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I discuss various approaches to the high-energy scattering in quantum
gravity, which are based on perturbation theory. First, the results for the
elastic scattering amplitude, obtained within the eikonal approximation,
are reviewed. Then, the effective action approach to the gravity in the
multi-Regge kinematics is discussed.
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1. Introduction

The present lecture is devoted to studies of quantum gravity in the
multi-Regge limit. In this kinematics the energy F involved in a scattering
process exceeds significantly the Planck mass Mp

E > Mp, (1.1)

and quantum effects become important. Their description requires the
knowledge of the consistent theory of quantum gravity. Unfortunately, chal-
lenging problem of construction such a theory is unsolved till now. One of
the main obstructions is that the quantization of general relativity leads
to perturbatively non-renormalizable theory. A consequence of this fact is
the general opinion that studies of quantum gravity which are based on
perturbation theory are without predictive power.
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It turns out that this view is too pessimistic in case of processes occur-
ring in the multi-Regge kinematics (MRK). In this kinematics, the produced
particles which arise in the scattering of two high energy particles fly mainly
in the direction of one of the incoming particles. They have very large and
strongly ordered longitudinal momenta and small transverse momenta. The
calculations of scattering amplitudes show that renormalization effects do
not contribute to leading and next-to-leading terms and one can obtain
definite predictions. In particular, Lipatov has calculated the inelastic am-
plitudes corresponding to production of gravitons in MRK and graviton’s
Regge trajectory [4]. More recently Amati, Ciafaloni and Veneziano have
calculated the quantum correction to the classical deflection angle of a gravi-
ton in the field of a black hole [2].
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Gravity in MRK is a strongly interacting theory. The easiest way to see
this is based on the Asimov-Mandelstam (AM) rule [3]. Consider the scat-
tering amplitude describing an arbitrary elastic process in Regge kinematics
(see Fig. 1) i.e. for

s=(pa +PB)2 — o0, t={(pa- pA;)z ~ constant . (1.2)
If the scattering amplitude has a ¢-channel intermediate state with n parti-

cles carrying spins o, ¢ = 1,..., nn, then this t-channel cut leads to a term in
the scattering amplitude which is of the order (up to logarithms of s)

§2i=1 it (1.3)

It follows from the AM rule that in the case of gravity (¢ = 2) the t-
channel intermediate state with n gravitons leads to a contribution which
behaves as s™ 11, i.e. t-channel exchanges involving more gravitons are more
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important!. This means that the effective coupling constant sG, where G is
Newton’s constant, is very big. As a consequence, to obtain reliable results,
one should sum the contributions corresponding to an arbitrary number of
gravitons in the f-channel.
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In the first part of the lecture I discuss the scattering amplitude ob-
tained in the eikonal approximation. It corresponds to taking into account
the contributions to the elastic scattering which correspond to all possi-
ble exchanges between incoming particles of non-interacting gravitons (see
Fig. 2). According to the AM rule this set of diagrams gives the dominant
contributions in each perturbative order. Next, I discuss the limitations
of the results obtained within the eikonal approximation and the necessity
to look for corrections to these results. The second part of the lecture is
devoted to the construction of the effective Lagrangian for gravity in the
MRK, which serves as the main tool of the new method proposed by Li-
patov [4] which attempts to go beyond the eikonal approximation. This
construction is the subject of common work with Kirschner [14].

2. Gravity in the eikonal approximation

The calculations of eikonal diagrams (Fig. 2) in the case of gravity
proceed in a similar way as analogous calculations in QED (compare [5]).
Kabat and Ortiz have calculated the leading terms of those diagrams in
the case of scalar-scalar scattering by graviton exchanges [6]. The obtained

! This result one should confront with the analogous contribution due to gluonic
exchanges (o = 1) which is of the order s (modulo In s’s), independently how
many gluons are exchanged.
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result for the scattering amplitude M is the following

dsz_ e~iic‘J.£..L) 1
(27)% k2 + p? ’

(2.1)
where 4 is a graviton mass which serves as an infrared cut-off. Note that in
contradistinction to the QED case, the eikonal in Eq. (2.1) contains in the
exponent an additional factor s which reflects that the graviton has spin
two. Performing the integrals in Eq. (2.1) one gets

M(s,t = -q”’i) = -—2is/d2:c_;_e_i‘ﬁsi [exp(i4er

2 . 2\ —1Gs
_ 8xGs* I'(1 - iGs) (4;1 ) ' (2.2)

M(s,t) = == Fa76s) \ =t

This result can also be obtained using other methods, which do not refer
to Feynman diagrams. t’Hooft has considered [7] the scattering of gravitons
as a quantum mechanical problem of one particle moving in the gravitational
field of the other particle. This gravitational field has the form of “shock-
wave” as described by the Aichelburg-Sexl metric [8]. Amati, Ciafaloni
and Veneziano [2] as well as Muzinich and Soldate [9] derived Eq. (2.2) by
considering the low energy limit of string amplitudes. Finally, E. and H.
Verlinde obtained this result by constructing the effective theory for gravity
in Regge kinematics [10]. This effective theory emerges as a result of a
natural separation of longitudinal and transverse degrees of freedom in the
underlying kinematics.

Although Eq. (2.2) was obtained by summing the leading terms arising
in each order of perturbation theory, it needs to be corrected. Let us observe
that the product of the last two factors in Eq. (2.2)

r(1-iGs) (au®\ ¢
I(1+iGs) (‘3) (2:3)

is a pure phase. As a consequence the whole Eq. (2.2) is of the order Born
term i.e.

87 Gs?
MBorn(syt) = _t (2'4)

This means that in order to obtain a meaningful result one should cor-
rect the above calculations by taking into account non-leading terms which
were previously neglected. In particular it is not enough to calculate the
eikonal diagrams only up to leading accuracy but higher precision is needed.
Moreover, it is necessary to consider also diagrams in which the exchanged
t-channel gravitons interact each with other. In the MRK this corresponds
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to taking into account inelastic diagrams with the production of many gravi-
tons in s-channel. The importance of non-leading terms for the final result
is clearly shown up in calculations of quantum correction to the classical
deflection angle [2]. For distances close to the Schwarzschild radius the
magnitude of the quantum correction is of the order of the classical expres-
sion which requires a further improvement of the approximation.

The problem how to go beyond the eikonal approximation in a system-
atic way is unsolved till now. The methods which work well within the
eikonal approximation are difficult to generalize beyond it (for a discussion
of these questions see Ref. [11]). The new approach to this problem was
proposed by Lipatov in Ref. [4] and is based on the effective action for grav-
ity in the MRK. The effective action involves only those degrees of freedom
which are relevant for processes in the underlying kinematics. The analo-
gous effective action to that of Ref. [4] turned out to be a useful tool also
in the superstring approach to high-energy gravitational scattering [12].

3. The multi-Regge effective action for gravity

Since gravity is a gauge theory many of its properties have analogs in
Yang-Mills theory. This means that some methods which were originally
invented for Yang—Mills theory can also be applied in gravity. The effective
action approach [4] is an example of such a method. In the case of QCD
it provides a technique to go beyond the leading logarithm approximation
commonly used in studies of inelastic processes papg — koki...kn41 (see
Fig. 3) in the MRK. In this kinematics, the variables s = (p4 + pB)?, si =
(ki + ki—1)2,k; = ¢; — g;—1 satisfy in the following conditions

s> si~s;> | ~ddl, 4,i=0,1,.,n+1,

n+1 n
ki € kyicy, kei > kg, [ si=s]] <3, (3.1)
=1 =1

where k* is defined by the Sudakov decomposition
1
kH = ﬁ(k_,_pg + k_ply) + k. (3.2)

The effective Lagrangian for QCD in MRK was derived by Kirschner, Li-
patov and the present author from the original QCD Lagrangian {13]. Re-
cently, Kirschner and the author have shown, that in a similar way also the
effective Lagrangian for gravity in MRK can be obtained from the Einstein
Lagrangian [14]. Below I discuss the main points of this derivation.
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The starting point is the Einstein action. Because of the MRK it is
natural to perform all derivations in the axial gauge. We choose the light-
cone gauge with the momentum of an incoming particle as the gauge vector

1/2
(p = %( 1,0,0,—1)). The gauge fixing conditions are chosen as
g-—=g-i=0, g_y=2e¥/%, (3.3)

where the light-cone variables are defined as z4 = zg + 23. The physical
degrees of freedom can be represented by the two independent matrix el-
ements ¥11, 712, Where 7;; is defined by the transverse components of the
metric g;;,%,j5 = 1,2

gij = e? Yij det(y;;) = 1. (3.4)
Solving the constraints (3.3) one can eliminate g4 4,g+; and ¢ and the
Lagrangian will be expressed only in terms of the matrix elements v;;. We
parametrize them as

Yi; = (eh)ij’ SP h=0 ’ (35)

and we introduce the complex field h defined by the two independent ele-
ments of the matrix h;; as

h= %(hn — ihag). (3.6)
Complex notations will also be used for two-dimensional transverse mo-
mentum and position vectors (¢ = 2! + iz?,0 = 3%) as in [13]. Expanding
Einstein’s Lagrangian in powers of h and keeping all terms including the
quartic in h we arrive at the following starting point of our analysis
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L=LD LBy Oy
L® = — 2h*(8,8_ — 86*)h,
L£3) =2a{(8_h*0_h)8*20-*h+0_h*hO*20 " h—20_h*8*hd*8 *h+c.c.},
£ =20%{-2|672(8% h*8*8-1h — 82 8*h*h)|?
+|022(8% h*0*h — H_8*h*8_h)|?
+|0-1(8_h*8%h — 3*h*O_h)|® — 3|07 (8_h*0*h)}?
+30°1(8_h*0_h)O" (OR*0*h) + [0-%(8_h*O_h) — h*h]
X [Oh*8*h + 8*h*Oh — BO*O- h*O_h — H_R*D0*0” R]}.  (3.7)

In writing down Eq. (3.7) we included a factor (87G)!/2 into the definition
of h; a = (47 G )1/ 2, where G is Newton’s constant. Moreover, we assume for
simplicity of notation that the differential operators act only on the nearest
fields.

The fields in Eq. (3.7) as it stays contain all modes. So our aim is to
eliminate those degrees of freedom which are not present in MRK. Let us
first separate the fields modes according to the kinematics (3.1)

h— hy +h+ hy, (3.8)
where hy,h and h; contain the modes of the following momentum ranges

hy: |k+k_| > i"ilz ~ |9|2 ’
hilkpko —[k%] ~ g2,
he: [kik—] < |xf? ~ Jgf?. (3.9)

The field h; describes exchanged particles in ¢-channel whereas field h cor-
responds to the scattered particles. The “heavy” modes hy describe highly
virtual particles and these have to be integrated out.

Consider first the kinetic term of the Lagrangian (3.7). With the sepa-
ration (3.8) it decomposes as

L = _2h}(848_ — 88*)hy — 2h*(81.0- — H*)h + 2R DO hy. (3.10)

Although in the first term of (3.10) the longitudinal part of the d’Alembert
operator dominates, for the heavy modes also corrections proportional to
|k|?/k+k_ has to be taken into account.

The part of the triple interaction vertices £{3) (3.7) which leads to large
contributions is obtained when the inverse of J_ acts on the field with the
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smallest momentum component k_. In order to isolate this part L£B1) we
separate the modes in £3) by making the substitution

Here, h denotes the field with all modes i.e. those of h, hy and hy whereas
ht describes the fields carrying those modes of h and h; whose momentum
component k_ is, due to the MRK, much smaller than the ones in h. We
obtain )

LOP) =2a{T__A 4 - J A, -T* Ay - T_A%}, (3.11)
where the currents depending on the fields h are defined by
T__=08_h*0_h, T*=3(0-h*0*h+08*h*0_P),
T_ = (T*)*, J_=i(h* 8 _h), (3.12)
and those depending on the fields h; are given by formulae
Ay = 07%0"%h, + 8%h}), Al = —idZ'(0*%hy - 8°h}),
Ay =20719%h,, A% =20"10h; . (3.13)
We want to remark that the form in which Eq. (3.11) is written down em-
phasizes the underlying MRK: the currents (staying more) to the left carry
larger momentum components k_ than the ones (staying) more to the right
(see Eq. (3.1)). In the following formulae a similar ordering of longitudinal
momenta will also be assumed. Let us also observe that among the currents
(3.12) the light-cone component of the energy-momentum tensor 7 _ is of
the order k2 and provides the dominant contribution.

Using equations (3.11), (3.12), and (3.13) one can integrate over the
heavy modes h; by means of the saddle point method. To do so one needs
the equations of motion for those fields in the first perturbative order. The
kinetic part of Lagrangian describing the heavy modes h; is given by the ki-

netic term (3.10). The interaction vertices are obtained from the Lagrangian
£3+) (3.11) by means of the substitution

h—shy+h, (3.14)

and by keeping only terms linear in hy. For simplicity of notation we still
use the same symbol A even if this field does not contain heavy modes any

more. We obtain the following equation of motion for the modes h(lo)
(049 — 00" = —a{d_(9-hA++) + F0_h(0"A.)
~16_h 8AY - 8_(9*hAy) - 8(6-hAL)}. (3.15)
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The solution hgo) of the equation of motion is obtained by the formal in-
version of the d’Alembert operator. This has to be done with some care in
order to determine correctly not only the leading term but also the next-to-
leading term in the MRK. We write

1 1 a0

5.0- —05"  5.0. T (9,007 (3-16)

Although for the modes hy the first term in (3.16) dominates we also keep
the contribution given by the second term in (3.16) acting on the first term
on the r.h.s. of Eq.(3.15). Moreover, in writing down the solution of the
equation of motion we take into account that the momentum component
k_ of A is much smaller than the one of A whereas the situation is inverse
if we consider momentum components k4

W & — a{0_h8T Ay 4 — (840-R)0T2 A4y + 80" (AOT2 A4 1)
+ 3hOTN(8* Ay — 0A%) - 9*hOT Ay — 0RO AL — hOTTOAN Y.
(3.17)

The result of the integration over heavy modes £{1) is given by the kinetic
term with opposite sign for fields hgo) (3.17)

£ = 26%5,0_ — 5*)r". (3.18)

Calculating £(1) (3.18) we observe the cancellation of the dominant terms
involving third powers of the longitudinal momenta of the h fields. This
corresponds to the fact that in gravity there is no dipol radiation. Therefore,
the result for £(1) involves squares of longitudinal momenta of & and it can
be written as

L:(l) :CYZT__i—++,
Tip =— (07 A4y 8 _A4y)

+ {(9(3_:1.44..}_/{1 - u‘i++(9;l.,i1) + OA++8;26*A++ + c.c.}.
(3.19)

Let us now observe that, although we integrated out over heavy fields prop-
agating in the s-channel, Eq. (3.19) is factorized in the ¢-channel. This
result was expected, but in the actual calculations it emerges only after the
cancellation of many terms with different structure than those in formula
(3.19).
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The form of £(1) also suggests that this result can be obtained from a
Lagrangian which contains:
(a) the kinetic term for t-channel fields h; from Eq. (3.10),
(b) the leading triple vertex from Eq. (3.11)

3+ -
[’{ead)ing =2aT- Aty

supplemented by Eqs (3.12), (3.13) in which we restrict ourselves to
t-channel fields only,

(¢) the new induced vertex

)

ind

which is given by formula

£l = —ado*A__T,,. (3.21)
The newly introduced t-channel field A__ in Eq. (3.21) is defined as

A__ = 10%2(80*)72(8*%hy + 0%hY) = 102 (80%) 2 A4 4. (3.22)

--=2

From the vertices (3.20) and (3.21) one can read off the forms of the ef-
fective vertices describing scattering of gravitons off A 4 fields in ¢-channel
as well as the production of graviton from t-channel fields. Let us consider
the leading vertex (3.20) in which we restrict the modes of both fields ap-
pearing in T_ _ (see Eq. (3.12) to the modes of h fields only. This leads to
the effective scattering vertex of gravitons off the A4 | field

£t = 20T__ A4
T__ =0_h*0_h. (3.23)

The vertex (3.20) gives also a contribution £(3~1) to the production

vertex. It is obtained by restricting the modes of one field h to the modes of
the h field and keeping in the second field A only the modes of the h; field.
One gets

£(3_+) - —2a{3*2(A—— _ ’la_.A'._)h + c.c.}A++ ’ (3‘24)

where

AL = ~£0_(80*)"%(0*2hy — O%R}). (3.25)

As we are only interested in the leading order contribution to the effective
vertex the term involving the field A’ in Eq. (3.24) is neglected.

Also the induced vertex (3.21) contributes to graviton production. In
this case one of the fields in Z;, carries the modes h (A(*)) and the
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other the modes h, (A). The contributions where the modes h; are in
0-Ais, G;IA.H_ orin A4, A% are small. Thus we have
TP = —2000"A__[9_077A) AL,
+{-0(07 A" AL 1) + 87%0" AL 04 4 +c.c}].(3.26)
Taking into account that §,8_ ‘- =~ 88* on the h fields, one can rewrite
Eq. (3.26) as
LOTH) = 2000 A__[0"072h0A, 4 — 8* (0 hALL) + ccl.  (3.27)
ind = -- ++ ++)+ece]. (3

The sum of this expression together with Eq. (3.24) leads to the following
effective graviton production vertex

L) = 2a(8"2A__8% A,y — 80" A__00" A1 )0 2h +cc.. (3.28)

Let us note that the production vertex (3.28) contains the non-local
expression 072h. As our aim is to have an effective Lagrangian which is
local we introduce a new s-channel field ¢ defined as

¢ = -ggh (3.29)

(compare [13]). In this way we obtain the following kinetic term for the
s-channel fields

L = _24*(9,0_ — 09%)9%9*2 4, (3.30)

the scattering vertex off A, | fields
L£OT) = 208_0*2¢*0_0%¢ A, , (3.31)
and the production vertex

L) = 20(8*2A_ _8% Ay, — 00" A__80* Ay )d+cc..  (3.32)

In order to complete the derivation of the effective Lagrangian we have
to determine the vertex £{3~) describing graviton scattering off the field
A__. The easiest way to obtain the form of this vertex is to use parity
invariance of the theory. This invariance implies that £(3) is obtained from
£31) (Eq. (3.31)) by the simultaneous exchange of + «+ — and ¢ « ¢*

L£O7) = 20A__0,.0"248,6%". (3.33)
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However this way to derive £(*~) is not satisfactory. The reason is that
our derivation of the effective Lagrangian is performed in the peculiar axial
gauge (3.3) which breaks the + <> — symmetry of the whole procedure. Of
course the final result does not depend on this choice of gauge but expres-
sions in the intermediate steps are gauge dependent. Therefore, to check
the consistency of the method it is necessary to reproduce the vertex £(*~)
(3.33) by careful collecting all ingredients which contribute to it. It turns
out that the scattering vertex £(*1) (3.31) is obtained in a rather straight-
forward way whereas many terms contribute to the vertex £{*~). This is
due to our gauge choice (3.3). Since this part of our derivation is rather
technical and tedious I shall not discuss it here in details (see Ref. [14]). In-
stead I only want to present the main idea. It consists in studying the MRK
contributions from all quartic terms. One source of such terms is the quar-
tic part in the original Lagrangian (3.7). The second part is obtained as a
result of the integration over heavy modes. It is given by Eq. (3.19) in which
all fields carry modes of h fields, supplemented by the MRK-condition that
the fields staying more to the left have larger k_ momentum components.
The third part of the quartic terms is obtained as a result of exchanging a
h: field between the leading part of the vertex £(31) — this vertex involves
two h fields with large k_ momentum components — and the whole vertex
£G) (3.7) — this vertex involves one field h; and the remaining fields of h
type. The momentum components k_ of the fields entering the vertex £(3)
are all of the same order, but they are much smaller than those in the ver-
tex L), After analogous factorization as in Eqs (3.19), (3.20) and (3.21),
the sum of these three contributions leads to an expression from which one
gets precisely the scattering vertex £33 in Eq. (3.33). The consistency of
the calculations also requires that the ¢-channel fields A, and A__ have
to be treated as independent fields, despite the fact that they were origi-
nally defined by Eqs (3.13) and (3.22) in terms of the same field h;. This

requirement leads to the kinetic term [’gz) for those fields

£P =24, ,00"A__, (3.34)

which differs by a factor 2 from the expression obtained by formal sub-
stituting definitions (3.13) and (3.22) into Eq. (3.10). This completes the
derivation of the effective Lagrangian £(*f) for gravity in the MRK. It is
given by the sum of the terms

F Sy Oy O O B C I Ca o (3.35)

where the elements of the sum are given by Eqgs (3.30), (3.34), (3.31), (3.33),
and (3.32). Let us also emphasize that it would very desirable to have a
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derivation of the effective Lagrangian (3.35) which is not based on some
peculiar choice of gauge. In this case one could perhaps avoid some technical
complications encountered in the present method.

The author is grateful to the organizers of the school for invitation
and hospitality. He thanks also Roland Kirschner and Lev Lipatov for
collaboration and many useful discussions.

REFERENCES

(1] L.N. Lipatov, Sov. Phys. JETP 55, 582 (1982); L.N. Lipatov, Phys. Lett.
116B, 41 (1982).

[2] D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. 197B, 81 (1987); Int. J.
Mod. Phys. A3, 1615 (1988); Phys. Lett. B216, 41 (1989).

[3] Ya.l. Asimov, Zh. Eksp. Teor. Fiz. 43, 2321 (1962); S. Mandelstam, Nuovo
Cim. 30, 1127 (1963); V.N. Gribov, I.Ja. Pomeranchuk, K.A. Ter-Martirosyan,
Yad. Fiz. 2, 361 (1065).

[4] L.N. Lipatov, Nucl. Phys. B365, 614 (1991).

[5] H.M. Fried, Functional Methods and Models in Quantum Field Theory, The
MIT (1972).

[6] D. Kabat, M. Ortiz, Nucl. Phys. B388, 570 (1992).
[7] G. t’Hooft, Phys. Lett. 198B, 61 (1987).
[8] P.C. Aichelburg, R.U. Sexl, Gen. Relativ. Gravitation 2, 303 (1971).
[9] 1. Muzinich, M. Soldate, Phys. Rev. D37, 353 (1988).
[10] E. and H. Verlinde, Nucl. Phys. B371, 246 (1992).
[11] D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B289, 87 (1992).
[12] D. Amati, M. Ciafaloni, G. Veneziano, Nucl. Phys. B403, 707 (1993).
[13] R. Kirschner, L.N. Lipatov, L. Szymanowski, Nucl. Phys. B425, 579 (1994);

Phys. Rev. D51, 838 (1995).
[14] R. Kirschner, L. Szymanowski, Phys. Rev. D52, 2333 (1995).



