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Composite fermion, which is an electron carrying an even number of
vortices of the many body wave function, is a new kind of topological
particle, formed in a range of parameters when electrons in two dimen-
sions are subjected to a strong magnetic field. The composite fermions
have the same charge and statistics as electrons, but differ from electrons
in the important respect that they experience a drastically reduced mag-
netic field. This article gives an elementary introduction to composite
fermions and describes how they help gain a simple understanding of the
dramatic phenomena exhibited by two-dimensional electrons in high mag-
netic fields. It is based on lectures given at the “XXXV Jubilee Cracow
School of Theoretical Physics” in Zakopane, Poland.

PACS numbers: 73.40.Hm

1. Introduction

The first task in approaching any problem in physics is to decide what
variable to use in the formulation of the problem. This issue is of primary
importance, since the physics can appear extremely complicated in terms
of one set of variables yet delightfully simple in another. In general, the
objective is to find a set of variables which are ‘weakly coupled’, i.e., the
qualitative physics is well described even if the interaction between these
variables is completely neglected. These will be called the relevant particles
of the problem. Once this is accomplished, an effectively single particle
description of the qualitative features of the system in question becomes
possible.

* Presented at the XXXV Cracow School of Theoretical Physics, Zakopane,
Poland, June 4-14, 1995.
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The choice of the relevant particles is usually made by a close inspec-
tion of experiments. We confine our discussion below to condensed matter
systems. Perhaps the simplest example is that of lattice vibrations. A ne-
glect the coupling between different atoms (the Einstein model) will produce
incorrect low-energy spectrum and low-temperature specific heat. The ap-
propriate set of variables are the normal modes, i.e., the phonons, which
can be taken as non-interacting to a good first approximation. Same is
true for single spin flips versus magnons (spin waves). Both the phonons
and magnons can be obtained by diagonalizing simple Hamiltonians with
nearest neighbor couplings.

In electronic systems, the relevant variables are not so obvious, at least
in the beginning, and can usually not be obtained rigorously by solving
a Hamiltonian. Here, one essentially postulates their existence based on
experiments, and then tests the consequences both theoretically and exper-
imentally. The best known example is that of interacting electrons in a
normal conductor. At one time, it was a mystery why the noninteracting
model worked so well here. Landau explained that the noninteracting ob-
jects are not really electrons, but entities similar to electrons, called “Landau
quatiparticles”. ILe., the interacting electrons resemble weakly interacting
Landau quasiparticles. In this instance, the relevant particles turn out to be
qualitatively similar (and perturbatively connected) to electrons, but this
need not be the case in general. A superconductor is, for example, described
in terms of a weakly interacting gas of charge-2e boson-like Cooper pairs.
In fact, one can designate as ‘strongly correlated’ those systems in which
the ‘output’ particles, i.e., the particles in terms of which the physics is
described most simply, are qualitatively different from the ‘input’ particles,
which appeared in the definition of the problem.

Here we consider the problem of interacting electrons in two dimensions
exposed to a strong magnetic field. In this case, the kinetic degree of freedom
is quenched, and all of the physics arises from the interelectron interaction.
There is no small parameter here; the interaction is not small compared to
any other energy scale in the problem, for the simple reason that no other
relevant energy scale exists. A perturbative treatment of the interaction,
like that in Landau’s Fermi liquid theory, is therefore not possible. At the
first glance, one might feel that the problem is hopelessly complicated. This
system, however, exhibits remarkably simple behavior, strongly suggesting
that a simple description of the relevant physics ought to be possible. Recent
developments have shown that this is indeed the case. The strongly corre-
lated liquid of electrons is well described in terms of a weakly interacting
gas of a new type of particles, called “composite fermions”. The composite
fermions have the same quantum number as electrons, but are qualitatively
distinct from the electrons in their property that they experience a much
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reduced electromagnetic field. The purpose of this article is to provide an
introduction to composite fermions, discuss how they explain several exper-
imental facts quite straightforwardly, and describe the comparison of the
composite fermion theory with the exact theoretical calculations. Only the
essential results will be given here in some detail.

2. Phenomenology of quantum Hall effect

Two-dimensional electrons display quantum Hall effect (QHE) when
subjected to an intense transverse magnetic field. The Hall resistance [1]
has plateaus at the quantized values

h
Ry = f_ei ) (1)
where f is either an integer [2], or a simple ratjonal fraction [3]. The for-
mer is called the integer QHE (IQHE) and the latter the fractional QHE
(FQHE). The prominent fractions appear in certain sequences, some of
which are:
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All observed fractions with f < 1 have odd-denominators. The longitudinal

resistance in the plateau region vanishes exponentially with temperature.
Fig. 1 shows the QHE in its full splendor [4].
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Fig. 1. A plot of the Hall and the longitudinal resistances, R,y and R;;. Source:
Ref. [4], with permission.
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3. Composite fermions

Prior to the CF theory, the FQHE and the IQHE were treated as two
distinct phenomena, and there was no satisfactory overall understanding of
the FQHE. (For a review of the pre-composite fermion theories, see Ref. [5]).
The concept of composite fermions was originally postulated in order to
provide a unified description of the QHE, in which the FQHE of electrons
is equivalent to the IQHE of composite fermions [6].

We will assume below, unless explicitly stated otherwise, that the mag-
netic field is sufficiently large to polarize all electrons. In other words, we
will consider spinless particles (both electrons and composite fermions).

A composite fermion is an electron carrying an even number (2m) of
vortices of the many-electron wave function. It is a collective quantum-
mechanical object, but behaves nonetheless like a particle. Its fundamental
defining properties are: (a) It has the same quantum numbers as an elec-
tron, t.e., charge —e and spin 1/2. (b) It obeys fermionic statistics. (c) It
experiences an effective magnetic field

B* = B - 2mp¢y, (2)

where B is the external magnetic field (as experienced by the electrons), p
is the (area) density of electrons (or composite fermions), and ¢9 = hc/e
is the quantum of flux. (d) In the presence of an applied electric field,
E, composite fermions also experience an effective electric field, E*, given

by [7] .
E_E (3)

B* B

The origin of the first two properties is obvious, since the composite
fermion is nothing but a screened electron. The property (¢), which differ-
entiates a composite fermion from an electron, follows from the feature that
the screening occurs in a very special way, through a dressing of each electron
by an even number of vortices (converting it into a composite fermion). As
the composite fermions move around, the vortices bound to them produce
extra phases, which partly cancel the Aharonov-Bohm phases produced by
the external field. It therefore seems as though the composite fermion were
moving in a reduced effective magnetic field. In order to compute this field,
take a composite fermion around a closed loop of area A. The Aharonov-
Bohm phase associated with this path is 2r AB/¢$¢. There are pA composite
fermions inside the loop with a total of 2mpA vortices bound to them. Since
each vortex gives a phase —2x, the net phase from the vortices is —4mmpA.
Equating the total phase to 2r AB*/¢q gives the above formula for B*.
The renormalization of the electric field can be seen as follows [7]. For a
crossed electric and magnetic field, the magnitude of the current density in
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a translationally invariant system is pev = pecE /B, since the electric field,
and consequently the current is zero in a frame of reference moving with a
velocity v = ¢E /B (in a direction perpendicular to the plane containing the
electric and magnetic fields). This result is general, independent of the in-
terelectron interactions, implying that the current is the same for composite
fermions as for electrons. Consequently, the electric field experienced by the
composite fermions must be renormalized according to the above equation.
In effect, while the cyclotron orbit of a composite fermion is determined by
B*, its drift velocity is the same as that of an electron.

The “intrinsic” charge of the composite fermion, which determines its
coupling to the external electromagnetic field, is universally —e, as used
in the derivation of Eq. (2). Another important quantum number is the
“local charge” of the composite fermion [7], which is equal to its intrinsic
charge plus the charge of the screening cloud. It is not listed as one of the
fundamental properties of the composite fermion, since (i) it is not always
sharply defined, and (%) its value depends on the screening properties of
the background CF state. The local charge of a composite fermion residing
on the background of the n filled CF-Landau levels is quantized, given by
|e*| = e/(2mn + 1), as can be shown by a simple counting argument [8, 7].
Thus, in a sense, the dielectric constant of an incompressible CF state is
quantized. For a composite fermion in a compressible CF state, the local
charge is not a sharp observable (even though the intrinsic charge is).

In the presence of a transverse magnetic field, electrons form Landau
levels (LL’s) [9], with the degeneracy per LL per unit area given by Be/hc.
The nominal number of filled LL’s, called the filling factor, is

pdo

v=p. (4)
The composite fermions are formed approximately in the filling factor range
1 > v > 1/5 in the lowest LL, and also in certain smaller ranges of filling
factors greater than unity. (For very small fillings, » < 1/5, the lowest
energy state is a Wigner crystal.) The composite fermions form LL’s in the
reduced magnetic field B*, which will be called CF-LL’s to distinguish them
from the electron LL’s. (Note that the composite fermions can fill several
CF-LL’s even when electrons are confined to their lowest LL.) Noting that
B* can be either positive or negative, the CF filling factor is given by

* P¢0
= o8 (5)

Eq. (2) can be expressed as a relation between v and v*:

™.

SU L 6
2m|v*|+ 1’ (6)

v
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where the + (—) sign corresponds to positive (negative) B*.

The composite fermions are generated dynamically as a result of the
repulsive Coulomb interaction between electrons. This will become clearer
in a later section, when we write the wave functions of composite fermion
states, which illustrate how binding of vortices to electrons helps them stay
away from one another. The wave functions will also clarify why a binding
of an odd integer number of vortices is not allowed, due to the requirement
of antisymmetry of the electronic wave function.

It is often intuitively useful, though not literally correct, to view the
composite fermion as an electron carrying an even number of flux quanta;
this model produces the correct phases as the composite fermions move
around. In this picture, electrons absorb part of the external magnetic
flux to become composite fermions, which then move in the weaker residual
magnetic field.

Without much further ado, we now show how the CF hypothesis pro-
vides back-of-the-envelope explanations of a large number of experimental
facts, confirming that the composite fermions are indeed the elementary
particles of the FQHE.

4. Experimental evidence for composite fermions
{.1. FQHE

The CF theory produces a simple understanding of the FQHE. Let us
first state, without proof, the conditions for the QHE [10]. A quantized
Hall plateau at Ry = h/fe? is obtained if a sufficiently weak disorder is
introduced in a system which has a gap in the excitation spectrum at v = f
in the absence of disorder. For noninteracting electrons, there is a gap in
the excitation spectrum when the system consists of an integer number of
filled LL’s, i.e., when v = n. This results in the IQHE. No other quantized
plateaus are possible for noninteracting electrons.

In the lowest LL of electrons, we assume that composite fermions are
formed, with their filling factor given by v*. A gap appears whenever com-
posite fermions fill an integer number of CF-LL’s. Filled CF-LL’s of com-
posite fermions correspond to electron filling factors of

n

f:2mn:t1' (7)

These, along with the states f = 1 — (n/2mn £ 1), related by particle-hole
symmetry in the lowest LL (LLL), are called the principal fractions, and
produce the sequences of observed fractions. The FQHE of electrons is thus
simply the IQHE of composite fermions. Note that only odd-denominator
fractions are obtained, in agreement with experiments.
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4.2. Transitions between plateaus

At the transition from one FQHE state to the next, the Hall resis-
tance jumps from one plateau to another, and the longitudinal resistance
exhibits a peak. In the CF theory, this transition is simply the transi-
tion between f* = n IQHE of composite fermions to f* = n + 1 IQHE
[11]. For low-disorder samples, it is expected to occur when the CF-Fermi
level passes through the extended states, which happens (in the simplest
scenario) at ¥* = n 4 1/2. This corresponds to the electron filling fac-
tor v = (2n + 1)/[2m(2n + 1) + 2]. This prediction has been found to be
in excellent agreement with the experimental positions of the longitudinal
resistance peaks [12]. Engel et al. [13] have found that the temperature
dependence of the width of the transition region is characterized by the
same exponent in the FQHE regime as in the IQHE regime, which is also
naturally explainable within the CF framework [11]. Recently, Rokhinson
et al. [14] have investigated the conductivity peak heights in the FQHE
regime, and confirmed their relation with the peak heights in the IQHE
regime, derived in Ref. [15]. The knowledge of peak positions also tells us
the widths of various plateaus in low-disorder samples.

4.3. Gaps

An important experimentally measurable quantity is the gap of a FQHE
state. As we will see, the CF theory gives accurate wave functions for the
ground and the excited states, and therefore, can, in principle, provide
reasonable estimates for the gaps in the small disorder limit. Bonesteel [16]
has computed the gap for the 1/3 state using the CF wave functions, which
agrees well with that obtained by other means [17]. However, for technical
reasons, a computation of the gaps of the other FQHE states has proven to
be a formidable task.

Halperin, Lee, and Read [18] have suggested a simple picture in which
the gap of a FQHE state is viewed as the cyclotron energy of the composite
fermions. The gap of the n/(2mn + 1) state is

hor =5
mTc

[o4

(8)

where m* is the effective mass of the composite fermion, and hw} is the
CF-cyclotron energy. Du et al. [19] determined the gaps of five members
of the principal sequences for two different samples and found that they
are well approximated by hw} — I', where I' is a constant. This fits nicely
with the above prediction, provided I is interpreted [19] as the disorder-
induced broadening of the CF-LL’s. The effective mass estimated from these
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experiments is roughly an order of magnitude larger than the band mass of
the electron in GaAs.

4.4. Shubnikov-de Haas oscillations

Leadley et al. and Du et al. [20] have successfully analyzed the minima
and maxima around v = 1/2 in terms of the Shubnikov—de Haas oscillations
of composite fermions, in analogy to the Shubnikov—de Haas oscillations of
electrons near B = 0. This also allows a determination of the effective mass
of composite fermions, which is in general agreement with the mass obtained
from the gap measurements.

4.5. Fermi sea of composite fermions

Even though there is no kinetic energy in the problem of interacting
electrons in the LLL, the interaction energy between electrons effectively
acts as the kinetic energy of composite fermions, as evidenced by the for-
mation of the LL’s of composite fermions. A limiting case, with B* = 0
or v* = o0, corresponds to ¥ = 1/2m. Provided the CF description con-
tinues to be valid here, composite fermions will fill an infinite number of
CF-LL’s, or, in other words, form a Fermi sea. Halperin, Lee and Read [18]
(also see Kalmeyer and Zhang [21]) investigated the Fermi sea at v = 1/2
theoretically and concluded that it is stable and has a sharp Fermi surface.
It is analogous to the Fermi sea of electrons at B = 0, with the difference
that the composite fermions at B* = 0 are fully spin-polarized, while the
electrons at B = 0 are spin-unpolarized. As a result, the Fermi wave vector
of composite fermions is k3 = V2 kg, where kp is the Fermi wave vector
of electrons at B = 0.

Three recent experiments [22-24] have confirmed the existence of com-
posite fermions in the compressible region near B* = 0 (that is, near
B = 2p¢g) by observing the cyclotron motion of composite fermions at
small B*. As the magnetic field is moved slightly away from B* = 0, com-
posite fermions are expected to execute a cyclotron orbit with radius

kg

B :heB* )

(9)

Since k% = v/2kFp, the cyclotron radius of composite fermions at B* is equal
to that of electrons at B = B*/+/2, so that the structures near B = 0 and
- B* = 0 should look similar provided they are plotted on scales differing
by a factor of v/2. The experiments in [22] and [23] are based on rather
simple ideas. Goldman et al. [22] observe magnetic focusing of composite
fermions near v = 1/2. The experimental set-up is shown in Fig. 2; the



Composite Fermion Theory of Fractional Quantum Hall Effect 2157

current flows from 1 to 2, and the voltage is measured between 3 and 4. Near
B = 0, a number of quasiperiodic peaks are observed (lower panel of Fig. 2),
which occur at those values of B where the electrons coming straight out
of the left constriction are focused into the right constriction, possibly after
several specular reflections from the gate. Similar quasiperiodic structure
was observed near B* = 0 (upper panel). Kang et al. [23] study transport in
antidot superlattices. The resistances near B = 0 and B* = 0 are shown in
Fig. 3. Near B = 0, peaks in the resistance occur when the cyclotron orbit
is commensurate with the lattice; some of the most relevant commensurate
orbits are shown in the figure. Similar dimensional resonances of composite
fermions show up near B* = 0. A close correspondence between the electron
and the composite fermion peaks is evident in both Figs 2 and 3.

R (2:0,3.4) (k)

0.0 -1

L
0.0 02
Magnetic Field (tesla)

Fig. 2. The resistance R(;_1;3_4) = Va4/I21 for the magnetic focusing sample shown
in the inset. The lower trace shows focusing peaks of electrons near B = 0, and
the upper trace shows focusing peaks of composite fermions near B* = 0 (that
is, near v = 1/2). The B and B* scales differ approximately by a factor of V2.
A qualitative difference between the positive and negative B* (that is, between
v > 1/2 and v < 1/2) is evident, as is the one-to-one correspondence between
several composite fermion and electron focusing peaks. Source: Ref. [22].

These experiments lead to the following conclusions: (i) Composite
fermions exist in the region near v = 1/2, as follows from the fact that
the cyclotron dynamics of the charge carriers is described by the effective
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Fig. 3. The resistance of an antidot superlattice, shown in the inset, in the vicinity
of B = 0 (lower curve) and B* = 0 (upper curve). The scales for B and B* differ
by a factor of v/2. The vertical dotted lines show the peaks corresponding to the
smallest commensurate cyclotron orbit, enclosing only one antidot (see inset). The
composite fermion peaks for other cyclotron orbits (e.g., those enclosing four or
nine antidots) are nat seen presumably because of the relatively small mean free
path of composite fermions. Source: Ref. [23].

field B* rather than the external field B. (ii) The intrinsic charge of the
composite fermion is —e (as determined from the cyclotron radius). (7))
The statistics of the composite fermions is fermionic, as indicated by the
measurement of the Fermi wave vector. (7v) A quasiclassical description
also applies to composite fermions. The quasiclassical cyclotron orbits of
composite fermions are quantized at larger B* to produce CF-LL’s, resulting
in the FQHE.

Finally, the fact that the Hall resistance of the composite fermions is
the same as that of electrons can be understood in terms of an effective
electric field; both B* and E* approach zero as v — 1/2, but the ratio,
which determines the current, remains equal to E/B. The renormalization
of the electric field must be considered at other filling factors as well, to get
the correct Hall resistance [25].

Other experiments near v = 1/2 have also been analyzed in terms of
composite fermions. In particular, Ying et al. [26] have found that the
thermopower can be understood nicely using the independent CF picture.

The CF theory thus provides a coherent account of experiments. Next
we show that it also leads to a simple microscopic description.
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5. Theoretical tests

Theoretically, the aim is to solve the quantum mechanical problem de-
fined by the Hamiltonian

1 e?
H=33Y — (10)

b
.
j#k IE

within the Hilbert space of the lowest LL. This Hamiltonian is obtained
in the limit B — oo, when the electrons are confined to the LLL; the
kinetic energy is then an irrelevant constant. Given the extremely large
degeneracy in the absence of interactions, it should not come to anyone as a
surprise that this problem is not ezactly solvable. However, as will be seen
below, a tremendous insight into its eigenspectrum and the structure of the
low-energy eigenstates can be gained based on the single assumption that
composite fermions are formed.

5.1. Wave functions of composite fermions

The wave functions of noninteracting composite fermions [6] at v* are,
as one may guess, related to those of noninteracting electrons at »*. In fact,
the former are obtained from the latter by attaching 2m vortices to each
electron, which amounts to multiplication of the noninteracting electron
wave function by the Jastrow factor

D™ = H(zj — zk)?™. (11)

i<k

To see how this factor binds 2m vortices to each electron, fix all z;’s except
z1. As z; is taken in a closed loop around any other electron, D™ contributes
a phase of 4mm, i.e., each electron sees 2m vortices on every other electron.
(By definition, a closed loop around a unit vortex produces a phase of
1+27.) Denote the many-particle Slater-determinant states of noninteracting
electrons at filling factor v* by @,-. This produces

Ql?xf‘proj,u* = H (Zj - zk)zmév* =D"P,x. (12)
i<k

This wave function is not restricted to the LLL of electrons, however. Since
we will be interested in the B — oo limit, we project #°F . on to the LLL

unproj
to obtain the wave functions of composite fermions at v*, $°F, which are
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identified with the LLL eigenstates of interacting electrons, x. This leads
to the master equation

x, = 8F =P [[(zi = 2)™ &+, (13)
i<k

or, in shorthand,
x = ¢F = PD™$.

Here, P is the LLL projection operator. The right-hand-side of this equa-
tion is completely known; it involves the eigenstates of the solvable prob-
lem of noninteracting electrons at v*. For the special case of v* = 1, the
ground state wave function of composite fermion is identical to the cele-
brated Laughlin wave functions [27].

It is possible to see here how the electrons reduce their interaction en-
ergy by capturing vortices and turning into composite fermions. Imagine
bringing two composite fermions close to one another and denote the dis-
tance between them by r. Then, the CF wave function foproj vanishes
as a high power of r (as 2™%1) and therefore, the probability of electrons
coming very close to one another is small. It must further be assumed that
the projection on to the LLL does not destroy these nice correlations built
into the CF wave functions. This simple argument, of course, does not prove
that the nature chooses the CF route, rather than some other more clever
way. The validity of the CF theory can be established only from a detailed
and careful examination of its consequences both experimentally and theo-
retically. Our discussion of experiments above leaves little doubt that the
CF description is qualitatively valid in the range of parameters where the
FQHE is observed. Below, we test the CF wave functions quantitatively.

The CF wave functions, as the reader may have noticed, contain no
fitting parameter, and therefore cannot be improved in any natural way.
This lack of a tunable parameter may appear to be a shortcoming of the
theory, but actually turns out to be one of the strong points, since, as we
will see below, the CF wave functions are extremely accurate as they are.

5.2. Numerical tests

Now we come to a comparison of the CF theory with numerical diago-
nalization studies. While such studies have the disadvantage that they deal
with finite systems of usually fewer than ten electrons, they have the virtue
of being exact. Note that the relevant correlation length of the FQHE sys-
tem is finite due to the presence of a gap, and, in a range of parameters, the
numerical systems are already large compared to this length, 1.e., effectively
thermodynamic.
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The CF theory will be compared with numerical calculations at two
levels. First is the verification of the qualitative predictions of the theory,
and the second concerns the microscopic CF wave functions. Instead of con-
sidering several correlation functions, we will simply compute the overlap
between the CF wave function and the corresponding Coulomb eigenstate
obtained numerically. A near unity overlap will guarantee that all corre-
lation functions as well as the energies of the Coulomb system are well
approximated by those of the CF system. All results given below are exact,
in the sense that both the Coulomb eigenstates and the CF wave functions
are evaluated exactly.

5.3. Spherical geometry

A convenient geometry for the calculations is the spherical geometry [28,
29], which considers N electrons moving on the surface of a sphere under
the influence of a radial magnetic field. The flux throught the surface of the
sphere, in unit of the flux quantum, is denoted by 2q, where ¢ is either an
integer or a half integer. The eigenstates are labeled by their orbital angular
momentum, L. The CF wave functions can be translated into the spherical
geometry; the details can be found in Refs [30-32]. The relation between B
and B* is written as

The CF theory thus implies that the system of interacting electrons at ¢
resembles that of weakly interacting composite fermions at g*.

Fig. 4 shows the exact eigenspectrum of eight interacting electrons for
several values of ¢, taken from [33]. Each dash represents a multiplet of
2L + 1 states. It is noteworthy that some multiplets split off from the quasi-
continuum to form a low energy band. The number of states in this band
and their quantum numbers change from one value of ¢ to another.

Fig. 5 shows the eigenspectrum of eight noninteracting fermions at the
corresponding values of ¢*. Only the lowest energy states are shown (the
other states are separated from these states at least by the cyclotron en-
ergy). The reader will notice that these states are in a complete one-to-one
correspondence to the low-energy states of interacting electrons in Fig. 4.
This has been found to be the case in a large number of studies so far {3032,
34-36], and demonstrates, in a model independent manner, the formation
of composite fermions.

The states in Fig. 5 are uniquely determined by symmetry alone; they
do not depend on the form of the interaction. Starting from each state,
we construct the CF wave function according to (the spherical version of)
Eq. (13), and compute its overlap with the corresponding exact Coulomb
eigenstate of Fig. 4. The overlaps are depicted on the Fig. 5 and show that
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Fig. 4. This figure shows the low-energy spectra of eight interacting electrons on
the surface of a sphere at various values of g. The states below the dash-dotted line
form the lowest band. The energies are in units of e?/ero where € is the dielectric
constant of the background material and rq is the magnetic length. Panel (a)
corresponds to v = 1/3 and (f) to v = 2/5. Taken from Ref. [33].
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Fig. 5. This figure shows the ground states of eight noninteracting fermions at
the values of ¢* corresponding to the ¢ of Fig. 4. There is a complete one-to-
one correspondence between the lowest bands of Fig. 4 and Fig. 5. The overlaps
between the CF states and the corresponding Coulomb states of Fig. 4 are shown
on the figure, taken from Ref. [30].

the CF wave functions are almost exact. We emphasize again that the CF
wave functions contain no fitting parameters and the Coulomb eigenstates
are evaluated without any approximation.
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If the composite fermions were completely non-interacting, the low-
energy states in Fig. 4 would be degenerate. The amount by which the
degeneracy is lifted provides a measure of the residual interaction between
the composite fermions. The composite fermions are weakly interacting in
the sense that the splitting between the low energy states is small compared
to the gap separating them from the other higher energy states.

5.4. Disk geometry

The initial numerical calculations for the FQHE were performed for an
electron droplet on a disk {27, 37]. Several downward cusps were observed in
the plot of energy as a function of the total angular momentum. However,
except for the Laughlin states, it was not clear how to interpret the other
states. In particular, it was not known how to assign filling factors to the
cusps. This was the main reason why compact geometries, e.g. spherical,
became more popular. This subsection shows that the CF theory explains
the positions of the cusps [38, 39].
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Fig. 6. This figure shows the Coulomb energy of 7 interacting electrons at L,
along with the kinetic energy of seven noninteracting composite fermions at L* =
L — N(N —1). The kinetic energy of noninteracting composite fermions at L* is
the same as that of noninteracting electrons at L*, but with the cyclotron energy
of electrons replaced by a suitable effective cyclotron energy of composite fermions.
The quantity a is the effective magnetic length depending on the external magnetie
field and the confining potential of the quantum dot (it is equal to the magnetic
length ro in the absence of confinement). The CF curves have been vertically
shifted for clarity. Source: Kawamura and Jain, Ref. {42].
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In the disk geometry, it is convenient to label states by their total
angular momentum. Then,

x, = 85F =P [[ (2 — 2)* ™, (15)
i<k
L=L*+mN(N-1), (16)

where &1« is the wave function of noninteracting electrons with total an-
gular momentum L*. Any arbitrary L can be related to L* in the range
—-IN(N-1)<L*< 3N(N — 1) with a suitable choice of m.

Fig. 6 plots the kinetic energy of the ground state of noninteracting spin-
less composite fermions at L* (which is the same as the kinetic energy of
spinless electrons at L*, but with the cyclotron energy replaced by an effec-
tive cyclotron energy) and the interaction energy of interacting electrons at
L (computed with the LLL restriction). A striking correspondence between
the two curves is evident. In particular, all cusps are predicted correctly.
The CF wave functions associated with several cusps have been compared
with the exact eigenstates, and found to be quite accurate {40, 39].

8. Conclusion

Above we described a model in which the composite fermions are mod-
eled as electrons carrying 2m vortices. This suggests wave functions, which
were shown to be remarkably accurate. A vortex can often be represented
by a magnetic flux quantum, since a loop around a flux quantum also pro-
duces a phase (which is the Aharonov-Bohm phase) of 2x. This suggests
that the composite fermion can also be thought of as an electron carrying
2m flux quanta, which is in fact how they were first envisioned [6]. This
model is very conveniently incorporated in a CF-Chern-Simons field theo-
retical approach [41]. At the mean field level, one obtains fermions moving
in a reduced effective magnetic field. Perturbation theory is usually carried
out at the RPA level. This approach will be described in the lectures of
Prof. Halperin.

In summary, the following picture has emerged. First, electrons form
Landau levels due to a quantization of the kinetic energy, producing the
IQHE. Within the lowest Landau level, in a broad range of filling factors,
electrons find it energetically favorable to transform into composite fermions
by capturing an even number of vortices of the wave function. Despite their
quantum mechanical, topological and collective character, the composite
fermions behave, to a great extent, as ordinary, noninteracting particles
moving in an effective magnetic field, producing a number of spectacular
effects.
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