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Some of the single-nucleon configurations in the rotating nuclear po-
tential appear to be almost insensitive to nuclear rotation. The contri-
butions both to the angular momentum alignment and to the dynamical
moment of inertia are almost negligible for these special orbits. It is
suggested that the appearance and properties of the identical bands dis-
covered in superdeformed regions depend crucially on the population of
such special orbits. Examples of the resulting identity relations between
various superdeformed bands in nuclei are discussed.

PACS numbers: 21.10.Gv,. 21.60.Fw, 21.10.Re.

The existence of identical-energy gamma lines deexciting the high spin
rotational states in some Rare Earth nuclei (and later on in other regions)
came in 1989 as an unexpected fascinating discovery [1]. It soon became ob-
vious that such a phenomenon observed in several s-d bands (superdeformed
‘bands) in the presence of a fast rotation and enormously large nuclear distor-
tions consists a great challenge for all those willing to understand it in terms
of the existing knowledge of nuclear structure. Since the year 1989 many
experiments have brought a rich evidence about the existence of identical
bands. The identity relations have been discovered to connect more than
just pairs of bands. Sometimes several bands exist in a whole group of differ-
ent nuclides that are seen to be linked by the identity relations. Numerous
papers both experimental and theoretical have been published within recent
five years that attempt to elucidate the origin of the phenomenon. Never-
theless, no simple explanation of the remarkable effect of identical bands
has been offered. In particular, the appearance of the identity relations in
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some rotational bands and their disappearance in other bands has not been
understood in any satisfactory way.

In the present paper we shall suggest a possible explanation of the
phenomenon of identical bands (cf. Ref. [15]). However, this explanation
will be limited to the extreme single-particle model of nucleons moving in
an average deformed mean field rotating with a frequency given a prior.
We realize fully that such an approach is oversimplified since ‘it neglects
the many-body effects that go beyond the mean field scheme. Thus for
example the polarization of the nuclear core by the existence of the nucleonic
orbits, the influence of the pairing correlations on the particle motion, or
the changes in the mean field induced by the rotation are entirely neglected
in the following discussion although effects of this type may prove to be
important. Our aim is mainly to exhibit more clearly the leading role of the
single-particle orbits.

Two features seem to be characteristic for the identity relations: a
rather high precision of the energy relations (sometimes of the order of 1
keV, or even less) and the appreciable range of their validity sometimes
extending over 10, or even more transitions. This implies that the single-
nucleon orbit generating the band identical with that in the neighbouring
core nucleus should appear as a configuration which is to a large extent
insensitive to nuclear rotation. This in turn implies that the contributions
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to the alignment (z.e. the angular momentum component along the rotation
axis coming from the v -th orbit) and the dynamical moment of inertia,
respectively must be exceptionally weak as compared to the analogous con-
tributions coming from other orbits. This implies that the single-particle
Routhian e¥ of this orbit must be almost independent of the rotational fre-
quency w to a very good approximation over an appreciable region of w. We
shall call orbits of this type “special orbits”. Their appearance in the nucle-
onic spectra in a fast rotating nucleus seems to be an essential characteristic
feature in the explanation of the origin of identical bands.

In order to investigate the structure of nuclear rotational bands we shall
consider the single-particle motion of a nucleon in the highly deformed and
fast rotating mean field. This may be achieved by the rather well known
procedure of the cranking model. In this domain, however, the nucleonic
motion seems to be in addition essentially influenced by the appearance
of the special symmetry, namely the pseudospin, or even more restrictive
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pseudo-SU(3) symmetry (see Refs [11-13, 5] for the pseudospin method in
nuclear structure, and Refs [4, 2, 3, 14] for the applications to the relevant
problems in nuclear structure). The pseudospin picture which will be used
extensively throughout this work is mainly connected with the cranking
treatment of the rotation. The cranking Hamiltonian

HY = H - wjy, (3)

will therefore be employed here together with the pseudospin picture. In
this representation angular momentum j; will be explicitly treated as a sum
of the pseudoorbital angular momentum I; and pseudospin 3; instead of the
usual quantities ; and s;. The great advantage of this picture is that the
spin-orbit coupling ({- 5) is known to be very weak. We shall simply neglect
it. As is well known, such an assumption is rather seriously limited since
many intruder states come close to the Fermi surface and interact with the
normal -parity states. Nevertheless, in the region close to the yrast line it
may serve as a convenient first approximation.

Once the above assumption is accepted a very simple model of nuclear
rotation emerges with the external rotation affects only the orbital nucle-
onic motion. On the other hand, the nucleonic pseudospin is completely
decoupled from rotation. This enables us to describe the whole dynamics
in terms of a simple picture of a rotating harmonic oscillator (rho) in the
coordinate space. It is well known that in such situation an exact rigorous
solution to the cranking Hamiltonian H*“ exists (¢f. Refs [6] and [7]) and
may be employed to investigate ezplicitly the single-particle Routhian. The
solution has the form of three independent normal modes of the (ho) (=
harmonic oscillator) type and we obtain the one-nucleon Routhians as

ey = (n1 + %)wl + (ng + %)nz +(n3 + %)-Qs s (4)

in case of the rotation about the 1-st axis. Here wj,ws,ws3 are the three
original (ho) frequencies. The two modified (normal) frequencies f2; and
{23 are simple functions of w; and w3 and rotational frequency w ({6, 7]).
Integers ny, n2, and n3 are the three quantum numbers of the (rho). It seems
to be a remarkable result of such a model that whenever the condition

ny =ng (5)

is fulfilled the orbit (n;, nz,n3) becomes almost a flat line in the € inang =
f(w) representation in a rather large interval of w. Thus for such “special”
orbits the condition given by Eq. (1) and Eq. (2) becomes very well sat-
isfied and thus the orbit presents itself as e very good candidate for the

configuration underlying the identical bands. This is illustrated in Fig. 1.
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Fig. 1. Single-particle Routhians ¢’ = € /wo (in units of oscillator frequency wo)
versus rotational frequency w' = = (in units of wg). The only orbits included are
those with N,y = 2n, + n3z = 4. Quantum numbers n;, ny, n3 are shown at each
curve.

Up to now the existence of the pseudospin of the nucleon was entirely
ignored in our considerations as decoupled from rotation and thus not affect-
ing the energy. Nevertheless, pseudospin of the nucleon affects the particle
angular momentum and thus also its signature. This is due to the fact that
the quantisation of angular momentum has to be taken into account in ad-
dition to the cranking model. In the case of the one-dimensional rotation
considered in our case the quantisation conditions can be only fulfilled in the
approximate way. In this case the quantisation reduces to the requirement
that the calculated expectation values of the j; operator (i.e. the angular
momentum projection on the rotation axis) are integer (half integer) for the
system with even (odd) number of particles. In this way the pseudospin
of a nucleon comes into our considerations. We shall see below that the
pseudospin degree of freedom decides effectively about the nature of the
identity relations that occur between the bands. As is well known there ex-
ist three types of identity relations. The best known of them is simply the
identity of the gamma-ray energies in the two bands in question. This case
is usually referred to as the twin bands (TB). In addition to this simplest
relation it may happen that the gamma-ray energies in one band appear
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to be equal to some averages of the corresponding energies in the second
band. Table. I illustrates all the three types of identity relations together
with some simplest way to classify them.

TABLE I

Description of identity relations. Incremental alignment A as defined by Stephens
et al. (3] Ai = 2(E}(I') — E,(I))/(E,(I + 2) — E,(I)) and decoupling parameter
defined by Nazarewicz et al., Ref. [2] E,(I) = A[2] — 1+ a(—1)7+1/2].

Identity type twin bands indirect twin bands coupled bands
(TB) (ITB) (CB)
Relation EL(I')y = E4(I) | E\(I') = *h[Ey(I) | BY(I') = Yh[3E,(I) + E4(I + 2)]
between +E,(I+2)] or
y-ray energies E!(I') = Y/i[B4(I) + 3E,(I + 2)]
decoupling
parameter a +1 -1 0
Incremental
alignment Ai 0 Y 3 or —'%

Before we proceed further let us recall a quantity o called signature expo-
nent. It is related to signature r» by a simple relation:

r=e ", (6)

Obviously, a = 0, -1,/ and -1/, for 7 = +1,—1,—i and +1i, respectively.
All these four relations are valid as a = b(mod2) i.e. a differs from b by an
integer multiple of 2. It is a well known fact that o differs from angular
momentum of the corresponding state by an even integer. Now let us analyse
what happens when a particle with pseudospin is added to its pseudoorbital
part. For the sake of simplicity let us limit our considerations to the case
of two s-d bands (B) and (B’) differing by one nucleon. The two sequences:

I,I14+2,I+4,...(B)
I'1'+2,I'+4,...(B"), (7)

correspond to the core nucleus and core plus one valence nucleon, respec-
tively. Let us consider now various particular cases that can occur.

(i) Pseudospin of the valence nucleon aligned with the rotational axis.
The natural cranking model relation between the angular momenta in the
two bands. In this case the projection of the particle pseudospin on the
rotation axis s; is a good quantum number. In the same time the signature
exponents I and I' in both the bands (B) and (B') obey the natural relation
following from the cranking model

o =a+ts, (8)
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equivalent to
I'=T+ 81 . (9)

In this case the quantisation of signature exponent implies (cf. Ref. [15])
the simple equalities between the gamma-ray energies in the two bands (B)
and (B')

E‘,l'l = EI
E’I+2 = EI+2

(10)

This is the case of identical bands sensu stricto usually referred to as the
twin bands (TB). '

(ii) Pseudospin of the valence nucleon aligned. The unnatural cranking
model relations between angular momenta in the two bands (B) and (B').
Here again sy is a good quantum number as in case (). However, relation
between a' and a is different

a=a-s;, (11)

equivalent to
I' =71- S$7 . (12)

This relation does not follow from the simple cranking model in the case
of a pure single-particle picture [15]. It looks as if the new band I', I' +
2, I' +4, ... were formed by adding a single nucleon with the simultaneous
change of the core band I, I +2, I 44, ... into a signature partner of band
(B) i.e. the new band with a spin sequence I +1, I +3, I+5, ... . For the
moment there seems to be no experimental evidence for the existence such
signature partners in general. Nevertheless, it seems necessary to consider
such “unnatural” mechanisms since it seems to be the only way to explain
the existence of the so called indirect twin bands (ITB) which do exist
really (c¢f. Table I). The ITB identity relation means that the gamma-ray
energies E, in band (B') are related to those in band (B) by the relation
of the arithmetic averages:

Ep = 3(Er+ Erya). (13)

Finally, it may happen that the pseudospin of a single valence nucleon
is aligned with the direction of nuclear deformation symmetry axis. In this
case the 3-rd component s3 of the pseudospin could be a good quantum
number but in the presence of nuclear rotation it is rather a state of good
signature (i.e. a sum or difference of two states with s3 = 1/, and s3 = —1/)
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that come into account. In this case the detailed geometric consideration of
angular momenta lead to the conclusion [15] that the gamma-ray energies
in band (B') are simply the weighted averages of the gamma-ray energies
in band (B) with coefficients (1/4 and 3/;), or (3/4 and 1/4) depending on the
signature (cf. Table I). This is the so called case of the “coupled bands”,
(CB).

All the three cases presented above were primarily discussed by Nazare-
wicz et al. (Ref. [2]) in terms of the rotor plus particle model and by
Stephens et al. (Ref. [3]) in terms of the concept of the incremental align-
ment. Table I summarizes all the three cases discussed above as already
mentioned.

TABLE II

Correspondence in the wave functions. First column lists the quantum number
Nghent labeling the deformed shells. In our case (for the 2:1 shape) Ngpenn = 2n) +ns.
Second column lists all the (rho) states for Ngpey = 0 to 6. An asterisk * denotes
a special configuration. Third column lists the nonrotating deformed (ho) state in
the pseudospin picture while fourth column — in the ordinary (ho) representation.

Nshell (n1 ny n3) ﬁn3lin> [NnaA.f))
1 2 3 4

0 * (0,0,0) (000 /) (101 %)
1 (0,0,1) [110 ) [211 Y5)
2 ~ (0,1,0) [101 3,) [202 3%,)
* (1,0,0) [101 /) [200 /)

(0,0,2) [220 1/5) (321 1/2)

3 *(0,1,1) [211 34) [312 3%)
(1,0,1) (211 Y5) (310 Y/2)

(0,0,3) [330 1) (431 1/2)

4 (0,2,0) [202 5) [303 %)
(1,1,0) [202 34) [301 34)

*(2,0,0) (200 1) [301 1)

(0,1,2) [321 34) [422 34)

(1,0,2) [321 1) [420 1)

(0,0,4) (440 1) [541 1)
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TABLE II continued
1 2 3 4
5 (0,2,1) [312 %4) (413 54)
*(1,1,1) [312 3%,) [411 34)
(2,0,1) [310 t/p) [411 1/5)
(0,1,3) [431 %) (532 3%2)
(1,0,3) (431 1) (630 */5)
(0,0,5) (550 1/5) (651 1/)
6 (0,3,0) (303 "/2) (404 7/a)
(1,2,0) [303 %) [402 3/,)
(2,1,0) (301 3%) (402 %)
* (3,0,0) (301 ') [400 */5)
* (0,2,2) [422 545) [523 5/4)
(1’ la 2) [422 3/2) [521 3/2)
(2’ 0’ 2) [420 1/2) [521 1/2)
0,1,4) [541 %) [642 %)
(1,0,4) (541 1) (640 1/)
(0,0,6) (660 a) (761 /o)

In order to memorize better the three different identity relations de-
scribed above and listed in Table IT we suggest to use three different ways
of denoting them in the graphical representations (see Figures 2 to 5 be-
low). Thus we shall use a solid line (with no arrow) for (TB), a dashed
line for the (ITB) (no arrow) and a solid line with an arrow for the (CB).
The direction indicated by the arrow from (B) to (B') corresponds to the
weighted average:

Ep» = 3Er+ 1Er42, (14)

where E}, are gamma lines in band (B’) while Ey are gamma lines in band
(B). For the weighted average with coefficients !/4 and 3/; the direction of
the arrow is opposite.

Let us discuss now some examples of the identical bands observed in
various experiments. The most typical case is that of the twin bands formed
by the yrast band in the °2Dy nucleus and the excited band (b2) in the
neighbouring nucleus 151 Th. This is actually the first pair of identical bands
observed in an experiment [1]. The odd-A nucleus 151 Tb may be regarded
as a one-proton hole state in 132Dy. Since the two bands are twin bands one
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152
Dy

yr

™(200) 54

151
Tb
b2

Fig. 2. Graphical illustrations of the identical bands in 3! Tb and !*?Dy. Solid line
connecting the two nuclides denotes twin bands (TB), ¢f. Table I. Assignment on
the line indicates the suggested configuration of the odd-proton hole.

may expect that the hole state is characterized by a special configuration.
In this region of proton numbers the configuration (nj,ng,n3) = 7(2,0,0)
is the only available close to the Fermi surface. Thus we assign the config-
uration 7(ny,nz,n3) = 7(2,0,0)s; as the one missing in 131 Tb relative to
the core 32Dy (Fig. 2). The quasispin projection on the first axis s; may
be equal either +1/;, or —1/5.

The assignments shown in Fig. 2 (and in Figs 3 to 5 as well) are based
on the (tho) wave functions (nj,nz,n3) described above. In order to clarify
better their physical meaning it is desirable to expand them in terms of the
familiar representation |Nn3zAf2) of the asymptotic nonrotating harmonic
oscillator. In fact, such an expansion is not straightforward since the angu-
lar momentum operator j; entering the cranking model formula (3) couples
all the states |Nn3 Af2) in the pseudospin picture so that expansion of any
(rho) state (nj,n2,n3) into the states |Nn3/i.9) is infinite. Nevertheless
for slow rotation a certain correspondence between the two representations
can be established approximately. This is illustrated in Table II which lists
all the lowest states of the (rho) together with those of the asymptotic
representation of the nonrotating deformed (ho). In this way the states
(n1,n2,n3) are related with of the asymptotic (ho) representation in the
pseudospin picture. The approximate correspondence between the states in
the two representations indicates roughly that the state (n1,ng,n3) with
N=nj+ny;+nzgand A= (N —n3),(N — n3) — 2,... while the quantum
number n3 remains the same in both the representations. The correspond-
ing mixtures in the wave functions are indicated by curly braces between
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columns 2 and 3 in Table II. The second step is to transform the pseudospin
deformed (ho) representation into the usual deformed (ho) representation
[Nn3Af2). The corresponding procedure is well known (cf. Ref. [13], or
[5]):

an3/i.Q) — IN + l,nsAﬂ) , (15)

where A = A+ 1 for 2 = A+ (V)

Thus for example the state (n1,nz,n3)s1 = (2,0,0)s; goes into the
mixture of states |20254), 12023/;) and |2001/;) in the pseudospin picture
which gives a set [303°4), [3013%4) and |301 1) in the ordinary standard
(ho) representation. One can see immediately that the state |301 %) sug-
gested originally as a basic configuration for the identical bands in this case
exist as a component of the special configuration (2, 0, 0)s;.

153 153 153
Dy Dy b — — Dy
b1 b2 b3
Y{111)- V(111).
152
Dy
yr

Fig. 3. Graphical illustration of relations between the three s-d bands in !*3Dy and
152Dy. Solid line with arrows indicates the coupled bands (CB), while dashed line
denotes the indirect twin bands (ITB), ¢f. Table 1.

Fig. 3 gives an example of the coupled bands, (CB) [9]. Two out of the
three s-d bands b1,b2, b3 in 133Dy are in identity relations with the 132Dy
core. Gamma-ray energies in bands (b3) and (b2) turn out to be weighted
averages of those in the 132Dy yrast band with coefficients (3/4,/4)-arrow up
and (%/4,3/4)-arrow down , respectively. The only neutron configuration that
is close to the Fermi surface seems to be (1,1,1)a with signature exponent
a = +1/ and a = ~1/, , respectively. It can be seen from Table II that such
a state is roughly a mixture of states [413%5),]4113;) and |4111/). Let us
mention that some different assignments were suggested (see e.g. Refs [2],
or [16]) in terms of the high-K orbits such as |514%;). It is not certain,
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however, that such orbits as not derived from the special configurations can
really fulfill both equations (1) and (2). Especially former Eq. (1) may prove
to be more restrictive in this case. Thus if really the high-K configurations
of this type underlie the coupled bands it may mean that the extreme single-
particle approach adopted in this paper requires a further modification or
revision. It is interesting to note that the first s-d band (b1) which is most
probably the yrast one is not connected by any identity relations either to
the 152Dy core nucleus, or to any other of the s-d bands appearing in Fig. 3.
It originates most probably from an orbit of completely different type (cf.
e.g. Ref. [16]).

148
Gd
yr
~N
~N
~
v (11}, o111 -,
~N
~
~
~N
\\
147 147
Gd Gd
bt b2
N
N
~N
~N
\’“11)-51 \)“11)051
~N
~N
~
N
.
146
Gd
yr

Fig. 4. Graphical illustration of the four s-d bands in three nuclides: 16Gd, 47Gd
and '%8Gd. For further explanations see captions to Figures 2 and 3.

Fig. 4 illustrates an interesting case of four s-d bands occurring in the
three isotopes of Gd. The two s-d bands in 147Gd are connected with the
yrast bands in both 146Gd and '48Gd by mutual relations of the (TB) and
(ITB) type as follows from the experiment [10]. We suggest again the orbit
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194 194 194 194
Tl Tl Tl Tl
1fa 3a 2a La
| / \\ / |
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l l ‘ |
| v(0221- »(300)- | | ¥(022)- »13001 - |
| - | ' \ / |
I | | |
1 W — -, VSN o f
194 194 194 194
Tl Tl Tl Tl
1b 3b 2b 4b
 J Y
Y Y
v (022} 9{300)« 91022). 2(300)«
193 193
Mpbe— o _ - Tl
1b 2b
{111} wi{i11)-

192
Hg

Fig. 5. Graphical illustration of the relations between the s-d bands in °*Tl and
193T] as well as their connection with ®2Hg. For further explanations see captions
to Figures 2 and 3.



On the Origin of Identical Bands in the Superdeformed States ... 187

(n1,n2,n3) as the only one special orbit which is available in the vicinity.
The left and right chain visible in Fig. 3 correspond to different order of
filling the states with different signs of the pseudospin component s; = +1/
first and —1/, next, or vice versa. A closer look at the relations connecting
the signature exponents o and a' in 46Gd and 148Gd, respectively leads
to the conclusion that the corresponding angular momenta I and I" must
obey [15] the following relation:

I'" = I+ 1(mod2). (16)

Fig. 5 illustrates a slightly more complex scheme of the s-d bands
in two isotopes of Tl, namely 194T1 and 1°3TI linked also to the nuclide
192Hg. Experiment [17] gives only six s-d bands in 194T! namely the bands
la,2a,3a,1b,2b and 3b while our theoretical assignments predict the exis-
tence of two more bands, say 4a and 4b (although it is by no means certain
that the labels given in experiment correspond exactly to those in the pre-
diction). The eight s-d band predicted the theoretical model come from the
fact that in this region of neutron numbers there exist two special orbits,
namely the (0,2,2) and (3,0,0) thus the (CB) relations may generate eight
possible configurations with signature exponents « equal +!/2, or —!/; out
of the two s-d bands in the 193T1 nucleus as can be seen from Fig. 5. For
the moment it is not clear whether the eight bands do really exist in nature
in this case, or else for some unknown reasons the two additional s-d bands
should be ruled out of the theory.

It is a pleasure to thank Witek Nazarewicz and Kazik Zuber for valuable
discussions and suggestions. This work was supported by grant from the
Polish State Committee for Scientific Research under contract no. 2 PO3B
034 08.
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