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1. Introduction

The observation of superdeformed (SD) and hyperdeformed (HD) states
constitutes an important confirmation of the shell structure of the nucleus.
The unusual stability of spherical, SD, and HD states can be attributed
to strong shell effects that are present in the average nuclear potential.
Theoretically, the variation in the single-particle level density with shell
filling (the level bunching), the existence of spherical and deformed magic
numbers, and the unusual shell stability of certain shapes has a beautiful
interpretation in terms of semiclassical periodic orbits [1-4]. Indeed, the
single-particle level density,

99 =Y 8e-e), e

and the shell energy can be expressed [5] as a sum over semiclassical peri-
odic orbits. Consequently, the shell structure of a many-body system (and
hence the presence or absence of large deformations) has its deep roots in
the nonlinear dynamics of the corresponding classical Hamiltonian and the
geometry of classical orbits [1, 4, 6].

For the harmonic oscillator model, often discussed in the context of the
SD and HD shell structures {7, 8], the strongest level degeneracy occurs
when the frequency ratio is a rational number; this leads to an appearance
of deformed magic gaps and magic numbers [1, 4, 9]. In spite of many differ-
ences {4], the shell-energy pattern of a realistic average potential (including
the flat-bottom effect and the spin-orbit term) also leads to the stabilization
of SD and HD shapes.

In quantum-mechanical systems, strong shell effects (i.e., degeneracies)
seldom happen by chance; they reflect the presence of dynamical (self-
consistent) symmetries of the Hamiltonian. This offers additional quan-
tum numbers associated with the underlying dynamical symmetry which
are the eigenvalues of the Casimir operators of the corresponding symmetry
group (i.e., the local constants of motion). In this respect, the problem
of degeneracies of the single-particle levels of a three-dimensional harmonic
oscillator with frequencies in rational ratios (rational harmonic oscillator,
RHO) has very interesting properties. These are briefly reviewed in Section
2. Generic SD and HD quantum numbers of the RHO offer a possibility to
invoke a concept of “multiclustering” (Sec. 3). Experimental consequences
of the multicluster model are discussed in Sec. 4 (light nuclei) and Sec. 5
(actinides).
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2. Symmetries of the rational harmonic oscillator

One of the simplest but, at the same time, one of the most transparent
and powerful models of nuclear structure is the harmonic oscillator model.
Especially in light nuclei, where both the spin-orbit and Coulomb inter-
actions are weak, and the diffuseness of the nuclear surface is comparable
with the nuclear radius, the harmonic oscillator model gives a fairly good
approximation to the nuclear average potential.

The single-particle Hamiltonian of the three-dimensional oscillator po-
tential is given by

3 3
H=3) (0 +wled)=1) wifaiqaf}, (2)

(here, and in the following we assume the nucleon mass m=1 and A=1).
The single-particle energies of (2) are

3
€ny,nang = Zwi ('"'i + %) ) (3)
=1

where n; are the numbers of oscillator quanta in three spatial directions,
and the corresponding Hilbert space, H, is spanned by the kets

1
——(a
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A single-particle diagram of the axially-deformed harmonic oscillator is dis-
played in Fig. 1.

The general case of the quantal many-dimensional RHO was investi-
gated by Vendramin [10], Maiella and Vilasi [11], and Quesne [12]. (The
case of only one rational frequency ratio or no rational frequency ratio was
discussed in Ref. [12].) They derived the canonical transformation and in-
troduced the generalized Bose operators (see also Refs [13, 14]). In the
context of nuclear physics, the connection between the symmetry algebra of
the RHO and nuclear superdeformation has been pointed out and discussed

in Refs [15-17] where more references to other papers on the symmetries of
the RHO can be found.

|A) = |nangns) = )™ (a3)" ()] -) - (4)

2.1. Generalized Bose operators

For the RHO, the ratios of oscillator frequencies are rational numbers.
This can be expressed in terms of three integers k;, 1 = 1,2, 3:

wik; =@, (5)
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Fig. 1. Single-particle level spectrum of the axially symmetric harmonic oscillator
(wy=wz=w ) in units of w, = %(Zw 1 +w3) shown as a function of quadrupole defor-
mation, e=(w; —~w3)/wy. Due to the axial symmetry, the single-particle energies de-
pend only on two quantum numbers: n; =n;+n, and n3. The orbital degeneracy is
n +1, which is illustrated by artificially splitting the lines. The arrows indicate the
characteristic deformations corresponding to the ratioofw; 1 w3 =1:2,1:1,2:1,
and 3:1.
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where @ can be calculated from the volume conservation condition, wiwowz =
&3, and is equal to

- - - 41
W = \3/ k1k2k3 Wy Wp = -Z*l—/—a (6)

For example, the spherical shape corresponds to k;=k2=k3, while the
axial shapes have ky=k;=k | . In the axial case, it is convenient to write the
single-particle energies in terms of the shell frequency, wgp)1, and the shell
principal quantum, Ny, defined by [1]:

[P}
win; +w3ny = WehellNVshelly Nshet =1 k3 +n3k), Wspen = ks

(7)

Let us now introduce new quantum numbers v; and A;:

ng =kivi+ X, wv= [%] y  Aj = n;(modk;), (8)
1

where the symbol [z] stands for the integer part of z. Single-particle energies
of the RHO can be thus written as

Ai +

N[

EMA ANy = WM + @ Z PV (9)
=1 ¢
where
M=uvi+vy+v3 (10)

is the new principal quantum number. At fixed values of A;, the level de-
generacy is equal to 1(M + 1)(M + 2); i.e., it corresponds exactly to the
degeneracy of the spherical oscillator with principal quantum number M.
This fact suggests that the “hidden” symmetry of the quantum-mechanical
RHO should be exactly the same as the dynamical SU(3) symmetry of the
isotropic harmonic oscillator. In order to demonstrate this explicitly, one
can introduce new ladder operators [14]

1
2y Lk i = A ’
Ai - ki(a") (fzi(fli - 1)...(7’&,‘ ~k; + 1))

= (a;)® ([%] (L;“,k—’)')% (11)

e

where 71;=a] a; is the boson number operator and {A} = (A;AzA3). It is easy

to verify that operators (11) indeed fulfill the standard boson commutation
rules, i.e.

409,407 s, w



194 W. NAZAREWICZ ET AL.

The new boson operator, AZ{)‘}, acts only on the quantum number, v;, and
leaves A; unchanged, i.c.,

A}A}-}_"",Viki i) =V AL (i ki + Ay (13)
This means that the Hilbert space of the RHO can be decomposed as
M=oy, (14)

where the subspace H{*} is spanned by kets (4) with a fixed value of {A}.
In this new subspace, the RHO Hamiltonian becomes

3 3

=303 (a4 1Y wik-2n-1),  (19)
i=1 i=1

i.e., it formally looks like the Hamiltonian of the isotropic harmonic oscil-

lator (up to an additive constant). Now, analogous to the spherical case,

one can construct eight generators linear in {A;-P‘}, A?‘H’} that fulfill the

commutation rules of SU(3) and commute with the Hamiltonian (15). This
completes proof that SU(3) is indeed the dynamical symmetry in question.

2.2. Classification of eigenstates of the RHO

The RHO eigenstates belonging to the same {\} family form (for a
given M) the basis of an irreducible symmetric representation (irrep) of
SU(3). Each family has a corresponding ground state belonging to the one-
dimensional representation of SU(3) for M =0, which is the vacuum for the
new bosons (11). Because of the condition

0< A <k, (16)

the number of {A}-families is equal to kjkzk3 and becomes large when
the frequency ratios are not very commensurable. As an example, Fig. 2
shows the RHO spectrum in the case of ky=1, k2=2, £3=3. The levels can
be grouped into six independent {A}-families, each forming the isotropic
oscillator spectrum with frequency @.

At the spherical shape, k1=ky=k3=1, there is only one family present
labeled by {1}=(000). The degeneracy of each level is (M + 1)(M + 2)

and the magic gaps occur at particle numbers?

Npr= 3(M +1)(M + 2)(M + 3) =1, 4, 10, 20, 35, 56, 84, ---, (17)

! Here, and in the following, we give magic numbers for the RHO only, i.e.,
without including the two-fold spin degeneracy.
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Fig. 2. Spectrum of the RHO with k=1, k2=2, ks=3. Each level is labeled
by means of the principal quantum number M and quantum numbers (A;A223)
that label different irreducible representations of SU(3). Except the usual SU(3)
degeneracy, ~;5(},4 + 1)(M + 2), no additional degeneracies are present.

for M=0, 1, 2, - - -, respectively. Other cases of significant physical interest
are the SD prolate (k;=1, k2=1, k3=2) and the HD prolate (k1=1, k2=1,
k3=3) shapes. Here, since A\;=A2=0, the number of independent SU(3) ir-
reps for a given M is simply equal to k3, and they can be easily distinguished
by means of As.

2.2.1. Prolate SD and HD shapes

As seen in Fig. 3, there are two kinds of closed-shell systems that are
expected at SD shapes. In the “asymmetric” case, indicated as A, the
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number of filled shells within the family {A}=(000) is larger by one than
that within the family {A}=(001). Consequently, the magic numbers are
then equal to sums of two consecutive spherical magic numbers and read
NI(\?IOO)—FN](\ZTI) =1, 5, 14, 30, 55, etc.. In the “symmetric” variant B, the
missing (001) shell is filled, and the magic numbers are equal to doubled

spherical oscillator magic numbers, NI(\200)+N1(\201) = 2, 8, 20, 40, 70, eic..

3 40=20+20 3 60=20+20+20

50=20+20+10
30=20+10 3 ity
3 jreemervacrmmmremm 3 40=20+10+10

2 30=10+10+10
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2 —

2 18=10+4+4 12=4+4+4

9244441 1&C
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1=140+0 0

0
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k1g. 3. Spectrum of the RHO with k; = 1, k; = 1, and k3 = 2 (SD prolate, left)
or k3 = 3 (HD prolate, right). Each level is labeled by the principal quantum
number M and quantum numbers (A;AzA3). Except the usual SU(3) degeneracy,
%(M + 1)(M + 2), no additional degeneracies are present. Different positions of
the Fermi level for closed-shell systems A, B or C are indicated. The schematic
diagrams in the bottom portion illustrate the number of occupied particles within
each {A}-family in cases A, B or C.

The situation becomes slightly more complex at HD shapes (see Fig. 3).
In the “strongly asymmetric” variant, A, the number of filled shells within
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the family (000) is larger by one than those of the families (001) and (002),
which leads to magic numbers N°°0 + NR,}” 1+ NR,}” . =1, 6, 18, 40, 75,
etc.. In the variant B, the occupatlon of the family (002) is lower than
the occupations of the families (000) and (001), and the resulting magic
numbers are NR,?O + NR,‘I” + NR,?z 1 =2, 9, 24, 50, 90, etc.. Finally, in the
“symmetric” case C, the occupations of families (000), (001), and (002) are
identical, and the magic numbers are equal to tripled spherical oscillator
magic numbers, NR}O + NX,‘IH + Ng/_(,n =3, 12, 30, 60 and 105, etc..

2.2.2. Oblate shapes

The examples discussed so far represent the simplest possible situa-
tion in which the numbers k; are relatively prime. The degeneracy pattern
becomes, however, rather complicated in the case when two k;’s have a com-
mon multiplier. Let us consider, for instance, the case of oblate SD shapes
with ky = k2 = k; > 1, k3 = 1. The number of one-dimensional irreps
of SU(3) is equal to k3 (0 < A1 < k1, 0 < A2 < k2, A3 = 0), and the
eigenstates (9) are given by:

. (M tA+l
eM A0 =M+ 1)+ (T . (18)
It is seen that, due to the equality of energies,
EM, 21220 = EMAL N0 (19)

which occurs for

A1+ Az

M=M
+[ ki

] and A’l + AL = A1 + /\2(mod k_L) s (20)

additional degeneracies, not accounted for by the dynamical SU(3) sym-
metry, are present. Fig. 4 shows the single-particle spectrum of the RHO
for k) = 2. According to Eq. (19), the levels belonging to pairs of irreps
(M, 010)—(M,100) and (M + 1,000)—(M,110) are degenerate. The degen-
eracy of the energy levels (in the discussed case: 1, 2, 4, 6, 9, - - -) does not
coincide with the dimension of any irrep of SU(3).

In Ref. [11] it was demonstrated that, except for particular cases, each
energy level of the RHO corresponds to a reducible (rrep) representation
of SU(3). In order to label the rreps of SU(3), one can introduce quantum
numbers A | and N, defined in a similar way as \; (see, e.g., Ref. [8]):

Ap =vy (modky), N=v, +vs, (21)
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Fig. 4. Spectrum of the RHO with k; = k2 = 2, k3 = 1 (SD oblate shape). The
principal shell quantum number Ny is defined by means of Eq. (7). Each level
is Jabeled by means of the irrep SU(3) labels (M, A1 A2A3), the rrep SU(3) labels
(N,AL), and the irrep O(4) labels (5+,57) (see text).

where v = [n, /k;]. Contrary to the case of prolate shapes, the shell
degeneracy depends explicitly on A :

n(N, A1) = 3(N + )k N +2(AL +1)]. (22)

(For the general case of k3 # 1, see Ref. [10].) The total number of states
in an oblate SD magic system [counting from the bottom and including the
last (IV, A ) shell] is then equal [18):

NN,Al :%(’\_L + 1)(AJ_ + 2)NN
+{gki(kl 1)+ AL +2)(- AL - 1)] Ng_,
+ 3k — AL -1)(I- AL -2)Ng_,, (23)

where N, is given by Eq. (17). In the particular case of k; = 2, the third
term in Eq. (23) vanishes, and the magic numbers can thus be divided into
two groups with A; = 0or 1l
Ng+3Ngy_, =1,7,22,50,--- if A_ =0
3,13,34,.-- if AL =1.

N, = {385 + Ny =

It has been noticed in Ref. [19] that the imposition of a reflection con-
dition can change SU(3) to O(4), and vice versa. To see the connection, let
us consider the isotropic harmonic oscillator with an impenetrable barrier
across the symmetry (say, zy) plane. The eigenstates of the problem are

the odd-n3 oscillator states. There are listed in portion (b) of Table I, while
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the states with even z-parity are given in portion (c). The degeneracy pat-
terns of both nj3-even and nj3-odd sets are the same and are ezactly equal
to the degeneracy of SD oblate states in Fig. 4. The analogy between the
structure of SD oblate states with k, = 2, and the harmonic oscillator with
the barrier, is by no means accidental. Indeed, the Ny .;; quantum number
(7) in the discussed case is equal to

Nepen=n1+nz+2n3=n, +n3 =N', (24)
where n§ = 2n; is always even and N' is the principal quantum number of

the oscillator with the barrier.

TABLE 1

States of the spherical harmonic oscillator in representation (4). In (a), “etc.” indi-
cates possible permutations of quantum numbers. States in (b) are those remaining
after inserting a wall in the zy-plane (n3-odd), while states in (c) have even values
of n3. The degeneracy of the level is contained in the first column (cf. Ref. [19]).

Degeneracy Cartesian representation of states

(a) Full three-dimensional oscillator
21 500 etc., 410 efc., 320 etc., 311 ete., 221 etc.
15 400 etc., 310 etc., 220 etc., 211 etc.
10 300 etc., 210 etc., 111
200 etc., 110 etc.

100 etc.
000

=W

(b) n3-odd states
005, 041, 401, 023, 203, 311, 131, 113, 221
301, 031, 103, 013, 211, 121
003, 201, 021, 111
101, 011
001

L - N~ =]

(c) na-even states
12 500, 050, 410, 140, 104, 014, 320, 230, 302, 032, 212, 122

9 400, 040, 004, 310, 130, 220, 022, 202, 112
6 300,030, 210, 120, 102, 012

4 200, 020, 002, 110

2 100, 010

1 000

The resulting degeneracy pattern can be associated [19, 12] with two
interleaving sets of irreps of O(4). The generators of O(4) are two vectors J
and K generating rotations in the four-dimensional plane. By introducing
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two vector operators J* = 3(J £ K), one can label the irreps of O(4) using
two quantum numbers jt* and j~. The corresponding dimensionality is
(27% +1)(2j~ + 1). The eigenstates of a SD oblate RHO with k| = 2 form
the basis for two irreps of O(4). Square irreps with j* = j~ = 1Ny
arise when Ny is even, while rectangular ones with j* = ;= + % =
%(Nshell + 1) correspond to even values of Nyp ;. The values of j1 and j~
can be expressed in terms of N and ) as

it=3N+1xy), jT=1iN, (25)
see Fig. 4.
2.8. Selection rules

The degenerate shell of the RHO consists, in general, of states having
different parities. Indeed, the generalized Bose operators (11) are parity-
even for even values of k; and parity-odd for odd values of k;:

AP 1 = (C)ka P (26)

Consequently, the total parity of the single-particle state |22) can be written
as
ma = (~)N = (-1t g (27)

The above expression can be given a simple interpretation. The parity
7y is the intrinsic parity of the corresponding bosonic vacuum, while ,
represents the parity of an excited mode. In the case of SD prolate shapes
with even values of k3, Eq. (27) reduces to

mh = (-1)03(=1)™ = (-1)%H, (28)

where A is the projection of the orbital angular momentum on the symmetry
axis (z-axis).

The fact that degenerate single-particle orbitals have different parities
has interesting consequences for the octupole mode, Q3x = r3Y3k, since
the optimum condition for the level hybridization is met. Table IT shows
the energies of particle-hole excitations associated with various components
of the octupole tensor [20, 21]. Let us first consider the SD shape with
k; =1 and k3 = 2. The K = 1 and K = 3 octupole components conserve
intrinsic parity 7). Interestingly, since AE = 2w3 —w; = 0 for K = 1,
there exist nonvanishing matrix elements between states belonging to the
same supershell. The K = 0 and K = 2 interactions act only between states
with opposite values of 7. At the SD oblate shape with k; = 2, k3 = 1,



Multiclustering and Physics of Ezotic Nuclear Shapes 201

this scenario is reversed, i.e., the K = 0 and K = 2 modes conserve 7.
By inspecting Table II, one can immediately conclude that the SD oblate
nuclei should be unstable with respect to K = 0 and K = 2 octupole fields
(AE: 2wl — W3 :0).

TABLE II

Energies of the particle-hole excitation, AFE, associated with the octupole double-
stretched interaction Q%x.

K AE/R Optimal conditions for instability
0 w3, 2w] w3, 2w, tws, 3wg superdeformed oblate shapes

1 |wy, 2wg—w,, 2ws+w,, 3w, | superdeformed prolate shapes

2 w3, 2w, ~w3z, 2w t+ws superdeformed oblate shapes

3 wi, 3w, no instability

The fact that the elementary modes of the RHO are nothing else but
the SU(3) bosons has deep theoretical consequences, since calculations at
SD shapes can be greatly simplified by introducing new, symmetry-adapted
operators constructed by means of new coordinates and momenta:

pr_ 1 {A} {2+ Py 1 {2} {AH
XM= — (A + 4 , P = (AW _ A . (29
1 \/5 ( 1 + 1 ) 1 ’L\/i ( 1 1 ) ( )

3. Multicluster model and shell effects

According to Eq. (7), the energy difference between neighboring oscilla-
tor shells, @gpen, decreases smoothly with deformation. This indicates that
the overall magnitude of the shell effects is expected to be strongest at the
spherical shape. However, as indicated by some examples discussed below,
even at very strong elongations, the appearing shell structure leads to an
enhanced stability as in the case of spherical shell gaps. Moreover, we will
describe the deformed shell-stabilized systems in terms of “multiclusters”
of spherical subsystems (clusters), as dictated by the decomposition of the
RHO representations into the isotropic ones, described in the previous sec-
tion. Of course, the term “cluster” should not be understood in the most
direct sense of a spatial spherical cluster since, in medium mass and heavy
nuclei, the probability of clustering into large fragments is strongly inhib-
ited by the Pauli principle. However, it turns out that the group theory
symmetries of these clusters induce some properties of SD states as if the
clustering occurred in the real space. The main assumption of the “cluster”
model is that every {A}-family [an SU(3) oscillator] should correspond to
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an independent fragment. The number of fragments is then equal to the
number of one-dimensional irreps of SU(3), i.e., it is equal to kykz k3.

3.1. Multipole vibrations in the RHO model

In order to analyze the multipole couplings in the RHO model, the
doubly-stretched multipole-multipole separable interaction of Sakamoto and
Kishimoto [22, 23], defined in terms of

Wy .
QS:K = r"3Y)‘K(Q") , z¢ = ;)—oz,- , (1=1,2,3), (30)

has been used. This interaction can be viewed as an improved conventional
multipole-multipole force. Fxrstly, it satisfies the nuclear self-consistency
rigorously, even if the system is deformed. Secondly, it yields the zero-energy
RPA spurious modes, i.e., it automatically separates the translational and
reorientation modes. Last, but not least, for the doubly-stretched interac-
tion, the coupling between octupole and dipole modes disappears.

Let us first discuss properties of low-lying multipole modes within the
RPA formalism. The RPA equation for the excitation energy, w, is given
by the dispersion relation [20-22]

1
—7 — Bak(w) =0, (31)
KK

where x5 is the self-consistent coupling strength given by Eq. (2.81) in
Ref. [22], and

Rax(@) = 3 (5= poyr o7 (69410 + 16108 0] (32

is the RPA response function. The value of Ryg(w = 0)/2 is the inverse
energy-weighted sum rule, S_;, which can be related to the microscopic
interaction strength, k3%, by (22, 24]

1
e =25_1 = R)k(0). (33)
AK
Consequently, if the quantity
Lig = (nself)— _( mlc (34)

is negative (positive), then the lowest energy multipole mode is unstable
(stable) with respect to permanent deformation. In order to check the sus-
ceptibility of the RHO to multipole distortions, one can thus calculate Iy
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as a function of the shell filling. For the RHO this can be done analytically.
Results are presented below of the symbolic-language MATHEMATICA
calculations performed for the closed-shell systems. By M and A we denote
the number of the RHO quanta (10) in the highest occupied shell and the
total number of occupied RHO states, respectively.

3.1.1. Quadrupole modes

(i) Spherical case. Here

sph _ 15 1 _
R = 321rng(M+2)>0, K =0,1,2. (35)

It is seen that the spherical magic harmonic oscillator is stable with
respect to quadrupole distortions, and the result does not depend on K
which is a simple consequence of the rotational invariance.

(i) Superdeformed case. The results presented in Table III show that
in the symmetric case (B) the spurious K = 1 reorientation mode has
exactly zero energy, and the K = 0 and K = 2 modes are degenerate.
In the asymmetric case (A), the rational 2:1 ratio of frequencies gives a
slightly non self-consistent solution, which results in a O(1/M) stability
of the spurious mode and the K = 0 and K = 2 modes being nonde-
generate to the same O(1/M) order. Of course, if the self-consistency
condition is imposed, one obtains I;; = 0 [22] for any nonzero defor-
mation.

TABLE III
Values of I52 for K = 0,1, and 2 (in units of 2 “34).
“o

K A B

0 2M+3— 537 2M +4
30

1 M+3 0

2 IM +3+ i 2M 44

(i) Hyperdeformed case. Here we consider three positions of the Fermi
level (see Fig. 3). The results are presented in Table IV and show the
degeneracy pattern analogous to the SD case.
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TABLE IV
Values of I7ZP for K = 0,1, and 2 (in units of 31257‘_——2/1)

K A B c
2
0 3M+4-— 3(M+1) 3M+5+-3(1M—+2) 3M+6
5
1 M5+1 M+2 0
2 SM+4- 27 3M+5+425 3M+6

3.1.2. Octupole modes

(i) Spherical case. Here

35 1

PR=="_450, K=0,1,2,3. (36)
K by &y

3 87rw3 ’

It is seen that the spherical magic harmonic oscillator is stable with
respect to octupole distortions, and the values of I3 do not depend
on M. It is worth noting that the exact result (36) comes from the
delicate cancellation between the M-dependent terms. In Ref. [22],
where the terms below the O(M) order were neglected, the authors
obtained I3 =0 also for the spherical closed-shell systems.

(#i) Superdeformed case. Here, the results (Table V) depend on the
value of M for K = 1. It should be noted that the shells filled in the
experimentally observed SD nuclei correspond to values of M = 2 or 3.
Therefore, this quantum number cannot be treated as asymptotically
large, and the results restrained to the O(M?) or O(M) order could
have been misleading.

TABLE V
Values of I:;SI? for K=0, 1, 2, and 3 (in units of 40ﬂ,—g.4)

K A B

0 37 73

1 6M? +18M +45 6M?+24M + 80
2 70 80

3 100 100

(1#i) Hyperdeformed case. The results are presented in Table VI. Also
in this case, the values of I3 depend on M, and the O(1/M) terms
cannot be considered negligible.
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TABLE VI
2

Values of IﬁcD for K =0,1,2, and 3 (in units of ﬁ;%&fi).
(4]

K A B c
328 328
0 563 — 28 563+ 22 1079
338 336
1 735— 538 735+ 85 1015
80 80
2 1055 — 89 1055+ ;8% 1215
3 1575 1575 1575

3. Hexadecapole modes

Spherical case. Here

sph _ 189 1, \rs car? =0,1,2,3,4. (37
IR = 2561rng(M +6M°+23M+30) >0, K =0,1,2,3,4. (37)

It is seen that the spherical magic harmonic oscillator is stable with
respect to hexadecapole distortions, and the values of Iy strongly de-
pend on M.

Superdeformed case. Here, the results (Table VII) depend on the
values of M and K. It should be noted that, for typical values of
M = 2 or 3, these expressions cannot be truncated to any particular
order in M. Also, the fact the odd-K modes depend linearly on M
does not mean that these modes are less stable than the even-K modes
which are third-order in M. It is seen that within each sequence 4 and
B and up to the O(M) order, the even- K modes are proportional to one
another. Moreover, up to the O(M?) order, these modes are identical
in the A and B sequences. On the other hand, up to the O(1/M)
order, the odd-K modes are proportional to one another within the
sequences, and they differ already in the leading O(M) order between
the two sequences.
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TABLE VII
Values of IJ2 for K = 0,1,2,3, and 4 (in units of 44807‘,—%,4)

K A B

0 |378 (2MJ +9M? 4 LAl pg o 1285 %L;l) 378 (2M° Fl2M? 4 UM %:-"-)
1 7620 <2M +3- Q‘-’,‘%’;’:—Q) 4105 (ZM + 4)

2| 350 <2M’ +9M% + M + 1 - 1,%’:,1) 350 (2M’ +12M? + 50M + 68)

3 9205 (2M +3- L’;‘;j—ff,—’l) 6720 (zM + 4)

4| 490 (2M3 +OM? + LM 4 138 %{%‘}) 490 (2M° +12M? + 46M + 60)

(ii:) Hyperdeformed case. Instead of giving rather lengthy analytic for-
mulae, in the following only the leading-order terms in M are quoted.
They read:

27 w3
HD _, 3 3

where fr = 583.2, 144, 540, and 856 for K =0,1,2, and 4, respectively
(configurations 4, B, and C). On the other hand, for the K = 3
hexadecapole mode the result is different:

3

27 w
HD ,,6 _ 4! %3

where f3 = 11907 for 4 and B, and f3; = 10206 for C.

3.2. Octupole shell correction in the RHO model

As seen from Tables V and VI, there exists a correlation between the
predictions of the geometrical multi-cluster model and the underlying single-
particle picture. Namely, for the systems expected to be asymmetric, the
value of I3x is small, and it increases for more symmetric multicluster
configurations. This result is already quite encouraging. However, since, in
all cases, I3 > 0, no octupole instability is predicted by the RPA. On the
other hand, it is well known that the deformed shell model alone (here: the
RHO) is not able to correctly predict the nuclear binding and deformation
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energies, since it partly neglects the two-body interaction energy [24]. It is
only the fluctuating part of the total energy — the shell-correction — that
is reproduced fairly well by the single-particle model.

Since we know that the smooth energy of the harmonic oscillator is a
very poor approximation to the liquid drop energy, we should not expect
the RPA result discussed above to be very accurate. Consequently, in the
next step we calculate the shell-driving force associated with the doubly-
stretched octupole interactions.

In the presence of the small perturbing potential, V', the shell correction
energy can be written as

SEqpen = 6B, + 6EQ), + 6EP) + .. (40)

where 6Es(£lu is the unperturbed shell correction energy,

SEQ), = Z Vii - fj Viitis (41)

is the first-order correction to § Egy, . [25], and

p =3 5 gl Sy Rt @)
=1 j=1 .

=1 j=A+1

is the second-order contribution to the shell energy (see Appendix A). In
Eqgs (41)-(42), 7; is the smoothed occupation number of the single-particle
state |) and E;;-Eq is the particle-hole excitation energy.

For the octupole field, V = B3xQ%y, the first-order term (41) van-
ishes, and the shell driving force is solely determined by the second-order

correction, 6Es(121211’ which is proportional to the square of the corresponding
deformation 33k,

‘5E§h2u = C3kBix - (43)

The shell-energy octupole-stiffness coefficient, C3 g, given by Eq. (42) (V —
Q%K ), determines the octupole susceptibility of shell energy. If C3x is
negative, then there exists a shell force favoring stable deformations. (The
liquid drop model energy never favors reflection-asymmetric shapes. This
means that stable octupole shapes can only arise from shell effects, i.e.,
from the shell-driving force.) On the other hand, if C3k is positive, the
shell correction tends to restore reflection symmetry.

The results of calculations for C3g are displayed in Fig. 5. For the spher-
ical shape (portion a) the octupole-driving shell force is positive, ¢.e., there
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is no tendency to develop stable octupole deformations. The situation at the
SD prolate shape is shown in portion (b). For particle numbers representing
the asymmetric cases (A) of Fig. 3, C3¢ is negative. For the symmetric cases
(B), there is no shell octupole-driving force towards reflection-asymmetric
shapes. Finally, the HD case is illustrated in portion (c) of Fig. 5. As ex-
pected, for the systems representing the asymmetric case A of Fig. 3, the
shell correction decreases with octupole deformations, while no octupole-
driving tendency is predicted for the symmetric case C. A similar tendency
has also been predicted for the K # 0 octupole modes and the hexadecapole
mode. (For results for the K # 0 modes, see Refs [26, 27].)

T 17171 17 17T 1771711 T T

B (a) SPHERICAL 168 |
+ o 112 E
-— > 8 2040 -

| I I A N S R |
_ (b) SUPERDEFORMED 140

—
o

o

[
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(=]
T

| e=AC> m=BCO
| S WS A NS ENUNS AU AN SN TS B BN B |
| (c) HYPERDEFORMED

|
w
(o]

-
[=]
|

18 24

<]

Shell-energy octupole stiffness Cy,
I
= )
I T

-10 m
[ e=AOx #=BCCo #=cCCO  199]
—20 N VO RS N N (OO N N AU NN N
012345678 9101112
Nshell

Fig. 5. Shell-correction octupole-stiffness coefficient Cjo {in units of 7/(47w})] as
a function of the shell quantum number defined as N1 = niks + ns. Magic
particle numbers A (with spin degeneracy included) are indicated for all closed-
shell configurations of the RHO at the (a) spherical, (b) superdeformed, and (c)
hyperdeformed shape. If Csg is negative (positive), then there is (is not) a shell
force favoring stable octupole deformations.

The role of spherical clusters in defining properties of SD states becomes
more clear when one considers the shell energy of the RHO. For magic num-
bers given by two unequal spherical clusters (N or Z equal to 28, 60, 110,
etc.), the shell energy decreases with increasing reflection asymmetry. On
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the other hand, for the particle numbers 40, 80, 140, the nuclear shape is
expected to be fairly rigid with respect to reflection-asymmetric distortions.
(See also Refs (8, 28] for the relation between spherical and SD magic num-
bers in terms of two touching harmonic oscillators.) For HD shapes, the
RHO model suggests that the strongest tendency for reflection asymme-
try should be expected in case A, i.e., for the particle numbers 12, 36, 80,
150. Particle numbers that stabilize reflection-symmetric shapes (case C)
are equal to 24, 60, 120.

Calculations based on the realistic mean-field potentials confirm the pre-
diction of the RHO, i.e., regions of particle numbers which favor reflection-
symmetric or reflection-asymmetric SD and HD shapes alternate (8, 29].
For SD shapes, the tendency towards mass asymmetry is strongly favored at
particle numbers around 28, 64, and 114, while for particle numbers around
38, 84, and 144, the minimum shell-correction energy is found at reflection-
symmetric shapes. As far as HD shapes are concerned, the octupole-driving
particle numbers are 34, 80, and 150, while the reflection-symmetry-favoring
numbers are 22, 58, 104, and 120.

4. Light nuclei

Spectacular examples of multi-cluster configurations have been found
and/or predicted in light nuclei. In many cases, these states can be well
described in terms of the RHO model. Ikeda et al. [30, 31] suggested
that multicluster configurations would appear near the threshold energy for
decay into the fragments. Figure 6 illustrates this idea using the so-called

Be C 180 XNe Mg g]

127 [' 14.44 217 l ) M; 34.48 !
® O @n Qs QGuw
e 31 a8 S 119 f‘ ‘2121}

®

¢
SLEPE
;E?‘E

e
Tnp

B

08

-
S

Fig. 6. Ikeda diagram for light nuclei. The threshold energy for each decay mode
(in MeV) is indicated. From Ref. [31].
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Ikeda diagram. (A detailed discussion of various cluster configurations in
light nuclei can be found in Refs [{32-34].)

Among many well-deformed configurations in light nuclei, there are
several good examples that nicely illustrate the scheme discussed in Sec. 3.
For instance:

(i) The SD ground state of ®Be corresponds to two alpha particles side by
side. (SD prolate gap at N=2.)

(11) The ground state of 2C resembles three a-particles in a triangle. This
SD oblate shape (k3 = k2 = 2, k3 = 1) can be associated with the SD
oblate gap at N = 3. The first excited 0’2{' level in 12C at 7.65 MeV can
be viewed as the HD state (three-a-particle linear cluster; HD prolate
gap at N = 3).

(i) The ground state of 2°Ne can be well described as arising from an 160-
4He di-nucleus configuration [35-37].

(iv) The 4:1 state in 16O can be described in terms of the four aligned alpha
particles [38-40].

(v) The calculated [41] low-lying reflection-asymmetric HD minimum (e; =
1,e3 = 0.3) in 2#Mg can be associated with the asymmetric 10 + a+a
(or %0 + ®Be) structures, or the symmetric HD a + 60 +a states
(42, 43]. (HD prolate gap at N = 6.) A six-a chain structure in 24Mg
was reported in Ref. [44].

(vi) The ground state of 28Si can be associated with the SD oblate gap
occurring for N = 7.

(vit) Other examples are the HD states in 36Ar (160 + 160 + a), 48Cr (190
+ 180 + 16Q) (see discussion in Ref. [45]).

5. Third minima in the actinides

In heavy nuclei, very good examples of HD states are the so-called
third minima around 232Th. According to calculations, in these nuclei the
second saddle point is split, leading to the excited reflection-asymmetric
configuration with large quadrupole and octupole deformations, 33 ~ 0.90,
B3 ~ 0.35 [46-50]. Experimentally, the third minimum is indicated from
a microstructure in the resonances found in the light actinides using the
(n.f), (t,pf), and (d,pf) reactions (see, e.g., Refs [51-53]). The very large
quadrupole and octupole deformations of third minima manifest themselves
by the presence of alternating parity bands with very large moments of
inertia (~ 250 MeV~1) built on the same single-particle state [52].

A systematic study of HD states in actinides, using the Nilsson-Strutin-
sky model [49], yielded very shallow reflection-asymmetric third minima.
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The HD states around 232Th also appear in self-consistent calculations
based on the Gogny-Hartree-Fock-Bogolyubov model with the D18S inter-
action [54] and the ATDHF-Skyrme-Yukawa calculation [55].

In Ref. [50], systematic calculations of potential energy surfaces of the
even-even Rn, Ra, Th, and U isotopes have been performed using the
shell-correction approach with the microscopic energy computed with the
axially-deformed Woods-Saxon potential [56] and the macroscopic energy
taken from the Yukawa-plus-exponential mass formula of Ref. [57]. The po-
tential energy surfaces were calculated in a many-dimensional deformation
space (82 — O7), allowing for a rather general description of axially-deformed
reflection-asymmetric shapes. As an example, Fig. 7 shows the calculated
shapes of 232Th in the (82, 33)-plane.

0.675
0.525 |
0.450 - 235“"142 CD .......... C:} ......... S
0.375

@ 0300 (D D D
0.225 | g
o150l (DG DD
0.075
o.ooo:— O Q iy

It

~0.07 PR U VA TUU SO S U S VT WO B VS S S N T ST U
05:45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25
B2

Fig. 7. The shapes of 2*3Th in the (8;,83)-plane. At each value of 8, and f3, the
remaining deformations 34—(3; were obtained by minimizing the total energy.

According to the Woods-Saxon—Strutinsky calculations, third minima
appear in many actinide nuclei. They are characterized by very large elon-
gations (2 ~ 0.9) and significant reflection asymmetry (0.35 < B3 < 0.65).
Fig. 8 displays the Woods—Saxon potential energy curve (relative to the
spherical macroscopic energy) for 232Th as a function of quadrupole de-
formation, 3;, along the static fission path. Also shown are the macro-
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scopic energy and shell correction curves. The very pronounced reflection-
asymmetric HD minimum at 8; = 0.85 and 3 = 0.35 lies about 2 MeV
above the (yet unobserved!) reflection-symmetric SD minimum (8; = 0.6)
and is separated by ~ 2 MeV barrier. As seen in Fig. 8, the predicted sta-
bility of the HD minimum in 232Th comes from the strong shell effect at HD
reflection-asymmetric shapes. The very low shell energy partly compensates
for the increase in macroscopic energy with deformation.
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Fig. 8. Macroscopic energy (Emac), shell correction (Esnen), and total energy (rel-
ative to the spherical macroscopic energy) (Eaer = Emac + Esnen) for 232Th as a
function of quadrupole deformation, 8,, along the static fission path.

The PES’s in the (32, 83)-plane for several even-even Rn, Ra, Th, and
U nuclei are displayed in Fig. 9. The range of quadrupole deformation
(0.55 < B3 < 1.15) covers the region between the second minimum and the
outer barrier. For all the nuclei shown in Fig. 9, there exist well-developed
reflection-asymmetric HD minima. As discussed in Ref. [50], the static
fission path shows a pronounced Z and N dependence. Interestingly, in the
nuclei around 234U, the HD minimum splits into two distinct minima with
very different values of 8 (A =3 - T).

The most interesting conclusion of Ref. [50] is that the structure of
the third minimum corresponds to a bi-nuclear configuration involving a
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Fig. 9. The Woods-Saxon-Strutinsky total potential energy for
224,218,232y, and 326,230.2341] a9 a function of ; and B3. At each (B:, B3) point the
energy was minimized with respect to 85 — 7. The distance between the solid contour
lines is 0.5 MeV. The additional dashed contour lines are 0.25 MeV apart. The minima
(saddle points) are marked by dots (crossed dots).
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spherical (or nearly-spherical) heavy fragment around '3?Sn and a well-
deformed lighter fragment around !°°Zr. This is illustrated in Fig. 10,
which shows the predicted equilibrium shapes of 232Th. Indeed, the shape
corresponding to the HD minimum looks like a superposition of the 132Sn
and 1%°Zr ground-state shapes. Recently, this result has been confirmed
by the calculations of Ref. [58], based on the relativistic mean field theory.
The single-particle spectrum of 232Th at the third minimum resembles a
situation known from the two-center shell-model calculations, i.e., it can be
viewed in terms of combined ground-state spectra of 132Sn (spherical) and
1007r (deformed) (see Fig. 11).

Equilibrium shapes of **Th

ground state

B,=0.20
B=0.10

fission isomer

B,=0.60
B=0.03

third minimum

B,=0.85
B,=0.35
B=0.18

Fig. 10. Calculated equilibrium shapes of 32Th at the ground-state (top), fission-
isomeric (middle), and third-minimum (bottom) configuration.

The clustering effect predicted in the third minima is a striking mani-
festation of nuclear shell structure; in the RHO model the particle numbers
80 and 150 correspond to the situation which formally resembles one spheri-
cal doubly-magic fragment and one well-deformed (or SD) lighter fragment.
The very special role played by the 132Sn structure in the fission process has
been noted before in the context of mass distributions of fission fragments
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Fig. 11. Single-particle levels of 232Th in the third minimum.

[59] and the recent analysis of cold fission data [60]. Recent measurements
of mass and kinetic energy distributions for the photofission of 232Th [61]
demonstrate an enhanced yield for masses around 134. This result is consis-
tent with the predicted “bi-nuclear” structure of the HD minimum in 232Th.

6. Conclusions

The clustering phenomenon in atomic nuclei is a direct manifestation of
a particularly strong ground-state stability of spherical magic systems. In
lighter nuclei, many excited states (resonances) can be explained in terms of
multicluster configurations involving He, 12C, or 1¢0. In heavy nuclei, the
best examples are the HD minima around 232Th. The strong shell effects
associated with multicluster configurations can be qualitatively understood
in the RHO model. In this context, two works, namely (i) by Bayman
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and Bohr on the connection between the cluster model and the SU(3) cou-
pling scheme for particles in a harmonic oscillator potential [62], and (%) by
Harvey on the harmonic oscillator approximation for fusion/fission [63], are
particularly important.
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APPENDIX A

Shell correction energy in the presence of perturbing potential

The shell correction can be calculated by taking the difference between
the sum of occupied levels and its average value [25, 64-66],

Eshen = Esp. — Es p.- = Z € — / g(e)de, (44)

i—occ

where X is the smoothed Fermi level defined through the particle number
equation:

A
N= ] a(€)de, (45)

and §(¢) is the mean single-particle level density obtained from the single-
particle level density (1) by folding with a smoothing function f(z):

i) = f;_?de’y(e')f (:9) - Zf( %) =1 Ef, (46)
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In Eq. (46), v is the smoothing range; it should be larger than the typical
distance between major shells.
The smoothed single-particle energy can be expressed in the form [67]:

-

A

Es.p. = / Eﬁ(é)de = Z €Ny + Y = (47)

bt @ o]

where the smoothed occupation numbers are

nes L4 (5) <48>

Since the value of Es,p, should not depend on the smoothing range 7, the
second term in Eq. (47) must vanish, i.e.,

Es.p. = E €My . (49)
i

In the presence of a small perturbing potential, the single-particle en-
ergies are slightly modified, i.e., ¢, — ¢; + §¢;. Following Eq. (49), the
corresponding change in the average single-particle energy is:

%
§E,p. = AG(3)5A + / ¢ 65(<)de . (50)

—_ 00

The variation §A can be calculated from the particle number equation (45),

A
5N =0 = §(N)63 + / §5(c)de = 0. (51)
After using the identity
. 1 ofi
83(€) = 22 3 =——Z - e (52)

(folding function depends only on the dlfference € — €¢;) and combining
Egs. (50), (51), (46), and (48), one obtains

§Esp. = /(,\-e)ag(e)de_ Z/(A-e 2 e, de

= %Zﬁei / fide = Zéfi n;. (53)
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This result shows that, at variance with the suggestion expressed in Ref. [27],
the variation of the smoothed occupation numbers, #;, in Eq. (49) does not
contribute to the variation of the average single-particle energy. For this
result to be valid, one only has to properly take into account the conservation
of the average number of particles.
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