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1. Structure functions at small =

The small z limit of structure functions measured in deep-inelastic scat-
tering is the frontier of perturbative QCD both from the experimental and
the theoretical point of view. In deep-inelastic scattering experiments [1],
one measures the total, fully inclusive cross section for scattering of a vir-
tual photon with virtuality —Q? over a nucleon. The center-of-mass energy
of the collision is given by the Mandelstam invariant s = Q%(1 — z)/z. In
the large Q2 limit the cross section is parametrized by a single form fac-
tor Fy(z,Q?) which is determined by the underlying partonic degrees of
freedom, because its moments with respect to z are directly related to the
nucleon matrix elements of quark and gluon operators. The scale depen-
dence of these moments is governed by renormalization group equations
which summarize the dynamical content of perturbative QCD.

The small z limit at large Q2 thus corresponds to probing the light-
cone dynamics of the nucleon (large Q2?) in the high energy limit (large
s ~ Q%/z). This limit stretches perturbative QCD towards its nonpertur-
bative frontier. On the one hand, one might expect the high-energy limit
of total cross sections to be governed by unitarity, and in particular by the
t-channel exchange of Regge trajectories [2], which do not admit a simple
perturbative interpretation. On the other hand, perturbation theory itself
in this limit is somewhat problematic, hinting to its eventual breakdown.
Indeed, the anomalous dimensions which govern the perturbative scaling
behaviour grow without bounds, implying that Bjorken scaling is shifted to
larger and larger values of Q2. This is a manifestation of the fact that there
is now another large scale in the theory besides Q?, namely s itself: hence
the renormalization group will have to be adapted in order to sum up this
scale too. It is not a prior obvious in which kinematic region this might be
possible, if at all.

Experimentally, accessing this region requires the very high center-of-
mass energies that have only been attained very recently at the electron-
proton collider HERA [3-5]. When the first data on F, at large Q2 and
small z were first presented they have provoked a considerable amount of
surprise: they not only displayed the expected large violations of Bjorken
scaling, growing larger as z decreases, rather, they also deviated from the
Regge behaviour which is well tested by high-energy elastic scattering data,
by displaying a marked rise as z decreases at fixed Q?, whereas Regge theory
would have a flat or almost flat behaviour. Yet, such a violation of Regge be-
haviour was predicted more than twenty years ago as a direct consequence of
the leading-order renormalization group equations of perturbative QCD [6].

This non-Regge rise takes the form of a simple universal scaling law [7]
satisfied by F(z,Q?) at large Q2 and small z: the structure function de-
pends only on a variable o(z,Q?). Furthermore, this dependence is univer-
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sal, unlike Bjorken scaling, where asymptotically structure functions depend
only on z, but in a non-universal, incalculable way: hence it actually corre-
sponds to a double scaling law, as the universal dependence may be scaled
out. The way this double asymptotic scaling behaviour has arisen out of
the HERA data is shown in Fig. 1, which displays F, as a function of the
scaling variable o(z,Q?) (for all accessible values of z and Q?), for each
successive published set of data.

Fig. 1c Fig. 1d

Scaling plot of the experimental data on the proton structure function F3(z,Q@*) from (a)
the 1992 HERA run 3] (adapted from Ref. [7]), (b) the preliminary analysis of the 1993
HERA run (9] (adapted from Ref. (8]}, (c) the 1993 run (4], (d) the preliminary analysis
of the 1994 run (H1 only) (adapted from Ref. [5]). The diamonds are ZEUS data and the
squares are H1 data. Only points with p, o > 1 are included in the plots (b)-(d), and
in (d) only those with Q* > 5 GeV? (see text). The straight line shown is the predicted
asymptotic double scaling behaviour (with fitted normalization).

It is apparent that double asymptotic scaling is the foremost feature of
F; at small = and large @2, at least in the region presently explored by the
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HERA experiments. Understanding perturbative QCD in this region thus
means understanding the physics of double asymptotic scaling. This entails
understanding why the simple scaling prediction, which, after all, follows
from a leading-order renormalization group analysis, survives the problems
of perturbative instability and need for the inclusion of other large scales
alluded to above.

In these lectures we will briefly summarize the current status of the
current theoretical and phenomenological understanding of double scaling.
In Sect. 2 we will derive the double scaling prediction from leading-order
perturbative QCD and discuss the physics behind this behaviour. We will
then see how double scaling may be spoiled if parton distributions at low
scale are too steep, taking as an example the case of nonsinglet structure
functions, where this actually happens. We will further explain how dou-
ble scaling is modified (but its universality preserved) by the inclusion of
next-to-leading order corrections and show that present-day data are per-
fectly described by such a next-to-leading order analysis. In Sect. 3 we will
then discuss the behaviour of the perturbative expansion of anomalous di-
mensions when the effects of the other large scale which is present in the
problem are included to all orders in the coupling. We will show that the
perturbative expansion may be reorganized so as to sum up these effects,
and that double scaling emerges then as the generic universal asymptotic
behaviour. We will conclude by recalling some recent phenomenological ap-
plications of this formalism to precision tests of QCD, and summarizing the
most promising future theoretical and phenomenological developments.

2. Double asymptotic scaling at leading and
next-to-leading order

The perturbative evolution of the structure function Fy(z, Qz) is deter-
mined by first decomposing it into parton distributions:
ns
27 Fy(2,Q7) =) €lCi® (¢: + %) + 0y @9, (2.1)

i=1

where n ¢ is the number of active flavors, e; is the electric charge of the quark
distribution ¢;(z; Q2), ® denotes the convolution with respect to z, i.e.

[f ®gl(z) = /1 =¥ (5) 0®),

and the coefficient functions at leading order are simply

Ci(z,Q*)=6(1-2); Cy4(z,Q%) =0, (2.2)
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while at higher orders they depend on the specific choice of renormalization
prescription (factorization scheme): in most of the subsequent treatment we
will choose a scheme (parton scheme) in which Eq. (2.2) remains true to all
orders. The evolution of parton distributions is in turn determined by the
Altarelli-Parisi equations [10]

i(g):?j_@(})gg qu)®(g)
dt \ gs 2% Py quq s/’

d _ as(t) o Ns
EqNS - 27r qu ® qN59 (2’3)

where t = In(Q?/A?%) and the singlet and nonsinglet quark distributions are
respectively given by

ny
gs(z,t) = (0:(2: Q%) + Gi(=; Q%)) ,

=1

nyg o2
as(z.) =3 (5 - 1) @@ Q)+ a=@?), (24

with (e?) = (1/ns) >, €. In terms of these distributions the decompo-
sition (2.1) becomes, in a parton scheme (2.2), simply

F2(39 Qz) = (ez)z (QS(z’t) + QNS(‘B’t)) . (25)

The splitting functions depend on t through the strong coupling a,(t), and
at n-th perturbative order are given by

=1

9‘%%:(”) _ ;p(i) (%_gl) +0 (antY). (2.6)

The Altarelli-Parisi equations Eq. (2.3) are simply the inverse Mellin
transforms of the renormalization group equations satisfied by the nucleon
matrix elements of quark and gluon operators, namely

d ( 9(N,1) ) _ as(t) (799 (N, (1)) 7gq(Nvaa(t))) ( g(N,t) ) :

dt \ gs(N,t) 27 7qg(N,a,(t)) 7§q(N,a3(t)) gs(N,t)
L aes(M,2) = 28 (v, () ans (1), (27)

The operator matrix elements are related to the corresponding parton dis-
tributions by Mellin transform, i.e. the matrix element of the (leading twist)
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spin N + 1 operator is the N-th moment of the corresponding parton dis-
tribution

1
p(N,1) = Mip(z,1)) = / dz zNp(z,1), (2:8)

where p(z, t) is any linear combination of parton densities. Likewise, anoma-
lous dimensions are found by taking moments of the splitting functions

7 (N, a(t) = M[P(z, )] = / de 2N P(z,t). (2.9)
0

Notice that only operators for odd values of N > 0 in Eqs (2.8), (2.9) ac-
tually exist, because even (odd) spin operators are charge-conjugation even
(odd), while F, and the parton distributions which contribute to it are
charge-conjugation even; the anomalous dimensions for all other (complex,
in general) values of N can only be defined by analytic continuation. This
continuation is provided by the Altarelli-Parisi formalism, where the pri-
mary quantities, namely the parton densities and splitting functions, can
be used to define the values of matrix elements and anomalous dimensions
for all N through (2.8) and (2.9), provided only that they are known for
all values of 0 < 2 < 1. Of course, these are also precisely the quanti-
ties which can be extracted directly from the structure functions measured
experimentally, albeit in practice only over a limited range of z.

The Altarelli-Parisi equations determine the parton distributions at
(z',t') in terms of their values for all z > z' and t < t', hence they actually
describe evolution in the whole (z,t) plane, even though the renormaliza-
tion group equations Eq. (2.7) for each value of N only specify an evolution
law with respect to t. The evolution with respect to z, while causal, is how-
ever nonlocal. The basic idea behind double scaling is the realization that
at small z the Altarelli-Parisi equations actually reduce to local evolution
equations in both variables, ¢ and ¢, which can then be treated symmetri-
cally.

This can be shown by constructing a systematic approximation (7] to the
evolution equations Eq. (2.3) at small z and large Q2. As z gets smaller, one
would expect the behaviour of parton distributions to be dominated by that
of their Mellin transforms for small N, and thus by the small N behaviour of
the anomalous dimensions. Since the anomalous dimensions are singular at
small NV one would specifically expect their right most singularity to provide
the dominant behaviour.

A simple way of showing [6] that this is indeed the case is to solve
the Altarelli-Parisi equations by Mellin transformation, i.e. solve the renor-
malization group equations Eq. (2.7) for the eigenvectors of the anomalous
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dimension matrix, which are linear combinations p(z,t) of the parton den-
sities. Using the leading order (LO) form of the anomalous dimensions
(which is ¢ independent) and of a, = (47/8ot) with 8o = 11— (2/3)ny, this
procedure gives generically

p(N,t) = p(N,t) exp [ﬂ%(v(l)(N)] , (2.10)

where 1n(Q?/ 42)

A
(= m(tg) ‘“(m——“(qgmz))' (2.11)
The z space solution is then the inverse Mellin transform
pe,t)= [ aN exp(eN)p(V,), (212)
where Zo

E=In (:) (2.13)

and the integration runs over a contour located to the right of all singular-
ities of y(N) and p(NN,tg). Assume for the moment that any singularities
of the initial condition p(N,tg) are to the left of those of ¥(NN) (which are
always poles on the real axis at non-positive integer values of N). Then at
small z, i.e. as £ grows the integral may be evaluated by the saddle point
method: the saddle point condition is of the form

(1

2 d7smg
— 2.14
where 7s(m)g is the leading singularity of the one loop anomalous dimen-

sion. Higher order terms in the expansion around the singularity then give
subleading corrections both to the location of the saddle point and to the
integral over it. If the initial condition gns(V,?¢) has a singularity (typi-
cally a branch point) to the right of that of the anomalous dimension this
will also contribute to the integral and indeed may dominate the contribu-
tion from the saddle point as £ — co. However the saddle point always
gives the dominant contribution at large Q? i.e. large (, and in any case
the dominant contribution to the evolution is always given at large £ by the

leading singularity 75( m)

We may thus obtaln the leading small z behaviour of the Altarelli-
Parisi equations by expanding the matrix of anomalous dimensions around
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its right most singularity, determining the corresponding splitting functions
by inverse Mellin transformation, and then solving the resulting simplified
Altarelli-Parisi equations. The singularity is located at N = 0 in the singlet
case, and at N = —1 in the nonsinglet. This means that all other things
being equal gns(z, t) will display the same qualitative behaviour as zgg(z, ),
and zg(z,t), i.e. at small z the nonsinglet will be down by a power of
compared to the singlet.

Expanding the singlet anomalous dimension about its leading singular-
ity, at one loop we find

(1) __1_ 2C 4 ZCF %CA—%TRnf —-%CF
=5 (552 207) + (e r) Lo,
(2.15)
while doing the same thing for the nonsinglet
YNy = G 1oL oV +1) (2.16)

where Cy4 = 3, Cp = 4/3, Tp = 1/2 for QCD with three colors. The
corresponding splitting functions are simply found by noting that

1 1 1

M [;} = N M[§(1-2)] =1, M) = ]-V———{-—_l— . (2.17)
Positive powers of N correspond to logarithmic derivatives of §(1 —z) which,
when summed up, produce the nonlocal z propagation kernel of Eq. (2.3). If
instead the expansion is truncated, the evolution equations are local. Specif-
ically, using the splitting functions obtained according to Eq. (2.17) from
the anomalous dimensions Eq. (2.15) in the evolution equations Eq. (2.3),
and then differentiating with respect to £, we get

9 (G(s,c)) _

3ea¢ \ Q(&,0)
2 %CA~§TRnf -3Cr 2 2C4 2CF ] G(&,()
(™ ) g (560 79)] (668)-

‘ (2.18)
0 _Cp [0
—0_6.3—Cq(£, C) - TBE' [8—5 + 2} Q(E, C)a

where we have for convenience defined

G(&, () = zg(z,t), Q(&¢) = zgs(z,t), gl () = gns(z,t)- (2.19)
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The Altarelli-~Parisi equations thus simply reduce to two-dimensional partial
differential equations with constant coefficients, thereby proving the local
nature of the evolution.

The singlet evolution equations Eq. (2.18) can be solved by diagonal-
izing the matrix of anomalous dimensions Eq. (2.15): the eigenvectors will
then satisfy (decoupled) equations of the form Eq. (2.7), with anomalous
dimensions given by the corresponding eigenvalues. To order N the eigen-
values are

11 2 4Cp
)\—%-“-ZCA_"' *6-CA+§TR‘nf—3C TR‘nfj! +0(N)
4Cp
Ao = ——— 2.2

corresponding to the eigenvectors v+ = (Q+,G+) given by

_ 2TR 2
Q4 = 3C, ——nsNG; +O(N*)
Q_ = Cag 4 O(N); (2.21)
Cr

the singlet quark and gluon distributions are then given by Q = Q4 + Q-
and G = G4 + G_. Notice that, according to standard perturbation theory,
when the eigenvalues are determined up to next-to-leading order (in N),
only the leading nontrivial term ought to be kept in the expression for the
eigenvector.

Transforming to z space with the help of Eq. (2.17) we thus get

[8?;C+6+6£ ]G+(€ ¢)=0,
(52 +5-]6-€.0 =0,
(oo * sgz - ate.0) =0, (2.22)

with

= —. (2.23)
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The eigenvector conditions Eq. (2.21) become

9
o o -60=-16-60. (229

Q+(60) =

The eigenvector condition for vy can be conveniently rewritten by differen-
tiating both sides with respect to { and using the expression Eq. (2.22) for
802G, /0€D(: the term proportional to G4 /A€ can then be neglected since
it only gives a subleading correction to the eigenvector, and we get

0Q+(¢,¢) _ ns
T ) 72G+(€, (). (2.25)

Only the “large” eigenvalue Ay is singular at small N, hence, at small
z and large Q?, the “small” eigenvalue may be neglected. The singlet quark
and gluon distributions are then no longer independent, but rather related
by the large eigenvector condition Eq. (2.24). If we had kept only singu-
lar terms in the anomalous dimensions, the small eigenvalue would have
vanished, the large eigenvector would have coincided with the gluon, and
the singlet quark distribution would have vanished. This is also apparent
by direct inspection of the small  evolution equation (2.22), which would
have coincided with Eq. (2.18) with all terms proportional to §/9¢ on the
right hand side neglected. When the constant terms are retained, the large
eigenvector contains a mixture of gluons and singlet quarks, obeying the
evolution equation Eq. (2.22) for G4 (and Q). This has the same form
as the gluon equation in Eq. (2.18), but with the inhomogeneous term ne-
glected, and a slightly different value of the coeflicient of 3/0¢. The singlet
quark contribution @4 is however subleading, being determined in terms
of the gluon contribution G4 according to Eq. (2.25), which coincides with
the singlet quark equation in Eq. (2.22).

It thus appears that the behaviour of the singlet and nonsinglet com-
ponents of F» at small z and large Q2 are entirely determined by those
of G4 (&,¢) and g(&, () respectively which, in turn, are determined by the
evolution equations Eq. (2.22). These are recognized as a two-dimensional
wave equations, ¢.e. two-dimensional Klein—Gordon equations written in
light-cone coordinates (¢,() = z + t with imaginary mass. This immedi-
ately implies several general properties of their solution:

(i) The equations are essentially symmetrical in £ and ¢, so G4 (£, () and
q(&, ¢) evolve (‘propagate’) equally in both £ and ¢ (i.e. in z and Q?), up
to the (small) asymmetry induced by the ‘damping’ term proportional
to §. Any further asymmetry in £ and ¢ must thus come from the
boundary conditions.



Universality and Scaling in Perturbative QCD at Small z 2107

(#i) The propagation is ‘time-like’, into the forward ‘light-cone’ at the origin
(§,¢) = (0,0), along the ‘characteristics’ £ = constant and { = constant
(see Fig. 2).

(i) At a given point (§,(), G+(&,¢) and ¢(&,{) depend only on their re-
spective boundary conditions contained within the backward light cone
formed by the two characteristics through (&, ¢).

(iv) Because the equations are linear, contributions to G4 (£,() or ¢(&,¢)
from different parts of the boundaries are simply added together.

(v) Since the ‘mass’ terms are negative, the propagation is ‘tachyonic’; this
means that both G4 (&,() and ¢q(&, () are unstable, growing exponen-
tially rather than oscillating.

(vi) Since & and & are both positive, the damping terms ensure that, at fixed
€, G+(£,¢) and ¢(&, {) eventually fall with increasing (.

It is also straightforward to obtain the general solution to the evolution
equations: they are simple examples of the characteristic Goursat problem,
in which the solution is entirely determined by the knowledge of boundary
conditions along two characteristics, and can be written explicitly in terms of
a particular solution to the equation. The latter is easily found by observing
that, setting z = 2y+/€(, the first and third of Eqs (2.22) coincide with the
Bessel equation, the appropriate solution of which is the Bessel function

Ig(z)zi(%zZ))n ~ L ez(1+0(-1z-)). (2.26)
0

(n!)? :me0 /272

The general solutions are thus found to be

G4(6¢) = Io (27VEC)e™*+€G4(0,0)

/ de'Io (27+/(€ — €)¢)e "+ 3£,G+(e 0)

+ / 4¢'To (23 VET— )+ €0 (7-6.40,¢) + £46+(0,0),
0
G_(&¢) =7 ¢G_(£,0),

9(6,0) = Io (25 y/EC) e3¢ (0,0) + / de'To (2 \/(e—f')c)e‘5<5‘}q(s',0)

/ 4 To(2/EC TN O (20(0,¢) + 9(0,0). (221)
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These solutions display explicitly the symmetric nature of the evolution. It
is interesting to compare them with the standard solution to the Altarelli-
Parisi equations at larger , where boundary conditions are imposed at a
scale to for z' such that ¢ < z' < 1. Since the structure function vanishes
kinematically at # = 1 the boundary condition on the lower boundary is
trivial, and evolution takes place from the initial parton distributions as-
signed at a given ty forwards in ¢t. In the present case, instead, the two
boundaries are treated symmetrically, and evolution takes place as much
with respect to # as it does with respect to .

The asymptotic behaviour of G (&, () or ¢(§,() at small ¢ and large
¢, i.e. far away from the boundary, will in general depend on the form of
the boundary conditions. Due to the linearity of the equation, we may
consider each boundary separately. Contributions from each boundary are
generated by fluctuations of the functions G4 or ¢ on that boundary. If
these fluctuations are sufficiently well localized close to the origin, then
far from the boundary we can use a multipole expansion, expanding the
argument of the Bessel functions in powers of ¢'/€ (i.e., the distance from
the boundary over the spread of the source) for the left boundary and {'/¢
for the lower boundary. All the contributions from higher moments of the
boundary fluctuations are then seen to be suppressed by powers of the light-
cone distance from the origin

o= €, (2.28)

while the leading contribution is simply given by the strength of the source
at the origin, and its asymptotic behaviour is determined by that of the
Bessel function (2.26):

Gi(pro) _~ N\/lllw_wexp {27054 (%)} (1+0 (%)) ;

aps0) ~ /\Yﬁ exp {2:70 -5 (%)} (1 +0 (%)) , (2.29)

where we have introduced the hyperbolic coordinate orthogonal to o, namely

p=4/% (2.30)
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(see Fig. 2).

& F

Fig. 2

The (£,() plane, showing the backward light cone at the point (¢',{’), curves of constant
o (the hyperbolae} and lines of constant p. The origin is chosen in such a way that
the small z approximation of the evolution equations is valid for positive £, and pertur-
bation theory breaks down for negative ( where «, grows too large. The hatched area
z S z, exp(—a,(te)?/ees(1)?) indicates the region where parton recombination effects are
expected [11] to lead to breakdown of simple perturbative evolution due to higher twist

corrections.

The origin of double scaling is now clear: because of the isotropy of the
evolution equation, its solution asymptotically only depends on the scal-
ing variable o, i.e., its level curves are hyperbolae in the (£,() plane (see
Fig. 2), and do not depend on the direction in which the propagation occurs
(p scaling). Furthermore, because the solutions (2.29) are asymptotically
independent of the boundary conditions, the dependence on ¢ is given by
a universal rise, stronger than any power of { but weaker than any inverse
power of z. The universal form of this rise reflects the underlying dynami-
cal mechanism which generates it, namely, in the singlet case the collinear
singularity in the triple gluon vertex which is responsible for the singularity
in the anomalous dimension 744 (Eq. (2.15)) whose strength determines the
coefficient v? (Eq. (2.23)), and in the nonsinglet the corresponding singular-
ity in 7}1\25 due to collinear gluon bremsstrahlung, whose strength determines
the coefficient 2. In an Abelian theory the former singularity clearly van-
ishes, so the singlet distributions would no longer grow so strongly, behaving
instead more like the nonsinglet.
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Using Eq. (2.25) to determine @, and the expression Eq. (2.5) of F3, and
neglecting the nonsinglet contribution, since this is suppressed by a factor
of approximately e ¢, it is easy to show that the asymptotic behaviour of
F} (or F}) will also have a double scaling form, namely:

B}~ 51’6’5 2G4(ap) (1 +0 ( ) +0 (p)) : (2.31)

with G given by Eq. (2.29). This behaviour holds up to corrections of
order 1/0, from the subasymptotic form of the Bessel function and the
boundary corrections, up to terms of relative order o/p? in the exponent,
from higher order contributions to the small N expansion Eq. (2.15) of
the anomalous dimensions, and up to corrections of order 1/p, from higher
order contributions to the eigenvector equation. It thus holds in the limit
o — oo along any curve such that also p —» o, such as for example the
curve ¢ o< (1€ with € > 0: that is, far from the boundaries, and provided
the increase of In(1/z) is more rapid than that of Int.

All of this, however, hinges on the assumption that the solution Eq. (2.27)
to the wave equation may be treated in the multipole expansion, i.e., that
the fluctuations on the boundaries fall off away from the origin. If this does
not happen, then the multipole expansion is not valid, the asymptotic be-
haviour Eq. (2.29) does not hold, and the chain of arguments leading to the
scaling form of F> Eq. (2.31) breaks down. Specifically, assume for example
that the boundary conditions at { = 0 are exponentially rising functions
of £ G4(£,0) ~ expAf = 2™, ¢(£,0) ~ expA¢ = z~*. The boundary
integral may then be evaluated by the saddle point method, is dominated
by a nontrivial saddle-point, and gives the asymptotic behaviour

ouen oo (5 -0) ()} (0(() o 2)
o zoronfions (§-9)0)} (40 (2) o ()

(2.32)

The strong growth on the boundary is thus preserved by the evolution. Since
the evolution equations are linear, this behaviour should be added to the
dynamically generated contributions (2.29). Since it is power-like, the rise of
the boundary condition will eventually dominate the dynamically generated
rise Eq. (2.29) when ¢ is large enough. However the universal behaviour
Eq. (2.29) is still dominant when ( is large enough that the nontrivial saddle
point leading to Eq. (2.32) is no longer dominant, i.e. whenever p S (7/),
p S (/) respectively. Similar contributions to (2.32) would arise from
exponentially rising functions of { on the lower boundaries.
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In practice, we may choose 2y close to the turning point of the evolu-
tion, so that the lower boundary condition is reasonably flat. Furthermore
Regge theory suggests that the left hand boundary condition is given by
Fy ~ 21720 where a(0) is the intercept of the appropriate Regge tra-
jectory. In the singlet channel, this is the pomeron trajectory, with [2]
ap(0) ~ 1.08, so the left hand boundary condition for G4 should also be
soft, and the asymptotic behaviour of FJ and FJ* given by (2.31), at least for
p S v/(ap(0)—1) ~ 15. However in the nonsinglet channel, the appropriate
trajectory is that of the p, and ay(0) ~ (1/2). So the left hand boundary
condition for the nonsinglet, ¢ ~ 27#, is hard, and asymptotically (2.29)
will be dominated by (2.32), whence, for p 2,5/A~ 1

P n it 2 1 1
B-rp o Moo (G-t (5 -5)(5)}(1+0(3) +0(2)),
(2.33)
with X =~ (1/2). Recent data from NMC [12] seem to be in good qualitative
agreement with this prediction, but deuteron data in the kinematic region
explored at HERA would be necessary to confirm it more precisely.

It was suggested some time ago [13] that the singlet boundary condition
at Q2 might not be given by the intercept of the pomeron trajectory, but
could rather rise very steeply as L, with Ay, = 4In2(C4/7)a, =~ (1/2).
This steep initial rise (sometimes called the ‘hard pomeron’) was supposed
to incorporate, in an admittedly rather heuristic manner, the higher order
perturbative effects at small z described by the BFKL equation [14]. With
such a boundary condition, the double scaling rise (2.31) in F} would be
masked by the stronger rise of G as given by (2.32), so

2 1 1

B o Mo Puoo s (T -0) (7)} (1 0(3) +0(3)). 230
whenever p & v/, ~ 2. This prediction is nonuniversal, in the sense that
the precise slope of the rise cannot be predicted since A;, depends on as,
and it is not known at which scale a, should be determined. Furthermore
it is qualitatively different in form from the double scaling rise (2.31): in
particular the rise at large £, fixed ( is now no longer accompanied by a
corresponding rise at large { and fixed (though large) {. We will come back
on the issue of applicability of leading order computations and the relative
importance of higher order corrections in the next section. First however
we will see whether the HERA data support the universal double scaling
prediction (2.31), or prefer the more phenomenological suggestion (2.34).

The scaling plots in Fig. 1 display the measured values of F>, with the
subasymptotic corrections in Eq. (2.31) rescaled out, i.e. Rz F, with

R'gp(0, p) = exp (6(p) + 1ln‘ya+1n(7)) (2.35)
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The scaling variables are computed with zg = 0.1, Qg = 1 GeV, 4 =
263 MeV, and é§ = 64 Eq. (2.23) with ny = 4. The data cover a wide span
in p: for instance the data in Fig. 1c have 1 S p S 5. Nevertheless they all
fall on the same line, and display a slope which agrees very well with the
predicted asymptotic value 2y = 2.4. If the boundary condition were hard,
Eq. (2.32) shows that the leading behaviour would also be a linear rise of
In F> in o, but now with a slope which is not universal (as it depends on \),
and strongly p dependent. Hence, the data should not fall on a single line,
and the agreement of the observed slope with the calculated value of 2y
could only be a coincidence. The fact that the data display double scaling
thus allows us to exclude the possibility of power-like boundary conditions to
leading-order (or, as we will se in a moment, next-to-leading order) evolution
at a very high confidence level (8].

The scaling plots in Fig. 1 also show that the slope of the rise of In F;
is significantly smaller than the asymptotic one when o is not too large.
This suggests that scaling violations may already be important here. Even
more dramatic scaling violations are seen if one considers data at low Q2.
Both effects are illustrated in Fig. 3 (i), which displays F; after complete
rescaling of the leading asymptotic behaviour, i.e. by a factor

- i 1 P
Rp(a',p)—exp(—27o+5(;)+§In70'+ln(;)). (2.36)
It is apparent that the data display a systematic drop in o (the asymptotic
double scaling line is approached from above), and the recent (albeit pre-
liminary) data with low Q? (25 p £ 5 and 1.3 S ¢ 5 1.8) do not seem to
scale at all.

This leads us to consider scaling violations, the simplest of which appear
when two-loop corrections are included in the Altarelli-Parisi equations.
The leading singularities of the two loop anomalous dimensions [16] in MS
scheme are

(%CF - %CA)TRn_f CFCA - %QCFTRnf

y$() = % ( ) +0(1),

%CATRnf %QCFTRnf
C2 -
YR(N) = W amE HOUN 7). (2.37)

Note that all the entries in the two loop singlet anomalous dimension are
singular, and the nonsinglet is more singular than at one loop. Taking
the inverse Mellin transform of (2.37), using for the nonsinglet the result

M [1/2 (1/=) ln2(1/:c)] = 1/N3, and including them in the Altarelli-Parisi

equations (2.3) gives wave equations similar to (2.18), but with additional
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RyFy®

RyFy?

—g
= =3
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Fig. 3(it)a Fig. 3(ii)b

Double scaling plots of Rp F} against (a) o and (b) p, (i) with rescaling of the LO asymp-
totic behaviour Eq. (2.36); (ii) with NLO rescaling Eq. (2.42). The stars are preliminary
low @ (1.5GeV? < Q% < 15GeV?, 3.5 107 < z < 4.0 107?) points from ZEUS [15].

terms of O(a,) on the right hand side. Linearizing these two loop correc-
tions, the wave equations (2.22) become (suppressing subasymptotic contri-

butions)
92 0
I} _
[52 +6_]G_(£,0) = e-au(to)e 4 G(£,0),
£
o? =0 . ~¢ ' ' '
[858( + 555 — 2] q(&,¢) = ea,(to)e b/df (€—-¢€)q(¢ 1€)s

(2.38)
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with now, in place of (2.11),

=h|{—— 2.39
with a4 evaluated to two loops, and
103 26n . 16
€4 = ( —ns+ 3——)(1&',60) , €— = 37([32’ é= 3nfs’ (2.40)

B1 = 102 — (38/3)n¢ being the two loop coefficient of the A-function. It is
not difficult to show that the three new parameters (2.40) are in fact all in-
dependent of the choice of factorization scheme. The eigenvector conditions
(2.21), (2.24) and (2.25) are unchanged.

The general solutions of the three equations (2.38) are the same as
those of the leading order equations, (2.27), but each with an additional
contribution on the right hand side:

e+——//d€dCIo @1VE =) = )b+ =0-Ca (e, ¢,

A /dC'e5-(<"<)*C'G+(E'» ),

ef

il

respectively. Two loop corrections to the leading asymptotic behaviour are
then found by substituting the leading behaviour into (2.41), and evaluating
the asymptotic form of the integrals. Clearly the form of the correction
will then depend on the form of the leading behaviour. For soft boundary
conditions the double scaling behaviours (2.29) are corrected by extra factors

[a,Y]
<

¢
/dfdﬁ"dcl (27/(E = €)(C = ¢))eb+ (== (¢! — £")q(€",¢"),
1]

(2.41)

Gi(p,0o) e N\ﬂ_l?;’y_tf exp {270 — 64 (%)}
x [t~ 4 (anlto) — as(t) s] (1+ 0(%))

q(p, o) o Nﬁ exp {2*7:7 - 5(%) }

x [1 - &(aulto) - as(t))%] (1+ 0(%)) (2.42)
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while the double scaling behaviour of F, (2.31), is corrected by a similar
factor:

B ot N yas e (2o -6 (5)

[1 - (es (a(to) - aal(®)) — ffigas(t)) 5] (1+ 0(%) +0 (%)))’
(2.43)

the extra term in the square brackets coming from the subleading contri-
bution to G_. For hard boundary conditions, the asymptotic behaviours
(2.32), (2.33), are corrected by the same factors (2.42), (2.43) respectively,
but with p/v, p/7 replaced by A, X respectively: the corrections are thus
then z independent.

Two loop corrections will be most important for soft boundary con-
ditions, and thus in the singlet channel, as the leading correction to the
double scaling seen at HERA. To see their effect, the data are replotted [in
Fig. 3 (ii)] with a new rescaling function,

BP(0,0) = Rp(0,p)[1 — aa(to) (e — (s + :f; )= /2) 2] (2a4)

where Rp is the leading order rescaling (2.36). It can be seen from the
plots that the effect of the two loop correction is moderate (except at very
low @2) but significant in the range of the present data: it increases the
starting scale from Q¢ ~ 1 GeV at leading order to around Q¢ ~ 1.5 GeV,
reduces the slope of the o-plot by about 10%, and decreases the rise in the
p-plot at large p and low Q2. Thus most of the as yet observed scaling
violations can be accounted for by the two loop correction, and conversely
the effect of this correction can be clearly seen in the data. These results
have been confirmed by numerical calculation using the full one and two
loop anomalous dimensions [17-19].

The residual rise at large p in the low Q2 data [15], if it turns out to
be statistically significant, could be due to many different (and possibly
competing) nonperturbative effects: a small rise in the (nonperturbative)
boundary condition (even z 7998 has observable effects at Qo = 1.5GeV),
nonperturbative effects due to the opening of the charm threshold, conven-
tional higher twist effects, or even more novel higher twist effects such as
parton recombination. However it could also be due to higher loop singular-
ities. It is particularly important to consider these, since it is necessary, in
the light of the above discussion about the ‘hard pomeron’ boundary con-
dition above, to understand why they do not in fact spoil double scaling.
Such an undertaking is possible since the precise form of the leading (and
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some of the sub-leading) singularities are known: we will now explain in
some detail how their effects may be properly included.

3. Perturbation theory at small x

In the previous section we have seen how double scaling appears as a
generic feature of the solution to the LO or NLO Altarelli-Parisi equations,
in the limit as p and o grow large, i.e. as both In(1/z) and Int grow, pro-
vided the former grows faster than the latter. This prediction thus defines a
“double scaling limit” of QCD, intermediate between the Regge limit (small
z at fixed t), and the Bjorken limit (large ¢ at fixed #). In the Regge limit
perturbation theory fails and we are unable to calculate either the z or the ¢
dependence of parton distributions. In the Bjorken limit perturbation the-
ory holds and predicts the scale dependence of parton distributions, viewed
as functions of @, but the z dependence itself depends on an incalculable
initial condition. In the double scaling limit, the  and ¢ dependence is
universal and only depends on a single overall normalization.

We can thus divide the (¢, () plane in various regions (see Fig. 2): for
low ¢ (say, { < 0 with a suitable choice the origin of coordinates) pertur-
bation theory breaks down, whereas the Altarelli-Parisi equations hold for
positive values of ¢, and become more and more accurate as { increases. On
the other hand if £ is also sufficiently large, the anomalous dimensions may
be expanded around their leading singularities Eq. (2.15) so the Altarelli—
Parisi equations take the small z form Eq. (2.18). However if £ keeps in-
creasing, perturbation theory eventually breaks down because higher twist
corrections, necessary to ensure unitarity, must become get more impor-
tant. Physically, one can understand this by noting that 2 can be inter-
preted as the momentum fraction carried by individual partons. When ¢
is very large momentum is shared between an increasingly large number of
partons; this corresponds to an increase of the parton density which can-
not continue indefinitely and should eventually stop when partons start to
recombine with each other [11]. This is expected to happen in the region
z S z,exp(—as(to)?/as(t)?), where 2, cannot be reliably computed but
could be of order 1075 at scales of a few GeV? [11]. If instead ( keeps in-
creasing we eventually get to a region where effects from the lower boundary
of perturbative small z evolution are important: these reflect the shape of
parton distributions propagated down from large values of z, and thus we
get back to Bjorken scaling, with incalculable dependence on z.

Even in the remaining double scaling region, however, double scaling
actually holds only with sufficiently soft boundary conditions; besides, we
have derived it only in a LO or NLO calculation. The two issues are actually
closely related, because of general arguments suggesting that when higher
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order corrections are included a hard power-like rise of the singlet parton
distributions may result. The underlying logic is the following: the lead-
ing logarithmic gluon-induced contributions to the deep-inelastic scattering
cross section to all orders in o, log(1/z) may be summed up by the solution
of an equation satisfied by the gluon distribution (BFKL equation) [14].
This equation is not consistent with the renormalization group, in that it
does not sum logs of Q2 and thus it does not include evolution in Q?%: in
fact, it is derived at fixed coupling a,. It therefore also does not separate
leading twist from higher twist contributions. However, it is possible [20]
to extract the leading twist contribution to the solution of this equation in
Mellin space: as Q2 — oo the solution has the form

G(N,Q%) = (g%) Y G(N,Qg) [1 +0 (g—é)] , (3.1)

the extra term in the square brackets being higher twist. The leading twist
piece is now the same as a solution to a (fixed coupling) renormalization
group equation Eq. (2.7), with 7(N, a,) identified as the anomalous dimen-
sion. This anomalous dimension is determined as the inverse of the function
x(z) = 2¢(1) — ¥(z) — ¥(1 — z) (where ¥(z) is the Euler function):

Ky (e = (3.2)

Ql
ta

where a, = Cga,/7.
The solution to (3.2), the Lipatov anomalous dimension 7g,, thus turns
out to be a function of &/N:

(%) = ﬁw( ) 3)
(k

with coefficients 7y ) determined uniquely by Eq. (3.2). All the coefficients
(2) _(3) (5)

turn out to be positive, save y;°’, 77" and ;" which vanish. Now, inverse
powers of N are the Mellin transforms of logs of 1/z:

1 1 1 1
M[;(k—_l)—!lnk lz] ~E (3.4)

One may then argue [20] that, since the leading logs of 1/z are summed by

the BFKL equation which leads to Eq. (3.1), the coefficients 7( )in Eq. (3.3)
must give the coefficient of the most singular term in expansion in powers
of N of the k-th order contribution to the ordinary anomalous dimension



2118 S. ForTE, R.D. BaLL

(leading singularity): these are by definition the leading logs in 1/z since in
z space they correspond to the contributions with the largest number of logs
at each perturbative order. This result may actually be proven rigorously by
means of suitable factorization theorems [21]: the expansion of the Lipatov
anomalous dimension Eq. (3.3) gives the coeflicients of the leading singu-
larities to all orders in a, in the gluon anomalous dimension y44 (due to
the fact that the BFKL equation describes gluon propagation and emission).
Notice that these coefficients are factorization scheme independent. This re-
sult has several important consequences for our discussion. First, it shows
explicitly that the double logarithms, of the form (1/z)as(a, In?(1/2))" 1,
which one might expect naively to arise in a perturbative expansion of split-
ting functions [22], are reduced in the gluon sector to single logarithms of
the form (1/z)a,(as1n(1/2))" 1, because many of the singularities cancel
systematically. This cancellation actually occurs in the whole singlet sec-
tor [23] (though not in the nonsinglet {24]). This is in accordance with the
calculation of the two loop singularities (2.37) (which in fact exhibit a fur-
ther accidental cancellation in the singlet sector, which also occurs at three
and five loops).

Despite this remarkable cancellation, at higher orders in a, the singu-
larity in the anomalous dimension is still growing strongly, albeit not quite
so fast as one might have naively expected. Thus at small enough « the
enhancement due to the extra powers of In(1/z) in the corresponding split-
ting function may offset the suppression due to the extra powers of ay, so
that the inclusion of higher order corrections may be required in order to
obtain accurate results. Furthermore, the function x(z) has a symmetric
minimum at z = 1/2, implying that the anomalous dimension +yy,(as/N)
has a square-root branch point there (there are also other branch points,
and in fact the structure of 41,(a,/N) in the complex plane is quite compli-
cated [25]). The value of its argument such that y1,(&s;/N) = 1/2 is 4In2,
so the branch point is at

Caa

(@) = 41112(—-). (3.5)

T

This implies that Mellin-space parton distributions also have a singularity
at N = Ar, and correspondingly, in z space they should increase as z —
0 as z*L. This corresponds to a rather strong rise for realistic values of
as, and would certainly spoil the observed double scaling behaviour if it
occurred already at presently attainable values of #. However, it is not
clear that this simple argument is consistent with the renormalization group:
for example, the result of using a power like behaviour of this form as
a boundary condition for LO or NLO perturbative evolution depends on
the scale Qo at which the boundary is set. Moreover, it is not clear how
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this behaviour should be matched to conventional perturbative evolution
at larger z, nor indeed in which region of the z-t plane it should become
important.

We need thus to keep into account higher order singularities in N in a
way consistent with the renormalization group. This can be done [26] by
reorganizing the perturbative expansion of the anomalous dimensions, or,
equivalently, the splitting functions used in the Altarelli-Parisi equations.
To understand how this works, it is convenient to classify the contributions
to anomalous dimensions by expanding the anomalous dimension used in
renormalization group equations Eq. (2.7) in powers of a,, and then each
order in powers of N (see Fig. 4):

x<O m oo m
—7Na Zam Z AN~ = Zam(ZA?N_n+’7z(vm)),
m=1 n=-—oo m=1 n=1

3.6
where the numerical coefficients A} are given by Eq. (3.3), and in the( las‘z
step we have separated out the regular part of the anomalous dimension

( ), Using Eqs (2.17), (3.4) this is seen to corresponds to expanding the
assomated splitting functions as

a, o] n 1 1
E;P(‘c’t) = mz—:l a,(t) ( Z m 1)0 + P(m)(z)) (3.7)

where P(™)(z) are regular as ¢ — 0.

Solving renormalization group equations sums all leading logs of the
scale which appears in the equation: for instance, upon solving Eq. (2.7),
the anomalous dimension gets exponentiated according to Eq. (2.10). At LO
only the term with m = 1 is included in the anomalous dimension Eq. (3.6),
which is thus linear in a,, so this amounts to summing up all contributions
to the deep-inelastic cross sections where each extra power of o, is accom-
panied by a power of In Q2. In fact, because the LO anomalous dimension
has a 1/z singularity (which leads to a factor of In(1/z) in the cross section
upon integration) some logs of 1/z are also summed, but In(1/z) is not
considered leading, in that factors of a, may or may not be accompanied
by In(1/z). Thus, if the LO in the expansion Eq. (3.6) of the anomalous
dimension is used, all logs of the form

az(ta@)? (a1 ) ' (3.8)

with ¢ = p, and 0 < r < p are summed up. At NLO the anomalous di-
mension includes both linear and quadratic terms in a,, and thus all logs
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Eq. (3.8) with ¢ < p < 2q are summed (there are at most twice as many
powers of a, as powers of InQ?). In standard perturbative computations
the NLO solution is however then linearized, by expanding the exponential
of the NLO term of the anomalous dimensions in powers of a, and retaining
only the leading nontrivial term (for instance, the NLO asymptotic correc-
tion Eq. (2.43) was derived in this way). This means that only terms with
g<p<q+1,ie p=gqg+1 areincluded at NLO. Furthermore, there is an
extra power of In(1/z) in the NLO anomalous dimension, so 0 < r < p as
at LO. At NNLO yet an extra power of a, per power of In Q? is allowed,
and so forth. We will refer to this as the “large ¢” expansion.

This is not the only way to organize the perturbative expansion, how-
ever. We might instead want for instance to consider In(1/z) as leading:
this would be appropriate at very small z. Then, all terms where each extra
power of a, is accompanied by a power of In(1/z) should be included at
LO. These are the leading singularities to all orders in a, (see Fig. 4b): it
is thus convenient to reorganize the expansion of the anomalous dimension

) S2v(N,a) = Za’" iy i (2)), )

n=2—m

which corresponds to the splitting function

Qg © m— b —1 \&s "It 1
—P(z,t) = 21 (as(?)) 1 (% E;IAZ-H” 1 (21)— 1! ]

m—2
+ > AT au(t) 70 d T 4 51 - :z:)) (3.10)

=0

Subsequent orders are still labelled by the index m of the outer sum. The
LO is the sum of leading singularities, and sums all logs Eq. (3.8) with
r=pand 1< g <p. (terms with ¢ = 0 are not included because at least
one power of In Q? is produced by integration of the renormalization group
equation). In NLO terms with an extra overall factor of o, are included in
the anomalous dimension, so the solution contains terms with r < p < r+4.
Upon linearization, only terms with p = r 41 are kept, while still 1 < ¢ < p.
There is then complete symmetry between this “small ” expansion and the
large z expansion, with the roles of the two logs interchanged.

The small z approximation to LO evolution discussed in the previous
section corresponds to only retaining the most singular terms in the LO
anomalous dimension: it thus corresponds to taking the intersection of the
small z and large z leading order terms, i.e. the pivotal term with m =
n = 1 in Eq. (3.7) or (3.10), which sums all logs with p = ¢ = ». The
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symmetry of double scaling reflects this double logarithmic approximation.
The terms contributing to the coefficient § Eq. (2.23) are large  corrections
(t.e. corresponding to r < p = ¢) and so forth. The fact that double scaling
is observed indicates that the HERA data are taken in a region where the
two logs start being equally important.

This suggests that in this region the most convenient way of organizing
the perturbative expansion is one where the two logs are treated symmetri-
cally at each order (“double leading” expansion). To do this, the anomalous
dimensions are expanded as (see Fig. 4c)

S2y(N,a) = ij: ™! ( 3 A’;J”"‘l(%) - a‘("‘))- (3.11)

n=1

In LO (z.e. when m = 1) all terms with 1 < ¢ < p, 0 < r < p, and
1 < p < q+ rare summed. If all cross terms (i.e. those containing a prod-

(

uct of a contribution to ‘7Nm) times a singular contribution) are linearized
then the solution includes all contributions where each extra power of a; is
accompanied by a log of either 1/z or Q2 or both.

In NLO an overall extra power of a, will be allowed, and so forth.

Of course, a variety of other expansions which interpolate between these
could be constructed. The crucial point here however is that all these ex-
pansions are consistent with the renormalization group: in each case we
may define

2——7 (N,a) Z a™ym (N, a); (3.12)

each term in this expansion is then of order a; compared to the previous
one and, in particular, a change of scale at k-th order may be compensated
by adjusting the k + 1-th order terms. The expansion Eq. (3.12) may thus
be treated using the standard machinery used to perform NLO or higher
order QCD computations. However, if we choose an expansion which is ap-
propriate at small z (say, the extreme small z one (3.9)), then ym+1(N, a)
is of the same order as v,,(V, a) since they both sum up the relevant log-
arithms, hence the m + 1-th order contribution to 7 is genuinely of order
o as compared to the m-th order one. This is not achieved by an ad hoc
“resummation” of a particular class of contributions, but simply by organiz-
ing the perturbative renormalization group in a different, equally consistent
way.

There is a very important issue which must still be addressed however:
namely, in the large z expansion Eq. (3.6) the series in n which defines
the anomalous dimension at each perturbative order (in m) of course con-
verges — in fact, we defined this series by expanding out an expression
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The terms summed in the various expansions of the anomalous dimensions and associated
splitting functions: a) the standard (large-z) expansion (3.6), b) the small-z expansion
(3.9), and c) the ‘double-leading’ expansion (3.11). Leading, sub-leading and sub-sub-
leading terms are indicated by the solid, dashed and dotted lines respectively; m denotes
the order in a, while n denotes the order in 1/N. Singular terms are marked as crosses,
while terms whose coefficients known at present (for v§?) are marked by circles: the term
which leads to double scaling is marked with a filled square.
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given as a function of N. The summation of leading singularities Eq. (3.3),
however, does not converge for all N: as mentioned earlier, y1,(N, a,) has a
branch-point, implying that the series has a finite radius of convergence, and
diverges when N < 41n & (the other two branch points on the first sheet [25]
being also inside this circle). In fact it is not even (Borel) resummable for
Re N < 4Ina, since the integral over the Borel transformed series (which
has infinite radius of convergence) diverges at the upper limit. This seems
to pose an insurmountable problem for the perturbative approach to small z
evolution: the series which defines the leading coefficient in expansion (3.9)
of the anomalous dimension, which was supposed to be useful for small N,
is actually only well defined when N is sufficiently large. This apparent
inconsistency seems to have led many to the conclusion that conventional
perturbative evolution breaks down at small z.

The dilemma is resolved by the observation that the physically relevant
quantity, namely the splitting function Py, (z), is instead given at leading
order in the expansion (3.10) by the series

n—1
gi gg(:c = as(t) Z(An)gg (aS((t)lnl))' = A;Et)B(Aa(t)hl%)’
(3.13)
where A(a,) is given by Eq. (3.5)
B(u) = n; @T_”T)!u“‘l (3.14)
= (472)9% (41n 2CA) . (3.15)

Because the series Y -, a,v™ has radius of convergence one, the radius
of convergence of B(u) is infinite, and thus the series which defines the
splitting function Eq. (3.13) converges uniformly on any finite intervals of
z and t which exclude z = 0: the only reason for the bad behaviour of
the series (3.3) is that when transforming to Mellin space one attempts to
integrate all the way down to ¢ = 0, and this is not possible for singlet
distributions because the total number of partons diverges there. If instead
the parton distributions are evolved using the Altarelli-Parisi equations
(2.3), the splitting functions are only required over the physically accessible
region ¢ > Zuin, and no convergence problems arise. Indeed, because the
series for the splitting function is convergent it is only necessary, when
working in a physically accessible region to a certain level of accuracy, to
retain a finite number of terms. Since then the only singularities in the
Lipatov anomalous dimension are poles at the origin, it follows that the
cuts which arise to all orders are strictly unphysical.
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Similar considerations will apply to the subsequent orders in the ex-
pansion of the anomalous dimension Eq. (3.9): if the coefficients in the
expansion of the anomalous dimension have a nonvanishing radius of con-
vergence, then the corresponding splitting functions will converge for all
z > 0. This will be true provided there is no singularity (or accumulation
of singularities) in the anomalous dimensions at N = oo or, equivalently, at
a, = 0. This is a standard assumption in perturbative QCD (at least order
by order in perturbation theory), so it is natural to conjecture that this will
be true for all values of m in Eq. (3.9).

So far we considered the behaviour of the 744 anomalous dimension. We
already know that at LO only v44 and 74, display a singularity at N = 0.
In fact, it may be proven [21] that the leading singularities in 744 and 44
are related to all orders, according to the so-called color-charge relation

Qag

Yeq = g—ivgg +0 [a, (—ﬁ)n] , (3.16)

while the coefficients of the leading singularities in the quark anomalous
dimension 75’ and 74, vanish to all orders. The coefficients of the NL
singularities f i.e. the NLO in the small z expansion Eq. (3.9)) have been
calculated recently [27]: beyond the (nonsingular) lowest order in a, [given
in Eq. (2.15)] they also satisfy a color charge relation, namely

Tag = % (‘Yqy - %Tnf) +0 [Ots (%,i)n] . (3.17)

The series expansions for these NLO anomalous dimensions have the same
radius of convergence as that of the Lipatov anomalous dimension, though
the form of the branch point singularity is now scheme dependent. The
NLO coefficients in the expansion of the gluon anomalous dimensions are
still unknown.

All the NLO coefficients, being subleading, are scheme dependent: given
their expression in the parton scheme, where coefficient functions satisfy
Eq. (2.2), their expressions in any other factorization scheme such as the MS
scheme may be determined, along with the corresponding coefficient func-
tions. In fact, the freedom of choosing a factorization scheme turns out [28]
to be wider in all expansions other than the standard large z expansion
Eq. (3.6): this is due to the fact that the normalization of the gluon beyond
order a, may be modified by change of scheme. It follows that, besides the
usual freedom to perform a scheme change which modifies the F» coefficient
functions, there is now also the possibility of performing a scheme change
which does not affect the F, coefficient functions, but changes the defini-
tion of the gluon distribution (while leaving all LO anomalous dimensions
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unaffected, as a scheme change ought to). Such a redefinition, in particular,
affects the quark anomalous dimensions, which only start at NLO in the
small z expansion: for instance, it can be used [29] to remove a singularity
which this anomalous dimension has at NLO in the parton scheme [27] at
the Lipatov point N = Ap(as). The nonsingular anomalous dimensions
thus obtained has been argued [29] to have a more direct physical interpre-
tation in that they correspond to specifying the initial parton distributions
in accordance with Regge theory. It is also possible to find a scheme in
which the quark anomalous dimensions vanish [30].

This freedom, however, could in principle be completely pinned down by
requiring that the evolution equations conserve momentum, which implies
the constraints

')’qg(l, ag) + 7gg(1’ ag) =0, 7§q(1a as)+ 7gq(1a as) =0, (3'18)

in analogy to what happens at large z, where the gluon normalization (which
in that case is just a constant) is fixed by the same requirement. These con-
straints, which are necessary consistency conditions that must be satisfied
order by order in the expansion of anomalous dimensions, cannot be satisfied
at LO in the small z expansion, where however they do not apply because
the gluon decouples from F; (which therefore does not evolve). At NLO
they fix uniquely the NLO coefficients in the small z expansion Eq. (3.9)
of 744 in terms of the LO coefficients of 74, and the NLO coefficients of
Yqg [19]: substituting Eq. (3.9) in Eq. (3.18) implies immediately

(Apt ) g + (A1) g + (AZi})gy =0. (3.19)

It can be proven [28] that the freedom of choosing the gluon normalization
by a change of scheme is in one-to-one correspondence with the values of the
NLO coefficients in y44: of course, whatever the choice of gluon normaliza-
tion there exists a set of values of (A711),, which satisfies Eq. (3.18); more
interestingly, whatever the coefficients (A7T1)y, turn out to be when they
will be calculated, there exist a choice of normalization that will enforce
Eq. (3.18).) At present we have to content ourselves with parametrizing
our ignorance of these coeflicients by the choice of gluon normalization, and
estimating the corresponding uncertainty by varying this normalization.
In the nonsinglet channel the inclusion of the leading singularities is
more problematic. The singularity at V = —1 in the anomalous dimension

! Strictly speaking this is only possible when n > 2 in Eq. (3.18): the scheme-
independent O(a,) terms violate momentum conservation in the small = ex-
pansion. This violation is of course asymptotically subleading as z — 0, when
this expansion is supposed to hold. Exact momentum conservation can be
obtained order by order in the double leading expansion Eq. (3.11).
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7(11\25 is known [24] to be stronger than that at N = 0 of the singlet anomalous
dimensions, i.e. to be double-logarithmic:

[eS) 2m—1
a im —-n
2—;7§’qs(zv,a): oo™ Y AN +1)T™ (3.20)
m=1 n= -—00

This is in agreement with the two loop result (2.37), and is indeed the
generic expected behaviour of anomalous dimensions in the small N limit.
The behaviour of the nonsinglet distributions which is obtained by including
these singularities to all orders in the coupling has been computed [24], and
leads to a power-like growth: ¢ng ~ 2~ KL with Mgy, = v/8a /3w, with an
almost identical result for charge-conjugation odd distributions. This is in
fact very similar to the growth predicted by Regge theory and discussed
in the previous section. However, it is obtained with fixed coupling and is
not yet consistent with the renormalization group. Since the corresponding
factorization theorems are as yet unproven, it is still unclear whether it will
be possible to treat this case in the same way as the singlet one, making it
consistent with the renormalization group by using the results of Ref. [24] to
derive the leading term (namely the coefficients A7 _, [31]) in the small z
expansion of the nonsinglet splitting function which can then be used in the
Altarelli-Parisi equation in the same way as in the singlet sector. What is
clear is that the effect of such a procedure would be relatively undramatic,
given that the boundary condition is already hard, with A ~ Agy,. It follows
that the singlet contribution to FZ still dominates the nonsinglet at small
z, and thus for the rest of the discussion we ignore it and consider only the
singlet.

We can now finally study the small z behaviour of singlet parton dis-
tributions: using evolution equations which include logarithmic effects in
In(1/2) to all orders we will be able to assess in which region the simple
LO double scaling predictions are reproduced. Even though in the HERA
region the double leading expansion is probably more appropriate, let us
consider the extreme small 2 expansion Eq. (3.9), both because it is some-
what simpler, and because it allows us to test the stability of double scaling
in an extreme case: if the LO correction in this expansion does not spoil
scaling, no other corrections will since all the most singular corrections are
included, and they all have the same sign.

In the small z expansion at LO the quark anomalous dimensions vanish,
hence the quark sector may be neglected, and the gluon evolution equation
is found using the splitting function P;y Eq. (3.10) in the Altarelli-Parisi
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equation Eq. (2.3):

£
n—1
226(E0) = 40’*2 o i (O o [ -
—&o
oo € 51 fn
=Y @ [t [t [ae€,0, @)
n=0 T ) ~¢o

where we have used the one loop form of a,(t) as appropriate for a LO calcu-
lation, the coefficients a,, are given by Eq. (3.15), and v is as in Eq. (2.23).
Since we retain only singular contributions to the splitting functions the
lower limit £y = In(1/z¢) in the integrations on the right hand side can be
consistently set to zero. Differentiating both sides w.r. to £ this can again
be cast in the form of a wave equation

o?

2
oo £ I3} fn—-1
+72Y anea@" [d [dea ... [ dge0
n=1 0 0 0

S VCE0 Y anin o / de' (¢ - €)" G 0),

n=1 0

(3.22)

which, when only the first singularity is retained, reduces to Eq. (2.22) with
8 = 0 (the term contributing to § is NLO in the small ¢ expansion).

The quark does not evolve at LO, hence, in order to determine the
evolution of Fy, we must go to NLO. This can be done in complete analogy
to the derivation of the double scaling evolution equations Eq. (2.22) in the
previous section: in fact the derivation there can be viewed as a simplified
version of a NLO calculation in the small z scheme, where only the (order
a,) contributions with n = 2 — m to the anomalous dimensions Eq. (3.9)
are retained. Thus, we first diagonalize the anomalous dimension matrix,
which up to NLO has eigenvalues

0
A+(a) =787 + alagy + 22al;) + O(a?),
gg
70
A-(a) = a1g = 251759) +0(a?). (3.23)
g9
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The corresponding eigenvectors are given by

1 0
Qs =all8G, +0(a?), Q-=-22G_+0(a). (3.24)
199 Tgq

where the anomalous dimension is expanded as in Eq. (3.12). Notice that
the large eigenvector condition does not depend on the unknown NLO gluon
anomalous dimensions, and the small eigenvector condition has still the
simple form of Eq. (2.24), thanks to the color-charge relation Eq. (3.16).

Transforming to z space, the large eigenvector component G is seen
to satisfy Eq. (3.22), plus O(a;) corrections, which lead to the § term of
Eq. (2.22) and to O(a,) corrections to the coefficients a,, in Eq. (3.22). The
quark equation is then found differentiating the large eigenvector condition
with respect to ¢ and using the equation for G4, with the result

n

50+(6.0="Lr[es(6.0+ z B a(C)" / a¢' i—f'lTG+(s',4)],

(3.25)
where the coefficients a,, re given by

dn = (A")9(4In2C 4 /7)™ (3.26)

Although these evolution equations cannot be solved in closed form, a
solution can be developed perturbatively in the usual way by noting, as we
did at two loops (2.41), that the solution (2.27) for G4+ now acquires an
extra set of terms

£ ¢ ¢
7 a’n+1 '///dgldfl,dcl
0 0

x Iy (27\/ (€—&NC—MA(E™ME - €mT164(¢", (") (3.27)

on the right hand side. The full solution may then be developed iteratively
by substitution of lower order solutions, leading to a power series expansion
in terms of integrals over Bessel functions, which can then be evaluated
numerically. A similar expansion may be obtained in Mellin space by in-
tegrating explicitly the singlet renormalization group equation (2.7), and
then performing the inverse transform (2.12) by choosing a contour which
encircles the singularities in the region |N| < Ap, [32].

For present purposes, however, we derive some simple analytic esti-
mates which demonstrate analytically the nature of the solution [26]. The
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key observation which dictates the structure of the solution is the simple
property of Bessel function 2"I,,_1(z) = d(z"In(z))/dz. This implies that
if we determine iteratively the solution to the full gluon equation Eq. (3.22)
by then Eq. (3.22) with the perturbation Eq. (3.27) takes at lowest order of
the iteration the approximate form

8?2 N 2 & PA(O\"
5e3cC(E 0= 1660 + = zan+1(—7—) I(270). (3.28)

n=1

But all Bessel functions in this expansion depend only on the scaling vari-
able o and have the same asymptotic behaviour Eq. (2.26) (which only sets
in more slowly for higher values of n). Since p™I,(2v0) is bounded above
by £"Iy(2y0) it follows that double scaling will always set in asymptoti-
cally provided the series > > ; Gnt1 ({x\s(C )/ 7)n converges uniformly, that
is provided £ < (7/As(¢)). This is much wider region than that in which
double scaling would hold if we were to impose a “hard” boundary condi-
tion of the form z~> at ¢ = 0, namely ¢ < (7/As(0)), because A(¢) rapidly
falls as ( increases. Such a boundary condition is precisely that which the
simple argument based on the location of the singularity in 41, Eq. (3.3)
would suggest.

To see more clearly how such a power-like behaviour could arise, con-
sider the evolution equation Eq. (2.22) in the region of extremely small z,
where the higher order terms give the dominant contribution to the series
on the right hand side. Because the series (3.14) has unit radius of conver-
gence it follows that nlLIIéo (an+1/an) — 1. But then, setting ant1 =~ an in

the sum in Eq. (3.22), shifting the summation index by one unit, and using
Eq. (3.21), we have

f fl 'En—l
2 & 8G
— n d¢' ') = A (0)—=—. (3.29
5 2 ontihe0) O/dsl O/d& 0/ £6(E0 = MO (329)

Hence, asymptotically as £ — oo the evolution equation (3.22) becomes
simply
d? oG 2
- 2(0) = =7“G(&,0), 3.30
5252660 = MO = 16 (E:) (3.30)

and the summation of all leading singularities leads to a damping term in
the wave equation.

We can now see how the 2~ behaviour obtains in the fixed-coupling
limit: if the coupling is frozen, then X is just a constant, and the solution
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to Eq. (3.30) is given in terms of the (double scaling) solution Gg(£,() to
the original wave equation

G(£,¢) = eMGo(£,¢) = £ 2Go(£,) - (3.31)

However there is no reason to fix the coupling. A solution with running
coupling can be derived by the saddle point method [26], and turns out to
give the double scaling behaviour (up to a small correction)

G(£,¢) ~ 71_; exp (270 + (A(0) — M(()p?) , (3.32)

throughout the region { « _ZT)_)—A)?C When £ is extremely large the
power-like behaviour

Gl 0) ~ (m)” w2 (20 + 15) G

is found instead. This has essentially the “hard” form of Eq. (3.31), with
the large value of A evaluated at the initial scale, but it is confined to the
extremely small region £ > (y2/ A(0)%)e. In fact this is still an overestimate
of the region where the power-like behaviour should arise: approximating
the evolution equation with Eq. (3.30) ignores the fact that the asymptotic
behaviour of the coefficients a,, only sets in rather slowly, and, by the time
it does, a,, € ay. If this effect is taken into account the power-like region
is further reduced.

Even though of course all these estimates are only based on the asymp-
totic form of the coefficients a,,, and thus they will not accurately reproduce
subasymptotic and specifically subexponential corrections (such as the fac-
tor of 1/4/¢ in Eq. (3.32)) and normalizations, they do correctly estimate
the leading behaviours and their region of validity, as confirmed by a full
numerical analysis. This allows us to conclude that, even though a power
like behaviour of the form Eq. (3.31) is generated very close to the ( = 0
boundary, it very rapidly dies off due to the running of the coupling, rather
than spreading in the whole £ > (y/A(0)) region as it would do if it were
input to LO evolution. Furthermore, any hard power-like boundary condi-
tion will be hidden by this rise (unless it is even stronger than it): since
A(0) is very large for reasonable choices of the starting scale (for instance
A(4 GeV?) =~ 0.8) this means than scaling will appear very rapldly for
all boundary conditions, except unreasonably hard ones such as z~* with
AS —08atQ?=14 GeVZ.
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Turning finally to the quark equation, we may take advantage of the fact
that, throughout most of the (¢, ) plane, G(§, () ~ NIp(2y0): substituting
this in the r.h.s. of Eq. (3.25), and neglecting the small eigenvector we get

0 n >, . A n
5960~ ?fywz an(” ;(C)) In(270). (3.34)
n=0
It follows that when ¢ < (9%/A%)(e®¢, Q(&,() still scales; for
€ > (v3/A%)¢e?, if we set @, = 1 for all n, (3.34) may be simplified
yet further by using the relation

E t"I,(z) = exp (%z(t + t‘l)),
to give
2
Q£,¢) ~ NCexp (E/\o ¥ -‘!A-OE) . (3.35)

The quark anomalous dimensions may thus still produce a growth of
F; close to the boundary, which however again does not spread in the (§,()
plane due to the running of the coupling. The actual size of the region
where this growth will appear depends on the size of the coefficients a,,.
This, in turn, strongly depend on the choice of gluon normalization which,
as discussed above, can be modified by changing factorization scheme. The
latter could be fixed using momentum conservation [28] if we knew the
NLO small z gluon anomalous dimensions. Since we do not, the effect of
the quark anomalous dimensions on the relative normalization of quark and
gluon distributions (and thus on the relative size of F> and F},) turns out to
be strongly dependent on the choice of factorization scheme: while the a,,
corresponding to the MS or DIS schemes [27] give large (but very different)
effects, the Q¢-schemes [29], being less singular, lead to substantially smaller
effects, while in some schemes [30] there is almost no effect at all {33] except
at very small z very close to the boundary.

These analytic results are all closely supported by detailed numerical
investigations, either retaining only the singular terms in the anomalous di-
mensions {26, 32], or including also the full one and two loop contributions
in the double leading scheme {19, 33] or using some other procedure [25].
When care is taken to consistently factorize residual nonperturbative effects
into the boundary conditions, all these analyses reach essentially the same
conclusions. The leading (Lipatov) singularities have only a negligible effect
throughout the measured region, so small that there is still no empirical ev-
idence for them, not only because they don’t affect the shape of F, in most
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of the (£,() plane, but also because the coefficients a,, are so small. The
subleading quark anomalous dimensions have little effect of the shape of
F,, explaining the success of conventional perturbation theory and double
scaling [26, 19]. However they can have a substantial effect on the scale
Qo at which soft initial distributions are input, raising it to around 2GeV
in the MS scheme [26, 25, and on the relative normalization of quark and
gluon, and thus on the size of Fj, as deduced from the measured F; {26,
32]. However these latter effects are strongly factorization scheme depen-
dent, both in sign and magnitude [33], and this scheme dependence could
only be resolved theoretically by a complete calculation of the subleading
singularities of the gluon anomalous dimension, or phenomenologically by a
direct measurement of Fy,.

4. Outlook

The observation of double asymptotic scaling at HERA is a striking
success of a perturbative QCD prediction made now more than 20 years
ago [6]. The explanation of the effect turns out to be somewhat subtler
than it might seem at first: even though it is a direct consequence of the
singularity structure of the leading-order perturbative evolution equations,
its stability in a region where higher order effects might naively be expected
to be important is due to the all order cancellation of double logarithmic
singularities, the unexpected smallness of the coefficients of the remaining
single logarithmic singularities, and then finally the reduction in their im-
pact when the effect of the running coupling is included in a way consistent
with the renormalization group.

This result has interesting ramifications from both the phenomenologi-
cal and the theoretical point of view, which have just started to be explored.
The success of NLO perturbation theory in the HERA region strongly sug-
gests that this may be an ideal place to perform precision tests of pertur-
bative QCD, since most of the poorly known low-energy effects (such as
higher twists) are either absent or negligible here. For example, a, can be
measured from existing HERA data [19] with a precision comparable to that
of all other existing deep-inelastic experiments combined. As more data in
the very small z, not-so-small Q2 region become available, they may shed
light on subtle issues of scheme dependence, and provide information on the
behaviour of parton distribution which are input to perturbative evolution.
On the more theoretical side, it would be desirable to derive perturbation
theory at small z in a way which treats the two large scales symmetrically
from the outset, rather than solving renormalization group equations with
respect to one scale while including the summation of the other scale in the
anomalous dimensions, as we did here. This, besides being interesting for
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its own sake, could shed light on the dynamics of perturbative QCD in the
high energy regime.

S.F. thanks Maciej Nowak for organizing an interesting interdisciplinary
school, and K. Golec-Biernat and L. Lipatov for stimulating discussions
during the school.
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