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some applications are studied.
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1. Introduction

In the past five years substantial progress has been made in the the-
oretical description of systems containing heavy quarks. This progress on
the theoretical side has been accompanied by an enormous improvement of
experimental data, which made the field of heavy quark physics one of the
most interesting and prosperous fields in high energy physics.

The theoretical breakthrough was triggered by the observation that for
a heavy quark one may take advantage of the fact that one may treat such
a quark to first approximation as infinitely heavy [1, 2]. This infinite mass
limit has two important properties. It may be formulated as an effective
field theory, which is called Heavy Quark Effective Theory (HQET) [3]. This
implies that the corrections to this limit may be treated systematically in
the framework of a combined a,(mg) and 4/mg expansion, where mq is
the mass of the heavy quark and A is some scale related to the light degrees
of freedom, typically of the order of a few hundred MeV.

The second and even more important point is that the leading term
(corresponding to the infinite mass limit) exhibits two additional symmetries
which are not present in full QCD {2]. It was this observation which started
the whole development, since these symmetries of the effective theory allow
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to restrict the non-perturbative input needed to describe e.g. weak decay
matrix elements. In other words, the hadronic uncertainties may be reduced
substantially and even a few completely model independent statements are
possible. The progress in this field is documented in more or less extensive
reviews [4].

Heavy quark symmetries work most efficiently for transitions among
heavy quarks; treating both b and c as heavy the weak transition b — ¢
are precisely of this type and thus these weak transitions are strongly con-
strained by heavy quark symmetries. In particular, one may even obtain the
absolute normalization of the transition matrix elements at a certain kine-
matic point, allowing for a model independent determination of the CKM
matrix element V. If the final state quark is light as e.g. in the weak
transitions of the type b — u or ¢ — s heavy quark symmetries may still be
applied but are less restrictive [5].

In the present review I try to summarize some of the basics of heavy
quark symmetries and to indicate how to deal with HQET. Numerous papers
have appeared since the pioneering work of Voloshin, Shifman and Eichten,
Hill [1], Isgur, Wise [2] and it is impossible to summarize everything in this
short review. Heavy quark symmetries lie at the heart of HQET, and in
Section 2 we consider these additional symmetries. In Section 3 the method
of how to calculate corrections in the framework of HQET is outlined. Sec-
tion 4 is dedicated to heavy to heavy transitions, where we shall study the
decay B — D(*)¢, in some detail. Heavy to light decays will be considered
in Section 5, where purely leptonic and semileptonic decays are studied.

2. Heavy quark symmetry

The main impact of the heavy quark limit is due to two additional
symmetries which are not present in full QCD; the first is a heavy flavour
symmetry and the second one is the so called spin symmetry.

We shall first study the heavy flavour symmetry. The interaction of
the quarks with the gluons is flavour independent; all flavour dependence in
QCD is only due to the different quark masses. In the 1/m¢g expansion the
leading order Lagrangian is mass independent and hence a flavour symmetry
appears relating heavy quarks moving with the same velocity.

For the case of two heavy flavours b and ¢ one has to leading order the
Lagrangian [3]

Lheavy = by(v - D)by + Ey(v- D)ey (1)

where b, (¢,) is the field operator h, for the b (¢) quark moving with velocity
vand D = 8 + igA is the QCD covariant derivative. This Lagrangian is
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obviously invariant under the SU(2)yr rotations

(b") — Uy (z:) U, € SU(2)uF - (2)

Cy

We have put a subscript v for the transformation matrix U, since this sym-
metry only relates heavy quarks moving with the same velocity.

The second symmetry is the heavy-quark spin symmetry. As is clear
form the Lagrangian in the heavy-mass limit, both spin degrees of freedom
of the heavy quark couple in the same way to the gluons; we may rewrite
the leading-order Lagrangian as

L = h}*(suD)h}* 4+ hy*(iwD)h;*, (3)

where hf,t" are the projections of the heavy quark field on a definite spin
direction s

hEt=1(1+y56)hy, s-v=0. (4)

This Lagrangian has a symmetry under the rotations of the heavy quark
spin and hence all the heavy hadron states moving with the velocity v fall
into spin-symmetry doublets as mg — oo. In Hilbert space this symmetry
is generated by operators §,(¢) as

[hv, Su(€)] = igprsho, (5)

where ¢ with ¢2 = —1 is the rotation axis. The simplest spin-symmetry
doublet in the mesonic case consists of the pseudoscalar meson H(v) and
the corresponding vector meson H*(v,¢€), since a spin rotation yields

exp (iSy(e)F) |1H(v)) = (—i)|H*(v, £)), (6)

where we have chosen an arbitrary phase to be (—1).
In the heavy-mass limit the spin symmetry partners have to be degen-
erate and their splitting has to scale as 1/mg. In other words, the quantity

1
Ao = (M. - M) (7)

has to be the same for all spin symmetry doublets of heavy ground state
mesons. This is well supported by data: For both the (B, B*) and the
(D, D*) doublets one finds a value of A; ~ 0.12 GeVZ. This shows that the
spin-symmetry partners become degenerate in the infinite mass limit and
the splitting between them scales as 1/m.
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In the infinite mass limit the symmetries imply relations between matrix
elements involving heavy quarks. For a transition between heavy ground-
state mesons H (either pseudoscalar or vector) with heavy flavour f(f')
moving with velocities v (v'), one obtains in the heavy-quark limit

(B ES TAD B 0) = €T {HEIHE)) ()

where I’ is some arbitrary Dirac matrix and H(v) are the representation
matrices for the two possibilities of coupling the heavy quark spin to the
spin of the light degrees of freedom, which are in a spin-1/> state for ground
state mesons

VM (I1+9)ys 07,(gQ) meson
H(v) = v_H 1+ 15)¢5 17, (§Q) meson (9)

2 with polarization €.

Due to the spin and flavour independence of the heavy mass limit the Isgur—
Wise function £ is the only nonperturbative information needed to describe
all heavy to heavy transitions within a spin-flavour symmetry multiplet.

Excited mesons have been studied in [6]. They may be classified by the
angular momentum of the light degrees of freedom j;, which is coupled with
the heavy quark spin § to the total angular momentum J of the meson.
Furthermore, the orbital angular momentum £ determines the parity P =
(~1)¢*1! of the meson. For a given £ > 0 we can have j; = £ + 1/2 and
the coupling of the heavy quark spin yields two spin symmetry doublets
(J=£-1,J=¢)and (J =£,J = £+ 1). For example, the lowest positive
parity £ = 1 mesons are two spin symmetry doublets (0*,1%) and (11,27).
In the D meson system these states have been observed [7] and behave as
predicted by heavy quark symmetry [8].

Similarly as for the mesons heavy-quark symmetries imply that only
one form factor is needed to describe heavy to heavy transitions within a
spin flavour symmetry multiplet; in other words, there is an Isgur—-Wise
function for each multiplet.

The ground state baryons have been studied in [9-11]. According to
the particle data group they are classified as follows

Ap = [(qql)oh]l/z 5;; = [(qs)oh]l/z (10)
Zh=1[(gg" )1kl En=[gshhliyz  2n=[(ss)1h]y2 (11)
Zh=lggnhls;e Ek=[(gs)hlse 2 = [(ss)ihlsyz. (12)

Here, g, ¢' refer to u and d quarks, ¢ # ¢' for the A, but ¢ may be the same
as ¢' for the ¥) and X}. The first subscript (0, 1) is the total spin of the
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light degrees of freedom, while the second subscript (1/2, 3/2) is the total
spin of the baryon.

Spin symmetry forces these baryons into spin symmetry doublets. For
the A-type baryons (10) the spin rotations are simply a subset of the Lorentz
transformations, since the light degrees of freedom are in a spin-0 state.
The corresponding spin symmetry doublet is in this case given by the two
polarization directions of the heavy baryon. From the point of view of heavy
quark symmetries the A-type baryons are the simplest hadrons, although
from the quark model point of view they are composed of three quarks.

The baryons with the light degrees of freedom in a spin one state may
be represented by a pseudovector-spinor object R* with v, R* = 0 1 In
general y,R* # 0 because R* contains spin-!/, contributions as well as
spin-3/, parts. In other words, R* contains a Rarita—Schwinger field as well
as a Dirac field. Under Lorentz transformations R* behaves as

R*(v) — A%, D(A)R*(Av), (13)

where Ay, and D(A) are the Lorentz transformations in the vector and
spinor representation respectively, while under spin rotations we have

R¥(v) = —ysp¢ R (v). (14)

The spin-3/, component of the pseudovector-spinor object correspond-
ing to the ¥} is projected out by contracting with v,

v “R;;: =0. (15)
The rest of the independent components of R correspond to X baryon:

1
Ry, = %(7” +vh)ysus, - (16)

where uy, is the Dirac spinor of the X, state. Similar expressions hold for

the nonstrange baryons = f:) and .Qg*) .

The spin rotation (14) transform the X-like baryons into the X' states
and vice versa. Thus the spin symmetry doublets for the ground state
baryons are given by the two polarization directions of the baryons in (10),
and by the two states with corresponding light quark flavour numbers in
(11) and (12).

! One could as well represent the light degrees of freedom by an antisymmetric
tensor instead by a pseudovector; this is a completely equivalent formulation
[11].
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Similar to the case of mesons one may derive a Wigner—Eckart theorem
for the spin symmetry doublets of the baryons

(Ap(©)|ATA |Aps(v')) = A(v - ”')’—‘Eh("’)ruf;.l (v'), (17)

where we have allowed for the possibility of two heavy quark flavours h and
k'. In the same way, one obtains two form factors for the 2';:) — Z’g’,').

(55 () RoThor | Z57)
- R;ﬁ*)(v)I’R;,(,*)(v') [B(v-v")guw + C(v-v")vy0,] (18)

Finally, parity does not allow for transitions between A and 2™ type
baryons

(54 (v) Ry Thy| A (v)) = 0, (19)

and hence these transitions are not only suppressed by the flavour symmetry
of the light degrees of freedom, but additionally by heavy quark symmetry.

Excited baryons may be studied along the same lines as for the mesons.
The spin symmetry doublets as well as the restrictions on transition matrix
elements have been studied in [6].

Heavy quark symmetries thus lead to a strong reduction of the number
of independent from factors that describe current induced transitions among
heavy hadrons. In addition to that the symmetries even allow us to obtain
the normalization of some of these form factors. Since the currents

T = By bl = v okl (20)

are the generators of heavy flavour symmetry in the velocity sector v, the
normalization of the Wigner—Eckart theorems (8), (17), (18) is known at the
nonrecoil point v = v'. By standard arguments one obtains for the mesons

E(vo'=1)=1, (21)

while the corresponding relation for the baryons is

A(w' =1) = /my, my, (22)
Bvv'=1)= /m_ym _v), (23)
( )= [Mso 56

where the factor involving the square root of the masses means that the
hadron states in (17) are normalized relativistically.
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3. Corrections to the heavy mass limit

The heavy quark symmetries allow us to obtain relations which hold in
the heavy mass limit, such as the Wigner-Eckart theorems (8), (17), (18)
and the normalization statements (21), (22), (23). Corrections due to finite
masses may be calculated systematically using the machinery of HQET. In
this section we consider the strategy of how the corrections are studied.

In general there are two types of corrections. The short-distance correc-
tions may be calculated in perturbation theory, based on the leading order
of the 1/m¢p expansion of the Lagrangian. The logarithmic ultraviolet di-
vergences in the effective theory correspond to logarithmic dependences on
the heavy-quark mass mg in the full theory, and renormalization group
methods may be employed to perform resummations of these logarithms.

The starting point of a QCD corrections calculation are the Feynman
rules of full QCD and the ones of HQET. In HQET there are only two of
Feynman rules modified compared to full QCD:

Full QCD HQET
Propagator of the heavy quark 1‘——";2_;; We}(-{;, p=muv+k
Heavy quark gluon vertex igy, T* — igv,T*

For the sake of simplicity and clarity we shall consider the matrix ele-
ment of some operator O corresponding to some observable quantity, e.g.
a current mediating a weak decay. Since HQET is an effective theory, the
machinery of effective theory guarantees the factorization of long distance
effects from the short distance ones, which are related to the large mass
mg. Neglecting 1/mg corrections, this factorization takes the form

() fou = 2 (%) (O semeiel ) + O(1/ma) (24)

where the dependence on mg of the coefficient Z is given as a combined
expansion in the coupling strength a, = g?/(47) and logarithms of mg

z (ﬂ?.) = ago
m
m
+an (a,ln (TQ)) + @00,
m

+ az2
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This factorization theorem corresponds to the statement that the ultravio-
let divergencies in the effective theory have to match the logarithmic mass
dependences of full QCD. The factorization scale p is an arbitrary param-
eter, and the physical quantity (O)g,1 does not depend on this parameter.
However, calculating the matrix element of this operator in the effective
theory and studying its ultraviolet behaviour allows us to access the mass
dependence of the observable (O).

The ultraviolet behaviour of the effective theory is investigated by the
renormalization group equations. Differentiating (24) with respect to the
factorization scale y yields the renormalization group equation

{2 (22) sl | =0, (26)

from which we may obtain an equation which determines the change of the
coefficient Z when the scale is changed

(75 + 7o) 2 (22) =0,

Yolk) = g n((O)atatic(w)- (27)

The quantity 7o is called the anomalous dimension of the operator O which
is universal for all matrix elements of @, since it is connected with the short
distance behaviour of the insertion of the operator O.

Eq. (27) describes the renormalization group scaling in the effective
theory. It allows to shift logarithms of the large mass scale from the matrix
element of O into the coefficient Z: If the matrix element is renormalized
at the large scale mq the logarithms of the type Inmg will appear in the
matrix element of O while the coefficient Z at this scale will simply be

Z(1) = ago + a100s(mg) + az0c?(mg) + azoad(mg) +---, (28)

The renormalization group equation (27) allows to lower the renormalization
point from mq to y; the matrix element renormalized at p will not contain
any logarithms of M any more, they will appear in the coefficient Z in the
way shown in (25).

In all cases relevant in the present context the matrix elements will be
matrix elements involving hadronic states, which are in most cases impos-
sible to calculate from first principles. However, Eq. (27) allows to extract
the short distance piece, i.e. the logarithms of the large mass M and to
separate it into the Wilson coefficients.

The anomalous dimension may be calculated in perturbation theory in
powers of the coupling constant g of the theory. In general, in a renormal-
izable theory the coupling constant depends on the scale u at which the
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theory is renormalized. The scale dependence of the coupling constant is
determined by the 8 function

d

T 9() = (). (29)

In a mass independent scheme the renormalization group functions yo and
B will depend on the scale p only through their dependence on the coupling

constant
=B(g(1)) 10 =70(9(K))- (30)

Hence we may rewrite the renormalization group equation (27) as

( (—;—9—+ﬂ(g) i +70(9)> (Tf-,g) =0. (31)

The renormalization group functions 3 and v are calculated in perturba-
tion theory; the first term of the 8 function on QCD is obtained from a
one-loop calculation and is given by

1 2 3 )
8l0) = ~ s (11- 3ns) #* 4+, (52)

where ny is the number of active flavors, i.e. the number of flavors with a
mass less than mq.
With this input the renormalization group equation may be solved to
yield
4872

“a22 o 1N
v as(mq)
where 71 is the first coefficient in the perturbative expansion of the anoma-

lous dimension Yo = 739 +- - - and a,(p) is the one loop expression for the
running coupling constant of QCD

127

which is obtained from solving (29) using (32). This expression corresponds
to a summation of the leading logarithms (a,Inmg)™ which is achieved
by a one-loop calculation of the renormalization group functions beta and
vg; in other words, in this way a resummation of the first column of the
expansion (25) is obtained.

In a similar way one may also resum the second column of (25), if the
renormalization group functions 8 and v are calculated to two loops and

(34)

as(u) =



672 T. MANNEL

the finite terms of the one loop expression are included. Below we present
some results up to two loops.

The second type of corrections are the power corrections of order 1/ m’é,
which in general involve long-distance physics and hence may in general not
be calculated, but have to be parametrized. As an example, consider a
matrix element of a current §I'Q mediating a transition between a heavy
meson and some arbitrary state |4). The full QCD Lagrangian £ and the
fields Q are expanded in terms of a power series in 1/mg and one obtains 2

L = hy(ivD)hytz-hyiPP_iPh+(51- ) hyiPP_(—ivD)iPhyt- - - (35)
Q(z) = e—imave [1+2qu$J_+(2mq)2(~ivD)P_z'$+--- hy, (36)

where Py = (1 % #)/2 is the projector on the upper/lower component of
the spinors. For the matrix element under consideration one obtains up to
order 1/mg:

(412TQIM(v) = (AThu (W) + 5 —(AlaT P-iPhol H(v))

_i / d2(AIT{Ly(2)qT hy } H(v)) + O(1/m?), (37)

where L, are the first-order corrections to the Lagrangian as given in (35).
Furthermore, | M(v)) is the state of the heavy meson in full QCD, including
all its mass dependence, while |H(v)) is the corresponding state in the
infinite mass limit.

Expression (37) displays the generic structure of the higher-order cor-
rections as they appear in any HQET calculation. There will be local con-
tributions coming from the expansion of the full QCD field; these may be
interpreted as the corrections to the currents. The nonlocal contributions,
i.e. the time-ordered products, are the corresponding corrections to the
states and thus in the r.h.s. of (37) only the states of the infinite-mass limit
appear.

Finally we shall review briefly an important result concerning 1/mg
corrections, which is called Lukes theorem. It is a generalization of the
Ademollo-Gatto theorem, which states that in the presence of explicit sym-
metry breaking the matrix elements of the currents that generate the sym-
metry are still normalized up to terms which are second order in the sym-
metry breaking interaction.

2 It has been pointed out repeatedly [12] that these expansions are not unique;
one may always shift terms from the fields into the Lagrangian, which then
appear as terms that would vanish by a naive application of the equations of
motion.
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For the case at hand the relevant symmetry is the heavy flavor sym-
metry. This symmetry is an SU(2) symmetry and is generated by three
operators @+ and @3 with

Q+:/d3:c51,(:c)cv(z) Q- =/d3:cE,,(:c)bv(:c),

\ = /d%(z,,(z)b,,(z) — Zy(2)es(2)),

Q+,Q-1=Qs [Q+Qs]=-2Q+ (@)'=0Q_. (38)

Let us denote the ground state flavour symmetry multiplet as |B) and
|D). Then the operators act in the following way

Qs|B) = |B)  Qs|D)=-|D),

Q+|D)=|B)  Q-|B)=1|D),

Q+|B) =Q-|D)=0. (39)
The Hamiltonian of this system hasa 1/ mQ expansion of the form

H=HP + B + — H(b)+ H(‘)

b 1 b c
:H§)+HSC)+—2_(2_TM+R)(HI()+H§ ))

1/ 1 1 (®) _ ()
S - H .
t3 (2mb 2mc) (Hy 1)+

= Hsymm + Hpreak - (40)
In the second equation, the first line is still symmetric under heavy flavour

SU(2) while the term in the second line does not commute any more with
@+, but it still commutes with Q3. In other words, to order 1/mg we still

have common eigenstates of H and @3, which we shall denote as ll;‘) and
|D). Sandwiching the commutation relation we get

1=(B|Qs|B) = (B|[Q+,Q-]1B)
=Y [(BIQ+In)nIQ-|B) - (BIQ-In)(lQ+1B)]

=" [(Bl@+Im? - KBle-In)?] , (41)

where l;z) form a complete set of states of the Hamiltonian Hgymm + Hbreak-
The matrix elements may be written as

(BlQ ) = =g (Bl [Horent Q]IR), (42)
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where Eg and E, are the energies of the states |B) and |n), repectively.
In the case |n) = |D) the matrix element will be of order unity, since both
the numerator as well as the energy difference in the denominator are of the
order of the symmetry breaking. For all other states the energy difference
in the denominator is nonvanishing in the symmetry limit, and hence this
difference is of order unity; thus the matrix element for these states will be
of the order of the symmetry breaking. From this we conclude

2
(1'5’|Q+|15)=1+(’)[(L . ) l : (43)

2mb B 2mc

In particular, the weak transition currents at the nonrecoil point v = v’
are proportional to these symmetry generators and hence we may conclude
that for some of these matrix elements we only have corrections of the order
1/mZ,.

Q

4. Heavy to heavy transitions

For the case of a heavy to heavy transition the Wigner—Eckart theo-
rem (8) implies that there is only a single form factor which describe the
weak decays of heavy hadrons; furthermore, the heavy mass limit yields the
normalization of this form factor at the kinematic point v = v'.

Treating both the b and the ¢ quark as heavy, the semileptonic decays
B — D™y are the phenomenologically relevant examples. The matrix
elements for these transitions are in general parametrized in terms of six
form factors

(D(v")|e7ub| B(v)) = v/mBmp [€+(y)(vutvy)+E-(¥)(vu — v,)] (44)

(D*(v',€)|27,b| B(v)) =in/mBmD €V (y)€ pap e ™ 0P v” (45)
(D*(v',€)|e1,75b| B(v))=/mBmDr [€a1(y)(vv' + 1)ef, — £az(y)(e™0)vp
—Eaz(y)(e™v)v).] (46)

where we have defined y = vv'. Due to the Wigner—Eckart theorem (8)
these six from factors are related to the Isgur—Wise function by

&i(y) = E(y) for i = +,V, Al, A3, &i(y)=0fori=—, A2. (47)

Since heavy quark symmetries also yield the normalization of the Isgur—Wise
function, we know the absolute value of the differential rate at the point
v = v' in terms of the meson masses and V,,. Hence we may use this to
extract V., from these decays in a model independent way by extrapolating
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the lepton spectrum to the kinematic endpoint v = v'. Using the mode
B — D™y one obtains the relation

: 1 ar G% 2 2,3 2
vh_’ni, \/(v_'g')2—-.—1d(vv') = 4n3 Vsl (mB - mD*) mD*|6A1(1)| ’ (48)
where {4, is equal to the Isgur—Wise function in the heavy mass limit, and
hence £4;(1) = 1.

Corrections to this relation have been calculated along the lines outlined
above in leading and subleading order. A complete discussion may be found
in more extensive review articles (see e.g. Neubert’s review [4]), including
reference to the original papers. Here we only state the final result

as(me) — as(mp)  8as(mc)

£41(1) = 28/% {1 +1.561

3
- 2
(49)
where we use the abbreviations
_as(me) me
T as(my) T my

and 7 is a scale somewhere between m; and m,.
Up to the term 4, Jm? all these contributions may be calculated pertur-

batively, including the dependence on z. The quantity §; Jm2 parametrizes
the nonperturbative contributions, which enter here at order 1/m?%. These
corrections may be expressed in terms of the kinetic energy Ay, the chro-
momagnetic moment A, which are given in terms of matrix elements of
higher-order terms of the Lagrangian

(H(v)|ho(iD)?hy | H(v))

/\l = 2MH ) (50)
) T - “- y
Ay = (H(v)|hyouyiD#iD" hy|H (v)) , (51)
oMy

where the normalization of the states is chosen to be (H(v)|hohy|H(v)) =
2Myy, where My is the mass of the heavy meson in the static limit. In
terms of these parameters §, /m2 may be written as

1 \%1
b= () L n e

2m.
+ (—i)zﬁ [ d*z d*y (B* (v, )IT [£{D (2)boco L8 ()] ID*(v,e)>)
+O(1/md, 1/m3,1/(memy)) (52)
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where [,8) is the first order Lagrangian for the quark @ as given in (35)

and Mg (Mp) are the masses of the B (D) meson in the heavy quark limit.
Here we display only the largest contribution of order 1/ mZ; the complete
expression, including the 1/m? and 1/(m.m,) terms, may be found in [13,
14).

The matrix elements Ay, A2 and the one of the time-ordered product
have to be estimated in a model or need to be taken from data. The pa-
rameter Az has been discussed above and is given by the mass splitting
between the ground state spin symmetry partners. The kinetic energy A;
is currently subject of intensive discussions; it may not be read off from the
hadron spectrum and thus it is not easy to access. It is not yet determined
from data and only theoretical estimates exist; from its definition one is led

to assume Ay < 0; a more restrictive inequality
—X1 > 3X2 (53)

has been derived in a quantum mechanical framework in [15] and using
heavy-flavour sum rules [16]. Furthermore, there exists also a sum rule
estimate [17] for this parameter

A = —0.524 0.12 GeV2. (54)

Similarly it is not easy to obtain information on the matrix element involving
the time-ordered product, and thus the corrections of order 1/ m? will finally
limit our ability to determine the CKM matrix element V. in a model
independent way, at least along the lines as described above.

Various estimates for 4, /,,2 have been given in the literature. The first
estimate of this correction has been given in [13] using the GISW model
[18], which is based on a wave function for the light quark. In this work
02 = —2%...— 3% has been obtained. Another estimate with weaker
assumptions yields §,,2 = 0...— 5% [14], but both estimates have been
criticised recently as being too small. Based on heavy flavour sum rules
it has been argued in [19] that the 1/m? corrections can be quite large
6.2 = 0%...— 8% [19]. These various estimates indicate the size of the
theoretical error involved in the determination of V; from the exclusive
channel B — D*{p,.

This result has been used to extract V., from data. In Fig. 1 the latest
data [20] are shown. From this fit one obtains [20]

|V.s| = 0.0362 £ 0.0019 & 0.0020 + 0.0014, (55)

where £(1) = 0.97 £ 0.04 has been used. The third error in |V, is due to
the theoretical uncertainties, which by now almost match the experimental
ones.
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40 T T T
(a) Linear Fit

(b) Quadratic Fit

3
Vcb F(y) x 10
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y

Fig. 1. Latest data [20] for the product |V,;|é(vv') as a function of y = vv'.

Similar statements can be made for the semileptonic decays of heavy
baryons. The decay A, — Ay is again parametrized by a single form
factor, and this even remains true for the 1/mg correction terms [21, 22].
However, at present data on these decays are still sparse, although first
measurements have been performed [23].

The X-type baryons will in general decay either strongly or electro-
magnetically and hence a weak decay will be completely unobservable. The
only candidate where a weak decay may be observable is the f2g baryon,
since a strong decay would require the emission of a kaon and this may be
suppressed due to the too small phase space.

5. Heavy to light transitions

Heavy quark symmetries may also be used to restrict the independent
form factors appearing in heavy to light decays. For the decays of heavy
mesons into light 0~ and 1~ particles heavy quark symmetries restrict the
number of independent form factors to six, which is just the number needed
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to parametrize the semileptonic decays of this type. Furthermore, no ab-
solute normalization of form factors may be obtained from heavy quark
symmetries in the heavy to light case; only the relative normalization of B
meson decays heavy to light transitions may be obtained from the corre-
sponding D decays.

In general we shall discuss matrix elements of a heavy to light current
which have the following structure

J = (A{Thy|H(v)), (56)

where I is an arbitrary Dirac matrix, £ is a light quark (u, d or s) and A is
a state involving only light degrees of freedom.

Spin symmetry implies that the heavy quark index hooks directly the
to the heavy quark index of the Dirac matrix of the current. Thus one may
write for the transition matrix element (62)

(A[IThy|H(v)) = Tr (M4TH(v)), (57)

where the matrix H(v) representing the heavy meson has been given in
(9). The matrix M4 describes the light degrees of freedom and is the
most general matrix which may be formed from the kinematical variables
involved. Furthermore, if the energies of the particles in the state A are
small, i.e. of the order of Agcp, the matrix M 4 does not depend on the
heavy quark; in particular it does not depend on the heavy mass mgy. In
the following we shall discuss some examples.
The first example is the heavy meson decay constant, where the state
A is simply the vacuum state. The heavy meson decay constant is defined
by
(Olyuysho|H(v)) = fumuvy , (58)
and since |4) = |0) the matrix M, is simply the unit matrix times a di-
. mensionful constant® and one has, using (57)

(Olfyuv5ho|H(v)) = & Tr (y75H(v)) = 26y/mAv, - (59)

As discussed above the constant x does not depend on the heavy mass and
thus on infers the well-known scaling law for the heavy meson decay constant
from the last two equation

1

g o« —\/’I’TL__—E . (60)

3 Note that contributions proportional to § may be eliminated using

H(v)f = —H(v).
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Including the leading and subleading QCD radiative corrections one obtains
a relation between fp and fp

—6/25
fB=y/== (a,(mb)> [1+0.894°"(m°) — sl g 0.695p.
b as(mc) T
(61)

The second example are transitions of a heavy meson into a light pseu-
doscalar meson, which we shall denote as #. The matrix element corre-
sponding to (56) is

Jp = (n(p)l{lho|H(v)), (62)

where p is the momentum of the light quark.

The Dirac matrix Mp for the light degrees of freedom appearing now
in (57) depends on p and v. It may be expanded in terms of the sixteen
independent Dirac matrices 1, 5, Y4, Y574, and o, taking into account
that it has to behave like a pseudoscalar. The form factors appearing in the
decomposition of Mp depend on the variable v - p, the energy of the light
meson in the rest frame of the heavy one. In order to compare different
heavy to light transition by employing heavy flavor symmetry this energy
must be sufficiently small, since the typical scale for the light degrees of
freedom has to be of the order of Agcop to apply heavy quark symmetry?.
For the case of a light pseudoscalar meson the most general decomposition
of Mp is

1
Mp = /v pA(n)rs + ﬁﬂﬂ)%ﬂ (63)
where we have defined the dimensionless variable
v-p '
= . 64
"= Zoop (64)

The form factors A and B are universal in the kinematic range of small
energy of the light meson, i.e. where the momentum transfer to the light
degrees of freedom is of the order Aqcp; in this region 7 is of order unity.
This universality of the form factors may be used to relate various kinds
of heavy to light transitions, e.g. the semileptonic decays like D — wew,
D — Kev or B — mev and also the rare decays like B — K{T{™ or
B — w£*T{~, where £ denotes an electron or a muon.

% Note that in this case the variable v - p ranges between 0 and my /2 where
we have neglected the pion mass. Thus at the upper end of phase space the
variable v - p scales with the heavy mass and heavy quark symmetries are not
applicable any more.
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As an example we give the relations between exclusive semileptonic
heavy to light decays. The relevant hadronic current for this case may be
expressed in terms of two form factors

(m(p)|&y(1 - 75)hy|H(v)) = Fy(v- p)mpv, + Fa(v-p)py
= Fi(v-p)(myvy +pu) + F—(v-p)gy, (65)

where
Fi(v-p) =3 (Fi(v-p) £ Fa(v-p)). (66)

Inserting this into (62) one may express F.y in terms of the universal form
factors A and B

Fi(v-p) = Fy(v-p) + F-(v-p) = =2,/ 2 A(n), (67)
Fav-p) = Fi(v-p) = F-(v-p) = =2,/ "L B(n). (68)

From these relations one may read off the scaling of the form factors with
the heavy mass which was already derived in [5].

This may be used to normalize the semileptonic B decays into light
mesons relative to the semileptonic D decays. One obtains

e (S BE) et ([ ) e

Note that F. for the B decay is expressed in terms of Fy and F_ for the D
decays. In the limit of vanishing fermion masses only F; contributes, which
means that the F_ contribution to the rate is of the order of mjepion/mH-
Thus it will be extremely difficult to determine experimentally.

The case of a heavy meson decaying into a light vector meson may be
treated similarly. The matrix element for the transition of a heavy meson
into a light vector meson (denoted generically as p in the following) is given
again by (56) and is in this case

Jv = (p(p, &)/l hy|H(v)).. (70)
Using (57) one has
(p(p,€)|T Ry |H(v)) = Tr (MyTH(v)), (71)

where now the Dirac matrix My has to be a linear function of the polar-
ization of the light vector meson.



FEzclusive Decays of Heavy Flavours 681

The most general decomposition is given in terms of four dimensionless
form factors

My = /550()(0-2) + —Z=Dln)(v- )b+ VITPE(r)Y + ﬁF(nzz:z)

where the variable 7 has been defined in (64).

Similar to the case of the decays into a light pseudoscalar meson (71)
may be used to relate various exclusive heavy to light processes in the kine-
matic range where the energy of the outgoing vector meson is small. For
example, the semileptonic decays D — pev, D — K™ev and B — pev are
related among themselves and all of them may be related to the rare heavy
to light decays B — K*{t{~ and B — p{T{~ with £ = e, p.

Finally we comment on the heavy to light transitions of baryons. For
the A-type heavy baryons (10) spin symmetry relates different polarizations
of the same particle and thus imposes interesting constraints. Consider for
example the matrix element of an operator £I'h, between a heavy Ag and

a light spin-1/; baryon By. It is described by only two form factors,
(Be(p)EThy|Ag(v)) = Gp(p){Fi(v - p) + $Fa(v - p)}upg(v).  (73)

Thus in this particular case spin symmetry greatly reduces the number of
independent Lorentz-invariant amplitudes which describe the heavy to light
transitions.

This has some interesting implications for exclusive semileptonic A,
decays. For the case of a left handed current I' = 7, (1—7s5), the semileptonic
decay A, — Afy, is in general parametrized in terms of six form factors

(AP)|F1u(1 — 75)cl Ae(v)) =(p) [fryp + if20u098” + f2a*] u(p')
+ a4(p) (9174 + 9200 0” + 93¢*] 15u(p'),
(74)

where p' = m4_v is the momentum of the A, whereas ¢ = my v — p is the
momentum transfer. From this one defines the ratio G4 /Gv by
2 _

Gv fil¢#=0)"

In the heavy ¢ quark limit one may relate the six form factors f; and
g; (1 =1,2,3) to the two form factors F; (j = 1,2)
—AFy, (76)

1
h=fi=-g=-g=
m

fi=—-g1=F1+
my,

F2 ) (77)

14
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from which one reads off G4 /Gy = —1. This ratio is accessible by measur-
ing in semileptonic decays A, — A{P, the polarization variable a
2G 4G
a= A7V (78)

which is predicted to be @ = —1 in the heavy ¢ quark limit. The subleading
corrections to the heavy ¢ quark limit have been estimated and found to be
small [24]

a < —0.95, (79)

and recent measurements yield
a=-0.91+0.49 ARGUS [25] (80)
a=-0.89191770:02 CLEO [26] (81)

and are in satisfactory agreement with the theoretical predictions.

Recently the CLEO collaboration also measured the ratio of the form
factors F; and F3, averaged over phase space. Heavy quark symmetries do
not fix this form factor ratio, at least not for a heavy to light decay, while
for a heavy to heavy decay the form factor F, vanishes in the heavy mass
limit for the final state quark. CLEO measures [28]

F
<_1> = —0.25+0.14 + 0.08, (82)
F3 / phase space

which is in good agreement with model estimates [27].

6. Conclusions

The field of heavy quark physics has gone through a remarkable devel-
opment over the last few years due to new theoretical ideas as well as to
a major improvement of data. In particular the progress in the technology
of detectors (e.g. silicon vertex detectors) opened the possibility to study b
physics even at machines which originally were not designed for this kind of
research. In this way also the high energy colliders (in particular LEP and
TEVATRON) could contribute substantially in this area, since they allow
to measure states (such as the B, and the b flavoured baryons) which lie
above the threshold of the T'(4s)- B-factories.

From the theoretical side the heavy quark limit and HQET brought an
important success, since it provides a model independent and QCD based
framework for the description of processes involving heavy quarks. As far as
exclusive heavy to heavy decays are concerned, the additional symmetries
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of the heavy mass limit restrict the number of nonperturbative functions
in a model independent way; furthermore, heavy quark symmetries fix the
absolute normalization of some of the transition amplitudes at the point of
maximum momentum transfer. In heavy to light decays heavy quark sym-
metries do not work as efficiently; in this case only the relative normalization
of B decays versus the corresponding D decays may be obtained.

Corrections may be studied systematically HQET. As in any effective
field theory this framework allows a clean separation between short dis-
tance effects, connected with the large mass mg, and the long distance
pieces, which are related to small hadronic scales of order Agcp. The
short distance part may be calculated in renormalization group improved
perturbation theory, while the long distance piece needs to be parametrized,
but is restricted by heavy quark symmetries.

The phenomenological impact of the heavy quark limit is tremendous.
Its main field of application are the semileptonic decays of b and ¢ hadrons,
where the hadronic matrix elements are studied in the heavy mass expan-
sion. In particular for b — ¢ decays, when both quarks are treated as heavy,
one has many model independent statements concerning the decay rates; in
addition, also the absolute normalization of the matrix elements is known,
allowing us the extraction of V,; without strong model dependences.

Heavy quark symmetries also relate exclusive semileptonic transitions
with the exclusive rare decays, which are based on b — sy or b — sft£~
decays. These are, however, of the heavy to light type and thus are not as
strongly restricted as the heavy to heavy ones.

HQET does not yet have much to say about exclusive nonleptonic de-

cays; even for the decays B — D(*)Dg*), which involves three heavy quarks,
heavy quark symmetries are not sufficient to yield useful relations between
the decay rates [29]. Of course, with additional assumptions such as factor-
ization one can go ahead and relate the nonleptonic decays to the semilep-
tonic ones; however, this is a very strong assumption and it is not clear in
what sense factorization is an approximation. On the other side, the data
of the nonleptonic B decays supports factorization, and first attempts to
understand this from QCD and HQET have been undertaken [30]; however,
the problem of the exclusive nonleptonic decays still needs clarification and
hopefully the heavy mass limit will also be useful here.

It was great pleasure and honour for me to be invited and to talk at the
symposium celebrating Kacper Zalewski’s 60t birthday. I want to thank the
organizers of the conference for the invitation and their hospitality during
my stay in Cracow.
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