian (4.7) of the XXX Heisenberg magnet for spin s = 0

H_'I;teggcon = H,).EXX’:O (4.8)

which immediately implies that the system of the Schrédinger equations
(3.8) describing the multi-color QCD Pomerons in the generalized LLA is
completely integrable {13, 14].

Moreover, it follows from (4.8), that the n Reggeon compound states
share all their properties with the eigestates of the XXX Heisenberg magnet
for spin s = 0. In particular, changing a sign of the Hamiltonian (4.7) one
could obtain that the intercept of the n-Reggeon states, (2.18), is a ground
state energy of the XXX magnet. The latter can be found by using the
Bethe Ansatz technique [20-23]. This program was initiated in [14, 12]
where the generalized Bethe Ansatz was developed for diagonalization of
the Reggeon Hamiltonian.
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5. Bethe Ansatz for QCD Pomerons

The fact that the system of Schrodinger equations (3.8) is completely
integrable implies that there exists a family of “hidden” holomorphic and
antiholomorphic conserved charges, {¢} and {7}, which commute with the
Reggeon Hamiltonian (3.9) and among themselves. Their explicit form can
be found using the quantum inverse scattering method as [13, 14]

qm = z imzi1i2z,:2,-3 e Zigiy 0i,0i, .. .0;,, (5.1)
n>ip>ip > >im 1

with z;; = z; — z; and the expression for gy, is similar. The appearance of
these operators is closely related to the invariance of the Reggeon Hamil-
tonian (3.9) under conformal SL(2,C) transformations (3.4). Indeed, we
recognize ¢2 and §, as quadratic Casimir operators of the SL(2,C) group
while the remaining conserved charges {¢m,dm}, m = 3,...,k can be inter-
preted as higher Casimir operators. The Reggeon compound states belong
to the principal series representation of the SL(2,C) group and under the
conformal transformations (3.4) they are transformed as quasiprimary fields
with conformal weights (h, k) [24]

Xn,{a} ({2i> Zi}; 20, 20) — X 3 ({20, Zi}5 20, Z0)

= (czo + )220 + d)**xp 1y ({20 Zi}: 20, Z0) -

The n Reggeon states diagonalize the operators {¢, §} and the eigenvalues of
the conserved charges g2, g3, ..., ¢, play a role of their additional quantum
numbers. In particular, the eigenvalues of the quadratic Casimir operators
are related to the conformal weights of the n Reggeon state as

Q2:_h(h“'1)s 52:_5(5_1), QZZQS'

where the possible values of h and A = 1 — h* can be parameterized by
integer n and real v

14+n

h=2

+1v, neZ, veR. (5.2)

As to remaining charges, g3, . . ., ¢n, their possible values also become quan-
tized [12]. The explicit form of the corresponding quantization conditions
is more complicated and it was obtained in [25].

To find the explicit form of the eigenstates and eigenvalues of the n
Reggeon compound states corresponding to a given set of quantum numbers
{q,q} we apply the generalized Bethe Ansatz developed in [14, 12]. The



QCD at Small x and Heisenberg Spin Chains 2057

Bethe Ansatz for Reggeon states in multi-color QCD is based on the solution
of the Baxter equation

AMNQMAN) =(A+9)" QA+ )+ (A-9)"Q(A-1). (5.3)

Here, Q()) is a real function of the spectral parameter A, A(A) is the eigen-
value of the so-called auxiliary transfer matrix for the XXX Heisenberg
magnet of spin s = 0

AQN) = 22"+ A" 2 44 gn (5.4)

and n is the number of reggeized gluons or, equivalently, the number of sites
of the one-dimensional spin chain. For fixed n it is convenient to introduce
the function

~

Q(A) = A"Q(}) (5.5)

and rewrite the Baxter equation (5.3) as

AG() = (—”("A—;”+§—§+...+ —i—:i,)@(/\), (5.6)

where A is a second-order finite difference operator
AQA) = QA +1i)+ QA —1i) —2G()).

Once we know the function é(A), the energy E, of the n—Reggeon com-
pound state can be evaluated using the relation [14, 12]

Q

N,
E, = chResn(h,qg,...,qn), (5.7)

2
where the holomorphic energy €, is defined as

.4 G0-d)
en(h, Q3’-"aQn) = sz log é(A-FZ) A=0' (58)

The expression for the wave function of the n Reggeon states in terms of
the function @ can be found in [14, 12].

The Baxter equation (5.6) has the following properties {12]. We notice
that for ¢, = 0 it is effectively reduced to a similar equation for the states
with n — 1 reggeized gluons. The corresponding solution, Q()), gives rise
to the degenerate unnormalizable n Reggeon states with the energy

En(h, q35+¢e9qn—1, 0) = 5n—l(h) g3y,---» qn—l) . (59)
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These states should be excluded from the spectrum of the n Reggeon Hamil-
tonian and solving the Baxter equation for n reggeized gluons we have to
satisfy the condition ‘

I #0. (5.10)
As a function of the quantum numbers, the holomorphic energy obeys the
relations

sn(ha g3,.. -sqn) = 5n(1 - h3 q3, .- "Q'n,) = En(h’ —q35---, (__)nqn) ) (5'11)

which follow from the symmetry of the Baxter equation (5.6) under the
replacement h — 1 —h or A — —X and ¢, — (—)™¢m. This relation means
that the spectrum of the Reggeon Hamiltonian is degenerate with respect to
quantum numbers A, g3, ..., ¢n. Then, assuming that the ground state of
the XXX Heisenberg magnet of spin s = 0 is not degenerate we can identify
the quantum numbers corresponding to the maximal value of the Reggeon
energy as [12]

h

(5.12)

DN bt

max
and for the states with only even number of Reggeons, n = 2m,

=0.

max

= e = P2m-1
max

q3 =g

max
For the states with odd number of Reggeons the latter condition is not
consistent with (5.10).

We notice that the conformal weight h enters as a parameter into the
Baxter equation (5.3) and, in general, one is interesting to find the solu-
tions of (5.3) only for its special values (5.2). In [14, 12] the following way
of solving the Baxter equation was proposed. One first solves (5.3) for inte-
ger positive values of the conformal weight h and then analytically continues
the result, Q(A), to all possible values (5.2) including the most physically
interesting value (5.12). The Baxter equation (5.3) has two linear indepen-
dent solutions and in order to select only one of them we have to impose
the additional condition on the function Q(A) for h = Z

Q(2) }R® AR, (5.13)

For integer positive conformal weight, h > k, the solution, Q(\), of the
Baxter equation (5.3) under the additional condition (5.13) is given by a
polynomial of degree h — n in the spectral parameter A, which can be ex-
pressed in terms of its roots Ay, ..., Ap_, as follows [14, 12]

h—n

Q) = [T (x-x). (5.14)

=1
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Substituting (5.14) into (5.6) and putting A = ); we obtain that the roots
satisfy the famous Bethe equation for the XXX spin chain

Am + 2\ " —Aj—1
( ) H,\ S vt m=1,...,h. (5.15)

Unfortunately, there is no regular way of solving the Bethe equation (5.15)
for an arbitrary number n of Reggeons. At the same time, for n = 2 Reggeon
states the explicit solution of the Baxter equation (5.3) was found in [14,
12]

1+ h,2—h1— i)
the—h, z;1). (5.16)

Qn=2(A) = i*h(1 = ) 3 F, ( 0 9

where 3 F, is the generalized hypergeometric function. This expression ad-
mits an interesting interpretation [12, 25] in terms of classical orthogonal
polynomials and conformal field theories. Substituting the solution (5.16)
into (5.8) we obtain the holomorphic energy of the n = 2 Reggeon states as

[12]
e2(h) = —4[y(h) - $(1)], (5.17)

where 1-function was defined in (4.7). We substitute e2(h) into (5.7) and
analytically continue the result from integer h to all possible complex values

52 (k) = _g%sVe 1+ |n|
g(h)_—2TRe[¢( S ) (1)]

This relation coincides with the well-known expression [3] for the energy of
the n = 2 Reggeon compound state, the BFKL Pomeron. The maximum
value of the energy

asN.
T

is achieved at A = 1/2 and it is in agreement with (2.19), (2.18) and (5.12).

It is of most interest to find the solution of the Baxter equation (5.3)
for higher n > 3 Reggeon states. Different approaches have been proposed
(12, 26] but explicit expression similar to that (5.16) for the BFKL Pomeron
was not found yet.

It is not difficult however to solve the Baxter equation (5.3) numerically
forn = 3, 4 ... Reggeon states and for lowest values of the conformal weight
h and then find the quantized charges {¢,,} and the energy ¢,. The results
of numerical solution of the Baxter equation for n = 3 and n = 4 presented
in [12] indicate the remarkable regularity in the distribution of the quantized
values of charges {¢n} and energy ¢, and they strongly suggest that the
analytical solution of the Baxter equation for high Reggeon states should

EF** = 41n2
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exist. Recently, such kind of solution was found in [25] for an arbitrary
number of Reggeons, n, in the special limit of large values of the conformal
weight of the Reggeon states, h > 1.

The method developed in [25] is based on the observation that after
rescaling of the spectral parameter A — Ah in the Baxter equation (5.6),
the operator A can be replaced in the naive limit A — oo by a second-
order derivative. Then, the Baxter equation (5.6) takes a form of the one-
dimensional Schrédinger equation for a particle in external potential, in
which the inverse conformal weight 1/h of the Reggeon states plays a role
of the Planck constant. This fact allows us to apply the well-known quasi-
classical expansion and obtain the solution of the Baxter equation as well
as quantized values of the charges and energy of n Reggeon states in the
form of asymptotic series in 1/h. For large integer h the obtained analytical
expressions completely agree with the results of numerical solutions while
for small h the asymptotic expansions for the energy of n Reggeon states
becomes divergent and it should be replaced by the asymptotic approxima-
tion. As first nontrivial application of these results, the intercept of the
n = 3 Reggeon state, the so-called perturbative Odderon [27], was obtained
as [25]

asN,

T

az — 1< 2.41. (5.18)
This relation estimates the Odderon intercept from above and it implies, in
particular, that it is smaller than the intercept (2.19) of the BFKL Pomeron.
The expression (5.18) is also in agreement with the lower bound for the
Odderon intercept proposed in [28].

6. Analytical properties of the holomorphic energy

In previous sections we studied the behaviour of the structure func-
tion of DIS at small z, but we did not explore yet its dependence on the
photon virtuality Q2. Let us consider the asymptotics of the obtained ex-
pressions (2.16) in the double scaling limit of small z and large Q2/m? with
m being onium mass. In this limit one should be able to reproduce the
operator product expansion (1.2). Moreover, as we will show below, there
is a close relation between the analytical properties of the holomorphic en-
ergy €n(h,{q}) of the n-Reggeon states in the complex h-plane and the

anomalous dimensions 7£,k) of the higher twist operators in the generalized
LLA.

Let us consider the moments (1.2) of the structure function of DIS in
the generalized LLA. Using the relation (2.16), one can find the contribution
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of the n-Reggeon states to F,,(Q?) as

(n) - {e}
F; (Qz) - {z; ;__‘7:"18 ! —y* (Qz)ﬂnﬁh(mz) (6.1)
q

Here the summation is performed over all quantum numbers h, g3, ..., ¢n
corresponding to the n Reggeon compound state with the energy E, (4}
The residue factors have been defined in (2.17) and in the case of the forward
scattering, ¢ = 0, they depend only on the invariant masses of scattering
particles, Q% and m?2. In the generalized LLA, one may calculate the residue
factors for perturbative states of virtual photon, y*(Q?), and onium, h(m?),

in the Born approximation and neglect a5 corrections. As a result, ﬁ,{f_z -

and ﬂi"_}" p do not have anomalous dimension and their scaling dimensions

are equal to the sum of the scaling dimensions of the n Reggeon state,
h + h =1+ 2iv, and the scaling dimensions of photon and onium states

ﬂ{q} _ C{q} Q—l+2iu , ﬂ{q} _ Ci«ﬁh m-1-2v

n—vy*(Qz) n-—y* n——»h(mz) -

where the dimensionless coefficients depend on the quantum numbers of the
Reggeon states and scattering particles. Substituting these relations into
(6.1) we obtain

oo

K@= ¥ [

931--0qn ‘o

C{q}7 C{q}h m\ ~1m2
T T = 6.2
" z = 2N [en (152 +iv; {g}) + en (352 — ivi {g})] (Q) ®2)

m>0

Here, we extracted the sum over quantized values (5.2) of the conformal
weight, that is summation over discrete m and integration over continuous
v, from the sum over all quantum numbers in (6.1).

Let us consider (6.2) in the limit Q% 3> m? and try to expand Ff,n)(Qz)
in powers of 1/Q? according to (1.2). For Q% > m? one can enclose the
integration contour over v into the lower half-plane, Imv < 0, and calculate
the integral over v in (6.2) by taking the residue at the values of v which
satisfy the relation

4 1 . 1 .

a:r; = en(—iz—n—l +iv; {q}) +En (—Eﬁ - {q}) . (6.4)
Solving this equation one can find the values of iv which determine the power
of m/Q in the 1/Q —expansion of the structure function (1.2), or equivalently
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define the scaling dimensions of the composite operators entering into the
OPE. The comparison of (6.2) with (1.2) requires that the solutions of (6.3)
should have the following form for Imv < 0:

. k
w:%—k—’ys,)(as), k=1,2,..., (6.4)
where 79)(&5) is the anomalous dimension of twist 2k operators in the

generalized LLA. Let us now take into account that in order for the con-
tribution of the pole in v to (6.2) to be nonvanishing, the residue factors,

or equivalently the coefficients Ciﬂ - and C’iq_}, y» should be different from
zero. This condition imposes selection rules on the quantum numbers h, g3,
... qn of the Reggeon states. In particular, for the residue factors to be
scalar, the conformal spin of the Reggeon state, A — h = m, should be equal
to the conformal spin of the photon and onium states [11]: m = 0 or m = 2.

Let us substitute (6.4) into (6.3) and take the limit ag — 0 in the
both sides of (6.3). The o dependence enters into the r.h.s. of (6.3) only
through the anomalous dimension which has a perturbative expansion (1.3).
For small a; we may invert the functional dependence in (1.3) and express

as/w as a power series in 7&“. Then, the Lh.s. of (6.3) becomes a Laurant

series in 79) with the first term proportional to ~ 1/ 7‘(0k). Comparing the

7¢(uk)—dependence of the both sides of (6.3) we find that the holomorphic
energy €n = £n(h;{q}) has simple poles at the origin and at the integer
negative values of the conformal spin

h——1 4,
en(hs {a}) "% 32,

[=0,1,2,.... (6.5)
Let us verify this relation in the simplest case of the n = 2 Reggeon states,
in which the holomorphic energy is given by (5.17). We find that e2(h) is
analytical function of h in the half-plane Re h > 1/2 with the asymptotics
at infinity

e2(h) "2 —4Inh, (6.6)
while for Re A < 1/2 it has poles at the origin h = 0 and at negative integer h

4

h——1
20 R

1=0,1,2,.... (6.7)
Thus, the relation (6.5) holds for the energy of the n = 2 Reggeon states
(5.17) provided that 4; = 4.

For the higher Reggeon states the holomorphic energy &, can be ob-
tained in the form of the asymptotic series in 1/h whereas the analytical
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expression for ¢, similar to (5.17) is not available yet. In the large h limit
€n has the asymptotic behaviour

en(h: {q}) "2 —2nInh. (6.8)

Then, using this behaviour and calculating the discontinuity of the energy
at the negative h one can write the subtracted dispersion relation for the
function €, (h; {¢}) in the complex h-plane which leads to

n(h; {q}) = Z h’f}’ (6.9)

with C some infinite h—independent subtraction constant. For the n = 2
Reggeon states the constant C' can be found using the condition £2(1) = 0.
Being combined together, the relations (6.9) and (6.8) allow us to obtain
the asymptotics of the coefficients: A; (,3~2n as I — co. Substituting (6.9)
into (6.3) and taking into account the relation (6.4) we can express the

(k) +

anomalous dimensions 7., in terms of the coefficients A; (41 as follows

k asN.
L(-J ) = - Ak—]—m/z,{q} + O(asz) . (6'10)

4Tw
This expression describes the scaling dimensions of the operators entering
into the 1/Q? expansion of the contribution of the n-Reggeon states into
the structure function. For n = 2 Reggeon state we have A; = 4 and (6.10)
coincides with the well-known result [11].

7. Summary

It is still remains a challenge for QCD to understand the mechanism
responsible for the rise of the structure function of DIS at small z. In this
regime one has to deal with the system of strongly correlated partons in
proton, for which “good” standard methods like operator product expansion
are not applicable.

It is widely believed that in the Regge limit and, in particular in the
small—z limit, QCD should be replaced by a two-dimensional effective the-
ory (dual models, QCD string etc.), in which Reggeons play a role of a new
collective degrees of freedom. This theory should inherit all symmetries of
QCD and one may try to identify them by studying the small 2 asymptotics
of the structure function in DIS.

Indeed, analysing the small 2 limit of the structure function of DIS
in the generalized LLA we found that multi-color QCD turns out to be
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equivalent to the exactly solvable XXX Heisenberg magnet for noncompact
spin s = 0. This relation still looks mysterious and one should understand
better its origin starting from QCD lagrangian. From practical point of
view it allows us to apply the powerful methods of exactly solvable models
for calculation the spectrum of Pomerons in perturbative QCD. The work
in this direction is at the very beginning and one should expect a lot of
surprises to come soon.

I would like to thank Maciek Nowak and all those involved in organizing
the Cracow School for their warm hospitality.
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