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In this talk I would like to report a set of new developments in the
Lund Model for Quark and Gluon Interactions. We feel that by the com-
pletion of the Linked Dipole Chain Model (developed together with G.
Gustafson and a graduate student J. Samuelsson) we have a complete de-
scription of all kinds of perturbative QCD interactions (although only a
few are reported in my talk) in terms of dipoles. This model describes the
evolution of the wave function (or rather the square of it as measured by
the partonic structure functions) in terms of space-like cascades of con-
nected dipoles with both a mass and a virtuality. In the same way the
Lund Dipole Cascade Model, which has been presented before repeatedly,
describes the time-like perturbative cascades in terms of the building of
dipoles decaying into smaller dipoles until the fragmentation process into
hadrons (“the ultimate dipoles”) sets in.

PACS numbers: 12.39.-x, 12.40.-y

1. Introduction
1.1. Preliminaries on dipoles

In the Lund Model for Quark and Gluon Interactions we have until re-
cently only been able to treat the fragmentation process together with the
production of the partonic states relevant to et e~ -annihilation reactions
(although we have by means of the Soft Radiation Model, as implemented
in the Monte Carlo simulation program ARIADNE also considered some
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Deep Inelastic Scattering reactions). In this talk I would like to describe
a new model, the Linked Dipole Cascade Model (developed together with
G. Gustafson and a student J. Samuelson in Lund) which is meant to de-
scribe in a very general framework the Deep Inelastic Scattering states.

Before I start with the model I would like to make the comment that
with the completion of this model one may say that all the features of the
Lund Model correspond to a description of QCD in terms of (color) dipoles.

To obtain the partonic states in the “time-like” cascades (which are
the ones relevant to et e~ -annihilation reactions) we have made use of the
Dipole Cascade Model (which also is implemented in ARIADNE). In this
model the original color (33) (quark, ¢, anti-quark, §) pair, which is ex-
cited out of the vacuum by the annihilation, immediately starts to move
apart. In accordance with the dictum in a gauge theory that all charges
must “carry” a Coulomb field there will be fluctuations in the production
of the field, implying that the charges will start to emit (coherent) gluonic
bremsstrahlung, i.e. a color 8 gluon, g; (index 1 stands for “the first”).

At this point there is a major difference between the Abelian gauge
theory, QED, and a non-Abelian gauge theory like QCD. The gauge bosons
in QED are chargeless so that the current in QED is, besides recoil contri-
butions, the same after the emission. For QCD and any non-Abelian gauge
theory the gluons are charged and therefore in principle there is a major
change in the current by the emission. But “then a miracle occurs” (as the
Europeans would say) or “there is for once a free luncheon” (as the Ameri-
cans would say). Instead of a complez charge configuration one obtains just
a splitting of the original dipole into two for non-Abelian gauge theories.
Thus in QCD the original color (33)-dipole is partitioned into two indepen-
dent dipoles, one between the (¢g1) and one between the (g14) (although
the corrections to this statement might have been of the order of 1/N?Z, i.e.
roughly 10%, we have shown that the approximation is better than 99%).

In the next step each of the two independent dipoles may emit a new
gluon, thereby producing three independent dipoles efc. The masses of the
dipoles quickly decrease and therefore also the “hardness”, as measured in
terms of e.g. the transverse momentum, k , of the gluon emissions. For
values of £ smaller than a cutoff k| . the fragmentation process starts and
the final state hadrons appear.

Note that these hadrons again correspond to dipoles, although this time
colorless, i.e. singlet parts of the decaying QCD force field. The fact that
the (gg)-pairs in this decay process in the Lund String Fragmentation Model
stem from different space-time (or energy-momentum space) points have
some interesting consequences for e.g. Bose~Einstein correlations but these
features are outside my talk of today.
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We have also shown that this decay process is independent of the cutoff,
i.e. that you may chose k. anywhere between ~ 7 GeV and just above
Aqcp and still obtain the same hadronic distributions (with explainable
small changes of the fragmentation parameters). Thus the whole process is
infra-red stable.

The Linked Dipole Model then corresponds to the statement that in
case you would go into the hadrons using a well-defined probe, then once
again you recover color dipoles. This reminds me of a statement by one of
the really good experimentalists I have had the opportunity to work with,
Guy von Dardel. He said that “You may take an elephant and as a physicist
cut it into slices, then you find that each slice contains molecules, and the
molecules contains atoms, the atoms contains nucleons but how is it, does
not the nucleons contain new elephants?!”

What I mean is that the wave-functions of the hadrons (or rather the
absolute squares, i.e. what in Deep Inelastic Scattering reactions are named
“the flux” of the partons or the structure functions) can once again be
described in dipole language. This description of the large frequency parts
of the wave-functions (usually called “going into larger virtualities”) is in
general known as “space-like” perturbative QCD cascades.

Thus we find that the “effective” correspondence to the QED “point-
charges” is in the non-Abelian gauge theories everywhere dipoles, t.e. ex-
tended objects (this is also a major reason why non-Abelian field theories
exhibit “transparency” to small wave-length probes, i.e. “asymptotic free-
dom”). I would like to remind you that in the only completely solvable con-
fined model we know of, the Schwinger Model, i.e. 1 + 1-dimensional QED,
the fermion fields together with the (Abelian) gauge field combine into a free
scalar field theory, corresponding to a dipole density. The quanta combine
into stable states containing a “piece of field” (note that the potential in
1+1-dimensional QED is linear, i.e. the force field is a constant just as in the
Lund string description of the QCD force field) and a fermion-antifermion
pair, which evidently corresponds in one space dimension to a dipole.

1.2. The description of the cross-sections in Deep Inelastic Scattering

A major problem in Deep Inelastic Scattering (DIS) is to calculate the
flux-factors of the available partons, z.e. the structure functions of the par-
ticipating hadron. In a perturbative treatment of QCD this means the sum-
mation over a large amount of Feynman graphs relating the constituents,
which occur on a certain “initial” scale, to those of the “final” scale, deter-
mined by the properties of the probe.

It is not necessary to know all the radiation in the states in order to
be able to calculate (this change in) the flux factors. It is perfectly feasible
to subdivide the emissions into two sets, “the main emissions”, which we
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conventionally will refer to as the Initial State Bremsstrahlung (ISB) set,
and “the remainder” (the Final State Bremsstrahlung, FSB), which is pos-
sible to emit in case the ISB is already provided. (In the calculations of
the cross-sections the FSB is treated as the contributions from the radiative
corrections to the main ISB emissions).

It is possible to make any choice of the ISB set for a particular config-
uration as long as the FSB can be emitted from this set in accordance with
the coherence conditions of QCD. (It is, of course, useful to chose the ISB so
that the later FSB emissions do not disturb the original configurations very
much by recoils and kinematics). For a particular choice of the ISB it is,
however, necessary to calculate the corresponding radiative corrections to
these real emissions. In the perturbative QCD cascades the results of such
calculations exponentiate (at least for the leading contributions, e.g. in the
Leading Log Approximation, LLA) and are known as the corresponding Su-
dakov factors. It should be recognised, however, that if one changes the
ISB set, e.g. by including some of the “earlier” ISB gluons into the FSB set,
then it is also necessary to change the corresponding radiative corrections.

The Sudakov factors obtained by the exponentiation of the radiative
corrections can often be interpreted in a probabilistic language. Then they
«orrespond to the probability to not emit anything inside the phase space
regions where it should have been dynamically allowed. The perturbative
QCD cascades are in general formulated as stochastic processes. There is
then an (inclusive) density of emissions in phase space dn, which will lead to
an inclusive probability dP to emit a particular set of partons (the coherence
conditions in the QCD radiation are taken into account by introducing an
ordering of the process). The semi-inclusive probability to emit just those
partons and to emit nothing inside the remaining region, 2, (allowed by
coherence, i.e. the ordering, and energy-momentum conservation) is then
given by the formula

dP exp —/dn . (1)
e}

The exponential factor is just the Sudakov factor, whether it is obtained by
calculating the radiative corrections or by general probability arguments.
The main point is, of course, that the radiative corrections to a given pro-
cess often contains the same (inclusive) emission density dn as the “real”
emissions.

In conclusion, although the main emission probability at any brems-
strahlung vertex is the same, it is necessary to “correct” it with the proper
Sudakov, depending upon the choice of the ISB gluons. In this way the
resulting sum over all the contributions corresponding to the structure func-
tions will be the same.
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In Ref. [1] we have presented a generalization and simplification of the
model for the states in DIS, which has been developed by Ciafaloni, Catani,
Marchesini and Fiorani (the CCMF Model) [2]. In the Linked Dipole Chain
(LDC) Model there is a (small) change in the choice of the ISB set of gluons,
as compared to the CCMF Model. While the set chosen in the CCMF
Model can be described as the most general one possible, if one includes the
QCD coherence conditions (“angular ordering”) and if one requests energy—
momentum conservation at each emission vertex, the set chosen in the LDC
Model is restricted to a (large) subset.

In this way we obtain in the LDC Model [1] that

I The Final State Bremsstrahlung (FSB) can be treated as the emission
from a set of color dipoles, spanned by the chosen gluons in the ISB
set. Therefore the FSB can be treated directly by means of the Lund
Dipole Cascade Model (the DCM), which is implemented in the Monte
Carlo simulation program ARIADNE.

II The probabilities (in particular the radiative corrections) for the ISB set
of states chosen in the LDC Model are simpler than the results for the
CCMF Model. The stochastical process obtained is further explicitly
“local” (Markovian) and symmetric with respect to emissions from the
hadron end and the probe end. In this way the predictions of the LDC
can be easily implemented into Monte Carlo simulation programs to
study the particular ISB sets of the model.

III It is possible to incorporate into the formalism both the “ordinary” (per-
turbative) QCD parton interactions, the Boson-Gluon Fussion interac-
tions and also the resolved (virtual) probe structure functions, including
Rutherford interactions between the probe- and the hadron-ends. There
is consequently in the LDC no cutoff (besides energy-momentum conser-
vation) necessary for large transverse momenta in the ISB gluon emis-
sions at the same time as the gluonic bremsstrahlung in a well-defined
way also cuts off small transverse momentum (Rutherford) scatterings.

Consequently the LDC Model and the DCM constitute a general method
to treat all perturbative QCD interactions along the same lines, in terms of
color dipole emissions. This approach directly fits into the final state hadro-
nisation model, i.e. the Lund String Fragmentation Model (as implemented
in the Monte Carlo simulation program JETSET)

The results are for both the LDC and the CCMF Models valid in the
Leading Log Approximation (LLA) [3]. Further both models interpolate
betwen the DGLAP (Dokshitzer-Gribov-Lipatov—Altarelli-Parisi) mecha-
nism, which is relevant for large Q?- and medium to small z g-values and the
BFKL (Balitsky-Fadin-Kuraev-Lipatov) mechanism, expected to be valid
for medium Q2% and very small zg. We consider some properties of the
models in Section 2. '
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The intention of this talk is to present some general properties of the
two models and in particular what is possible to do in the LDC Model.
We note that it is possible to consider the results both for a fixed and a
running coupling in the LDC Model. As of now we have results on the
following properties, although I will only mention them here and refer to a
forthcoming paper [4]:

A The behavior of the structure functions for different (z5,Q?%) (to be
precise we treat in Ref. [4] in accordance with the LLA only the case
when the color emission lines contains gluon emission from an incoming
gluon at zgo = 1 at a (small) initial virtuality @2 up to the probe at
(zB, Qz). The methods will be extended to the other possible emission
processes in the near future). We consider parametrizations of both the
DGLAP type, x exp Cy/log(1/zp), and of the BFKL type 2z~ with
C and ) possibly Q2 dependent.

B The average “road” in the available phase space from (zpgg, @2) to
(zB,Q@?), together with the regions containing roads at most one stan-
dard deviation from the mean. At the same time we consider the density
of the ISB gluon emission along the roads. We find that besides a region
“in the beginning” (about 3 — 4 units in rapidity or log(1/z)), which de-
pends upon the starting-out conditions for the “undisturbed” hadronic
wave-function constituents, there is a region in which the main road
stays close to small k. Finally there is a region with a size depend-
ing upon the value of Q2, i.e. the properties of the probe. The latter
two regions correspond to contributions expected from a BFKL and a
DGLAP treatment of the structure functions, respectively. The larger
the total log(1/z) region is for a given log(Q?), the more BFKL and
vice versa for the DGLAP mechanism.

C The contributions to the structure functions from the different channels
mentioned above for different (2p,Q?%). In particular we investigate
in some detail the regions where the DGLAP mechanism dominates,
where the Boson-Gluon Fussion will provide essential contributions and
where the (virtual) probe-hadron interactions contains large Rutherford
contributions. In this way we exhibit the regions inside which a cutoff
in the ISB gluon transverse momenta, qi, by e.g. q'j)_ < Q% will be
dangerous according to the LDC.

2. The LDC and the CCMF models
2.2. Some properties of the CCMF Model

In order to describe the choice of the ISB set of gluon emissions in the
CCMF Model we consider the fan diagram shown in Fig. 1. This does not
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correspond to a single Feynman diagram but rather to a collection of such
diagrams. Besides the set {g;} of emissions (which will be the ISB) along
the main line from the incoming parton, denoted by the energy-momentum
vector P, to the probe, with the vector ¢, there is another set, which is
not noted out, {C;}, (the corresponding FSB) but occurs as emissions “in
between” the ¢; and g;41. There is further a set of “connector vectors”,
{k;}, between the g;-emissions. Energy-momentum conservation is imposed
for each gj-emission (justified by chosing the ¢; as more “energetic”, cf.
below, than the C;-gluons):

J
kj:P—qu te. kj=kj_1—gq;. (2)

m=1

All emissions are ordered in rapidity, (which due to the relation between
angle and rapidity means strong angular ordering along the chain). The
CCMF then pick the ISB {g;} set from the set of all emissions as those
which are not followed (in the rapidity ordering variable) by another one
with a larger light-cone energy-momentum ¢4 (= go +¢¢), ¢.e. in this way the
g; has larger “energy” than the rest. (The {-direction stands for longitudinal
and I will in this talk not specify it further).

Fig. 1. A DIS fan diagram

To be more precise CCMF introduce the variables (z;, ¢ ;) with ky; =
zjky(j_1yand k1 ; =k (j_yy — ¢1j. In the LLA the CCMF choice for the
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g+ will imply g4 ; < ¢4(j—1) which corresponds to an approximation of the
splitting function P(z) ~ 1/z and the assumption that z is small enough so
that (1 - z) ~ 1. Further the gluons in the sets {C;} are in accordance with
the LLA, treated as soft enough so that the ¢-vectors can be taken on-shell
and massless.

The corresponding propagator vectors k; are, however, spacelike with
the values ky(;_1) = ¢+;/(1— zj) =~ ¢4 ;. The transverse momentum of the
propagators k) ; are dominated by the ¢, -emissions in the neighbourhood
(for a detailed discussion cf. [1]). One major kinematical constraint is that

k?Lj > zJ'q_zLj . (3)

If this condition is not fulfilled then the “virtuality” of the propagator will
in the LLA fulfil |k?| > k2 , which implies strong suppression. Each step in
the emission chain will in the CCMF Model be described by the weight

_dz; in ;

a_:?z—JAne(zj,kJ_j’ q_Lj)' (4)
Zj 41

Here & is the effective coupling (including color factors) and A is the

so-called “non-eikonal formfactor” with

1 k2 .
Ane(zj k1j,91;) = exp (—alog (;) log (Z_qzj )) . (5)
j 390

The major result in the CCMF Model is this non-eikonal formfactor, corre-
sponding to the radiative corrections for the choice of the ISB set defined
above. We note in particular that due to the properties of the non-eikonal
formfactor small values of z; and ¢, ; in Eq. (4) are effectively cut-off in
case we assume k| is finite.

2.2. The properties. of the LDC model

In Ref. [1] the results in Eqs (4) and (5) are analysed and reformulated.
It is shown that the non-eikonal formfactor actually can be considered as
an “ordinary” Sudakov formfactor, in the probability sense we described in
Section 1. The negative exponent represents, besides the a-factor, a region
excluded for gluon emission by the particular choice of the ISB {g;} in the
CCMF Model.
In the LDC Model there are a restriction of the {¢;} states into those
in which
qi; =max(kyj,ki-1))- (6)



The Linked Dipole Cascade Model 2193

In this way we obtain in the LDC that the weights in the q; emissions are
gwen by Eq. (4) but with the non-eikonal formfactor Ap. exchanged for 1.
What is shown in Ref. [1] is that if we include into the FSB the gluons
which in the CCMF belong to the IBS-set, but do not fulfil Eq. (6), then the
sum over the states containing such gluons, with the appropriate non-etkonal
weights, will provide just the factor 1.

This evidently corresponds to a major simplification and the weight in
the LDC can be written solely in terms of the connectors {k;} as (writing

log(k?) = )

zj k; max(k? ;R )
adin (1) d; if K > Kjq

(7)

adln (;1;) dkjexp(k; — Kj_1) otherwise

(the last factor stems from the requirement in Eq. (6) and obviously corre-
sponds to a “local” statement, ¢.e. a comparison of the sizes of two neigh-
boring connector vectors).

Before I continue I will make a few comments on the time-like dipole
cascades. We note that for a dipole bremsstrahlung emission (from e.g. a
gluon-gluon (go, g4) state) of a gluon g; with transverse momentum ¢,
and rapidity y; the inclusive density dn; is in the LLA

_, dg?
dn1((g0,90) — (90,91, 90)) = dn1((g0, 91, 90)) = &dy qzl‘ . (8)
11

The phase space for such an emission from a dipole with mass W is in the
dipole cms:

w
g1 cosh(y) < -5 (9)
This relation can be conveniently approximated, ¢f. Fig. 2, in the
(y,10g(q? ))-plane as the inside of a triangle
lyl < (L-x)/2 with (L,x) = (log(W?),log(¢]))- (10)

We note that in case we consider the corresponding inclusive density to emit
two gluons at (g1 ,¥;), j = 1,2, then the density is factorizable, so that
(this is shown to be good to about 99% all over phase space in Ref. [5])

dn2((g0, 90) — (90,91, 92,90)) =
dnl((QO) g1, g(')))(dnl((gl)» g2, gl)) + dnl((gl’ g2, Q:))) ’ (11)
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Fig. 2. The phase-space available for gluon emission from a dipole is a triangle in
the (y, x)-plane (a); in case one gluon is emitted at (y;,x1) then the phase-space
for a second (softer) gluon is the the area of the folded surface (below ki) (b); each
emitted gluon increases the phase-space for softer gluons and is represented by this
many-facetted surface (c).

in case ¢1; > ¢ (or else the indices have to be exchanged in Eq. (11)).
Thus “the original dipole” with (the basement) “length” in rapidity L, cf.
Fig. 2, is subdivided into two with the corresponding lengths +y; + (L +
k1)/2. Each dipole can independently emit the gluon indexed 2 as shown
in Fig. 2. The requirement that k2 < k; means that the two new dipole
triangles are cut-off at the “height” ;. In this way we may define the notion
of “virtuality” (as log(kﬁ_l) = k1) for the newly produced dipoles.

In the Lund Dipole Cascade Model (DCM) this time-like cascade pro-
cess is then continued in an obvious way into more and more gluon emis-
sions with smaller and smaller dipoles. The main point is the ordering in
K= log(ki) (which is the correspondence to the strong angular ordering,
i.e. to the coherence conditions in the QCD radiation). This implies that
any “new” emission at k; in a dipole is limited by the earlier “virtuality”
of the dipole, ie kj1 > kj.

We also note that in the “geometry” of the triangular phase space, all
points with a fixed value of ¢4 = ¢4; (¢— = ¢—;) are placed along lines
parallel to the triangular side(s) because log(g+;) = y; + £;/2. In this
way an on-shell (massless) gluon emission can be described either in terms of
(¢+j»9—;) or (what amounts to the crossing point of the two (logarithmic)
“light-cone-lines”) in terms of the coordinates (y;, ;).

In order to interprete the results of the LDC and CCMF Models into
the dipole phase space we note that there is in the fan diagram in Fig. 1
in principle a large color “dipole” spanned between the incoming parton P
(which we parametrise to be on the mass-shell with the positive light-cone
energy-momentum P, ) and the parton “kicked out” by the probe ¢ (the
probe is not on the mass-shell, but provides the negative light-cone energy-
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momentum ¢ _ to the parton), ¢f. Fig. 3. The essential ISB emissions,
{g;}, as well as the connector vectors, {k;}, can be exhibited in this phase
space triangle in the following way for the LDC:

Fig. 3. A gluon-chain in the LDC Model described in the triangular phase-space.
The extended folds correspond to on-the-mass-shell gluons and the arrows to the
connector propagators. The front(back) line corresponds to log(P;) (log(Q-)),
respectively.

LDCa.

LDCb.

the g;-vectors are onshell and massless and are therefore shown as
extended triangular folds, just as we describe the emissions of the
gluons in the time-like dipole cascade above

the connector vectors k; are not on the mass-shell, but as we have
mentioned before, the component k4; = ¢, (;4+1) and (due to the
necessary symmetry between the hadron and probe end) the com-
ponent k_; = g_;. Finally the requirement in Eq. (6) means that
the transverse momentum log(k? ;) is fixed by the g; emission (or
vice versa). Therefore the k; can be described by an extended
line between the ¢, (;;,) and the ¢_; at the appropriate height
log(k? ;)- (Note that in this way, cf also Eq. (3), the “true” virtu-

ality —k? ~ &% ;)

Thus we obtain the picture in Fig. 3 with a set of connected ISB dipoles
spanned between the adjacent {g;} with the virtualities given by the cor-
responding connectors {log(—k§) ~ log(k? ;)}. The situation is obviously
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symmetric between the hadron and probe ends so that in Eq. 7 we may
interprete the splitting function z-pole either as the positive light-cone frac-
tion z = kyj/ky(;_1(= q4(j+1)/9+;) or the negative light-cone fraction
z =z = k_j/k_(j11)(= 9-j/9-(j4+1)) (in case we would describe the
process instead from the probe end).

In the CCMF Model more gluons are included in the essential ISB set.
In particular when the requirement in Eq. (6) is lifted the model no longer
provides complete dipoles but also “parts of dipoles” as described in Ref. [1].
We note one very important requirement, however. In the FSB of the LDC
Model (and this is the same for the CCMF Model) there can be no emission
between the q; and q;j41 with transverse momenta exceeding the virtuality
of the connector ——k? ~ ki i

The dynamical reason is that the gluon currents from the pair (g;, ¢;+1)
due to the existence of the connector k; “starts out” from two different
space-time points. Therefore there is an “effective” (due to Lorentz contrac-
tion essentially transverse) distance between these emission points equal to

b~1/ 1/—k? ~ 1/k;. It is well-known that an “antena” of the size b is

not well-suited to emit radiation with the wave-length A < b (for smaller
wave-length, i.e. larger transverse momenta, there will in general be a form-
factor suppression). The corresponding magjor result from the valiant CCMF
Model calculations is that the dipole produced between q; and q; 41 can emit
no FSB bremsstrahlung with transverse momentum larger than the virtuality
—k? ~ ki i There is a cancellation between the virtual and real corrections
for the emission region above the transverse momentum k | ; in between the
gluons ¢; and g;41.

2.3. The different channels in Deep Inelastic Scattering

I will end this section with a subdivision into three different chan-
nels of the contributions from the dipole chains in the LDC. Firstly, we
note that the Bjorken zpg-variable is in this language zg = Q%/2(pq) =
Q+Q—_/P+Q_ = Q4+/Py. We have shown in Fig. 4 both a description
of the variables log(1/zg) and log(Q?), (note that the latter one occurs
both as a rapidity region in the “big” dipole phase space triangle and as a
measure of virtuality kg = log(Q?)).

In Fig. 4 we have shown three possible “chain-roads” and they corre-
spond to, respectively,

i) an “ordinary” quark-parton model interaction, in which the largest vir-
tuality along the chain is given by Q2. The chain may end after n
emissions anywhere along the line k,, < log(Q?) = Lo with a parton
with [["z; = zp. In the Lorentz frame, defined as the (scattered)
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log(QP)

log(Q?) ' log(1/x)

Fig. 4. The different kinds of gluon chains

lepton-hadron cms (¢f. for a description in other frames Ref. [1]) the
parton will (after the interaction with the probe) end up at the point,
denoted A at (log(1/zg),k = Lg).

a Boson-Gluon Fussion event, in which the (final) splitting transverse
momentum variable exceeds the probe virtuality x,(~ log(¢%,,)) > Lg-
Then the final parton ends on the line log(Q _) above the value Lg, i.e.
for k > Lg, due to this final (large virtuality) splitting. According to
the way the structure function is defined we obtain from the weight
factors of Eq. (7) an extra “going-down” factor Q*/k?% .

a Rutherford scattering between the probe remnant, which, although it
starts out at the probe virtuality Lg, splits up into a set of emissions
Lg < kn < Kp_1... < KEmax to “meet” the corresponding hadron
remnant chain with K1 < K2... < Kmax. In accordance with Eq. (7)
we will obtain in this case a factor (in the way we have defined it
Kmax = log(k J_m&x) it is the only maximum in transverse momentum
along the chain)

H s kinki(n 1)° ﬁd/ﬁ (12)
J J
k.zJ_nk?L(n 1)° kﬁ_max 1 kﬁ_max

We note that although the factor is described in the language of going
from the hadron to the probe end, the result would be the same in case
we would have used the opposite direction. We also note that this is a
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direct generalization of the going-down factor obtained in the case i)
described above.

The main point is, however, that in Eq. (12) we obtain a factor dk;
for all bremsstrahlung gluons but the factor dk? /k%, .. for the largest
transverse momentum, which is characteristic for Rutherford scattering with
ki1Ruth = k1max- In Ref. [1] it is shown that the correct Rutherford scat-
tering behavior occurs both when the propagator corresponds to a gluonic
one and when it is a quark(anti-quark) exchange.

Note that in this way (as we have mentioned before, [6, 1]) the major
momentum transfer in a chain diagram always corresponds to a Rutherford
scattering with (coherent) bremsstrahlung contributions describing both the
“going-up” and “going-down” sides, but all of them with k| prems < k1 Ruth-
This means that the (largest) transverse momentum of the bremsstrahlung
gluons always provides a lowest cutoff of a (possible) Rutherford scattering.

The results of this approach will be presented in a set of future publi-
cations. I would like to end by saying that I have very much enjoyed my
stay at the Zakopane meeting and that I would like to thank the organiz-
ers for providing a lot of good vibes, in particular a lot of possibilities for
discussions.
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