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I review the non-perturbative method, developed with Martinelli, for
defining the higher dimensional operators which appear in the Heavy
Quark Effective Theory (HQET), such that their matrix elements are free
of renormalon singularities, and diverge at most logarithmically with the
ultra-violet cut-off. Matrix elements of these operators can be computed
numerically in lattice simulations of the HQET. The procedures are illus-
trated by presenting physical definitions of the binding energy (A) and of
the kinetic energy (-A1/2mgq) of the heavy quark in a hadron. This allows
for a definition of a “subtracted pole mass”, whose inverse can be used
as the expansion parameter in applications of the HQET. I also present
some numerical results for the binding energy (4 = 190 & 30 MeV), and

the kinetic energy (|A| = |(B|hD?h|B)|/(2MB) < 1.0 GeV?), obtained
with Crisafulli, Gimenez and Martinelli.

PACS numbers: 12.39.Hg

I would like to start by saying what a pleasure and an honour it is to be
able to participate in this celebration of Kacper Zalewski’s 60th birthday.
The great respect and affection which his colleagues and students have for
him is evident for all to see. I am very happy to be able to wish Kacper
STO LAT and many further enjoyable years of scientific exploration.

1. Introduction

At this conference we have seen the importance of heavy quark physics
in determining the parameters of the standard model of particle physics,
and in providing tests of the theory and possible signatures of new physics.

* Presented at the Cracow Epiphany Conference on Heavy Quarks, held
in honour of the 60th birthday of Kacper Zalewski, Krakéw, Poland,
January 5-6 1995.
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In order to interpret fully the experimental data on weak decays of heavy
hadrons, it is necessary to understand and quantify the strong interaction
effects in these decays. These effects are non-perturbative, and lattice QCD
and numerical simulations provide the opportunity of evaluating the cor-
responding operator matrix elements from first principles. The status of
lattice studies of weak decays of heavy mesons was reviewed at last year’s Za-
kopane Summer School in Theoretical Physics by Lellouch [1]. In this talk I
will review an important question in heavy quark physics which has received
much attention during the last year, that of the definition of the higher di-
mensional operators which are present when one tries to evaluate strong
interaction effects beyond the leading order in the Heavy Quark Effective
Theory, and the evaluation of their matrix elements. Interest in this subject
was stimulated by the recent observation that the matrix elements of these
operators, and the Wilson coefficient functions which match the effective
theory with QCD, contain renormalon singularities (2, 3]. This implies that
the operators must be defined non-pertubatively. Together with Maiani and
Martinelli we had arrived at the same conclusion when trying to compute
the matrix elements of the higher dimensional operators in the effective the-
ory using lattice simulations [4]. Qur arguments were based on the need for
the non-pertubative subtraction of the “power” divergences (:.e. ultraviolet
singularities which diverge as powers of the cut-off ), which we will show is
analogous to the problem of the subtraction of renormalons. Martinelli and
I have recently proposed a non-pertubative definition of higher dimensional
operators, such that their matrix elements, and the corresponding coeffi-
cient functions, are free of renormalon singularities and power divergences
[5]. Below I will review these ideas, illustrating the method by consider-
ing the binding energy (A) and the kinetic energy (-A1/2mg) of a heavy
quark in a heavy hadron. I will also present some numerical results for these
quantities obtained together with Crisafulli, Gimenez and Martinelli [6, 7].

The Heavy Quark Effective Theory (HQET) has developed during the
last few years into a very useful tool for the study of strong interaction effects
in heavy quark physics [8-11] (for a comprehensive review see Ref. [12]). At
this meeting the formalism of the HQET, and its applications to exclusive
and inclusive decays of heavy hadrons, has been reviewed in the talks of
Mannel [13] and Bigi [14]. In the HQET physical quantities are studied
systematically as series in inverse powers of the mass of the heavy quark®.
In particular, local composite operators of QCD, whose matrix elements
contain the long-distance gluonic effects in physical processes, are expanded

! In B — D decays the expansion may be performed simultaneously in the
inverse powers of the masses of both heavy quarks.
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in terms of the operators of the HQET
Cn,a(mo/1)
090v - y° Imelma/k) puger ) (1)
n,x
where mg is the mass of the heavy quark and p is the renormalisation scale
used in defining the renormalised operators OE,%ET(

we assume that the operators OI,:I,%ET(;L) are renormalised in some scheme

based on the dimensional regularisation of ultra-violet divergences, such
as the MS scheme. The QCD operators ORCPD generally also depend on
some renormalisation scale, which we take to be different from p, and we
do not exhibit this dependence explicitly. As an important example of the
operators OQCP consider the vector and axial vector currents, V# = Qvy#q
and A* = Qv*v5q, where Q and ¢ represent the fields of the heavy and light
quark respectively. From the matrix elements of these currents we obtain
the leptonic decay constants of heavy mesons and the form-factors of semi-
leptonic B — 7 and p decays. Other examples have been presented in the
talks by Mannel [13] and Bigi [14]. Below we will consider the expansion
of the inverse heavy quark propagator in inverse powers of the mass of the
heavy quark, which corresponds to taking the Dirac operator, #) + mg, for
0Q°D,

Renormalon singularities lead to ambiguities in the Wilson coefficient
functions C, o, and in the matrix elements of the operators OE%ET. Al-
though these ambiguities cancel (see Ref. [15] and references therein, and
Refs {2, 3, 16, 17]), the presence of renormalons requires an alternative

definition of the renormalised operators OE%ET, if the HQET is to be ap-
plicable beyond leading order in the heavy quark mass, and in particular
if the coefficient functions are to be calculable using perturbation theory.
The renormalon singularities and the corresponding ambiguities which we
are considering here are those induced by the introduction of the expan-
sion in Eq. (1). Of course the matrix elements of the QCD operator 0P
will themselves contain non-perturbative long-distance effects, but, as usual,
these effects do not appear in the coefficient functions, but only in the ma-
trix elements of the operators of the HQET.

The use of a hard (dimensionful) ultra-violet cut-off A in the effective
theory (instead of dimensional regularisation) leads to matrix elements and
coefficient functions which are free of renormalon ambiguities. This point
has been stressed by Bigi and his collaborators [3]. However in this case
the matrix elements in the effective theory diverge as powers of the cut-off
A. The subtraction of these power divergences cannot be performed using
perturbation theory; such a subtraction reintroduces renormalon ambigu-
ities in the matrix elements and coefficient functions. This point will be
discussed in detail in Section 4 below.

p). For the moment
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In this talk I will review the approach recently proposed by Martinelli
and myself [5]. In contrast to previous approaches, we propose a non-

perturbative definition of the renormalised operators O, QET, such that
they are free of both renormalon ambiguities and power divergences. This
allows us to present “physical” definitions of parameters such as the binding
energy (A) or the kinetic energy (—A1/2mg) of the heavy quark in a heavy
hadron. By “physical” we mean that they do not depend on any regular-
isation or renormalisation scale, nor on the method used to regulate the
ultra-violet divergences (although they do depend on the renormalisation
prescription used to define them).

An immediate, and related, question concerns the choice of the mass
parameter mg used in the expansion. The pole mass is ambiguous due to
the presence of infrared renormalon singularities [2, 3], and so a different
definition of mg is required. We introduce the definition of a “subtracted
pole mass”, mg, from which the renormalon ambiguities have been sub-

tracted non-perturbatively. mg has the attractive property that it can be
determined from the mass of a hadron H containing the heavy quark Q, by
calculations performed entirely thhm the HQET. For each such hadron H
we define a parameter A = my — mQ, and A — constant as mg — oo (for

simplicity of notation we suppress the label H on A). A remains finite when
the ultraviolet cut-off is taken to infinity, and can be computed numerically
in lattice simulations of the HQET. We discuss the question of the defini-
tion and evaluation of A to leading order in Section 2, and to O(1/mg) in
Section 3.

As a further illustration of our general procedure we study in Section 3
the matrix elements which determine the kinetic energy of the heavy quark
in a hadron?® .
(H|hD?h|H)
omn (2)

mp

where h represents the heavy quark field in the HQET, and H is a hadron (of
mass my ) containing a heavy quark (we suppress the label H on A;). The
A1’s are important ingredients in the study of the spectroscopy and inclusive
decays of heavy hadrons. The chromomagnetic operator fzaijG‘J h, where
G;; are the spatial components of the gluon field strength tensor, appears at
the same order of the heavy quark expansion as the kinetic energy operator.
However the spin structure of the chromomagnetic operator ensures that its
matrix elements are free of renormalon singularities.

A =

? Here we consider the effective theory for a heavy quark at rest. The gener-
alisation to an arbitrary four-velocity is straightforward, although there are
considerable subtleties in formulating the effective theory at nonzero velocity
in Euclidean space [18, 19].
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In Ref. [4], together with Maiani and Martinelli, we pointed out that in
the lattice formulation of the HQET the evaluation of higher order terms
in 1/mg involves the appearance of ultra-violet singularities which diverge
as inverse powers of the lattice spacing a. This is due to the fact that the
higher order terms generally involve matrix elements of higher dimensional
operators which can mix with lower dimensional ones (e.g. hD2h can mix
with 1/a hD4h and 1/a® hh). In Ref. [4] it was further stressed that these
divergences must be subtracted non-perturbatively, since factors such as

. go(a) da’

g
—~exp | — —— | =4 R 3
5 &XP B(g") QCD (3)

which do not appear in perturbation theory, give non-vanishing contri-
butions as a — 0. Renormalons represent an explicit example of non-
perturbative effects of this kind. Below we explain how the subtraction
of power divergences and of renormalon singularities, can be performed
non-perturbatively, illustrating our ideas with the evaluation of A4 and ;.

Much of the discussion in this talk is presented within the framework
of lattice field theory, however all the theoretical questions addressed below
have to be faced with any ultra-violet regularisation scheme [20]. More-
over, our proposed definitions of subtracted higher dimensional operators
in general, and of A and \; in particular, are in fact independent of the
regularisation. Our main aim in this talk is to provide an understanding
of these theoretical issues. In addition however, lattice simulations provide
the opportunity for the evaluation of the parameters of the HQET, such as
A and A, from first principles. In the following sections we also explain
how this can be done in principle, and also present some results from an
exploratory numerical study Ref. [6] (some preliminary numerical results
have been presented in Ref. [7]). However, instead of using lattice simu-
lations, it is also possible to use other non-perturbative methods, such as
QCD sum rules (reviewed in this meeting by Narison [21]), to compute the
matrix elements of the operators defined by our prescription. These matrix
elements are free of renormalons and power divergences.

We use the following notation for ultra-violet cutoffs and renormali-
sation scales. We denote by M the scale used to define the renormalised
operators in QCD (O9Q°CP), and by u that to define the operators in the
HQET (the OE%ET). Thus p € mg < M. It will also be convenient to
consider bare operators in the HQET, and we denote by A the correspond-
ing ultra-violet cut-off. Where the discussion is particular to the lattice
formulation of the HQET we replace A by a™!.

The plan of the remainder of this talk is as follows. In the next sec-
tion we discuss the definition of A, and explain how it can be computed
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in lattice simulations. We explain our general procedure for the definition
of subtracted higher dimensional operators in Section 3, using the matrix
elements A; as examples. In both these sections we present some results
from an exploratory lattice simulation. Section 4 contains a discussion of
“matching”, i.e. the determination of the coefficient functions €y o corre-
sponding to our definition of the operators. Finally in Section 5 we present
our conclusions.

2. The binding energy — A

In this section we discuss the definition of the “subtracted pole mass”,
m%, from which the ambiguities from the leading renormalon singularities

have been subtracted non-perturbatively (see Subsection 2.2 below). mg

can thus be used as the expansion parameter in the HQET. We also explain
how m2, and the corresponding A parameter, can be computed in lattice
simulations, and in Subsection 2.3 we present some numerical results. We
start however by reviewing very briefly some of the relevant points concern-
ing the renormalon singularities in the propagator of the heavy quark.

2.1. Renormalons in the heavy quark propagator

Our discussion follows closely the presentation by Beneke and Braun [2],
in which these authors study the heavy quark propagator'in the large Ny
limit, where N is the number of light quark flavours. We refer the reader
to Ref. [2] for more details, and also to Ref. [20] in which the discussion is
extended to include the terms of O(1/mg) in the inverse propagator. To
leading nontrivial order in 1/Ny, the renormalon singularities are obtained
by summing over an arbitrary number of light quark loops in the gluon
propagator. The Borel transformed gluon propagator (in the Landau gauge)
is written as

AB bad 1 AB —4rTu ™
Duu (k:u) = E : ;;‘{Duu,n(k)
n=0

Bo as
—_ ié‘AB ff_ o kl-‘k" — kzgﬂ-l’ (4)
- #2 (_k2)2+u ?

where g is the coefficient of a, /4~ in the first term of the S-function (B¢ =
—(11 - %/3N4)), and A and B are colour labels. g is the renormalisation

scale and C' is a scheme dependent constant. D;}fn(k) is the contribution

to the gluon propagator from the diagram with n quark loops. Of course
in leading order in Ny it is only the term 2sN ¢ which appears, however
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it is assumed that the replacement of 23N ¢ by Bo is a consistent one for
identifying the singularities. This assumption is based on the intuition, that
it is the infrared behaviour of the running coupling constant which is (at
least partially) responsible for the singularities.

Feynman diagrams evaluated with the Borel transformed propagator (4)
may have poles at positive values of u, rendering the inverse Borel transform
(which requires an integral over positive values of ) ambiguous®. This is
particularly true in Operator Product Expansions, where such singularities
in the Wilson coefficient functions are cancelled by those in the matrix
elements of higher dimensional, or higher twist, operators [15, 22]. The
expansion in inverse powers of the mass of the heavy quark is an interesting
example of this phenomenon. We start by considering the quark propagator.

The inverse quark propagator in QCD can be written in the form

S_l(pam) :j—-m—Z'(p,m), (5)
where
Z(p,m) = mE1(p®,m) + (f — m) Z2(p®, m) (6)

and m is the bare mass. We now write
p=mQuv+ k, (7)

where m is some well defined choice of the heavy quark mass, to be speci-
fied later. In all the explicit examples given in Sections 2.2 and 3 we will take
v=(1, 0) It is also convenient to define the quark propagator sandwiched
between projection operators

14

S 5k, ma) = “E L5 (p,m) EL,

; (8)

Then, (2],
— m —
SPI(k’ mQ) =mqg — mpole(mQa ﬂ') -C (_;9‘) Seﬁ:‘l(v -k, ﬂ')
k)?: kL1
(('Um ) 2) , (9)
Q mQ Nf

where S.g is the quark propagator in the HQET (whose action is given by
hiv- Dh; h represents the field of the heavy quark), p is the renormalisation

3 When the calculations are extended beyond the leading order in 1/Nj, the
poles become replaced by branch points of cut singularities.
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scale, and k% = k% - (v- k)% Se-ﬂl is linearly divergent in perturbation
theory. In dimensional regularisation the Borel transforms of both myqe
and Se_ﬁ1 have renormalon singularities at u = 1/, the infrared renormalon

in mp). cancels the ultra-violet renormalon in S;ﬁ] on the r.h.s. of Eq. (9)
[2]. The connection between power divergences and renormalons can be seen
by noting that if § :ﬂ-l is linearly divergent in one-loop perturbation theory
(which corresponds to using (4) with u = 0 as the gluon propagator), then
its Borel transform is logarithmically divergent at u = !/;, corresponding to
a pole singularity at this point. In particular § e_ﬂrl (0, 1) is not equal to zero,
which is a signal of the presence of ultra-violet renormalon singularities at
u = /. A more detailed account of the correspondence between power
divergences and renormalons is given in Ref. [20].

For the discussion below, it is convenient to re-express Eq. (9) in terms
of the bare propagator in the effective theory with a hard cut-off 4,

— m -
S (kymQ) = mg — mpare(ma, 4) = € (52) 53 (v-k, 4)

(v-k)? k2 1
+0 (—m‘“’m—’ﬁ - (19
Q Q V%

Now mpa1e(mg, 4) and .S':ffl(v - k, A) both diverge linearly with the cut-off,
but their Borel transforms have no poles at u = 1/;. Thus we have replaced
the problem of the ambiguities associated with renormalon singularities with
that of determining the exponentially small terms when power divergences
are present (see Eq. (3) and the corresponding discussion). By adding a
residual mass counterterm (§m hh) to the action of the HQET, it is possible
to impose the non-perturbative condition § e—ﬁ] (0,4) = 0, thus removing
the power divergences. In the following Subsection, we impose instead an
equivalent condition on the static (i.e. ¥ = 0) heavy quark propagator in
Euclidean configuration space ($.}(z;y), where i and j are colour labels)
in the Landau gauge:

. d i o o) =
Jim E1n(1 &(:0)) =0, (11)

where t = 2% and § :;1‘ is the trace over the colour components of the propa-
gator. In other words §m is chosen in such a way that the propagator tends
to a constant at large times, and does not fall (or rise) exponentially with
time. Since the operator we are subtracting (hh) is conserved, either of
these conditions is sufficient to determine its coefficient §m fully. Matching
the effective theory onto full QCD now implies that m,) on the r.h.s. of

Eq. (10) is replaced by a “subtracted pole mass”, mg, from which the power
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divergences (and indeed all the dependence on A) have been subtracted. m2,
is therefore a natural choice for the expansion parameter mg of the HQET.
The implementation of the above subtraction requires the non-perturbative
evaluation of the quark propagator in the HQET because of the arguments
given in the discussion of Eq. (3). Lattice simulations provide the possibility
for such an evaluation, and in the following Subsection we discuss an explicit
definition of mg based on Eq. (11), and of the corresponding A parameter,
A=myg - mq, where H is a hadron containing one heavy quark Q. In
spite of the fact that the entire discussion of the following Subsection is in
the framework of lattice field theory, the value of A is determined by its
definition based on the condition (11), and is independent of the method of
regularisation.

2.2. Definition of A

In this Subsection we present our definition of A explicitly. This defini-
tion is based on the imposition of the condition in Eq. (11). We also explain
how A might be evaluated using the lattice formulation of the HQET. The
discussion is presented in Euclidean space, and we take as the action of the
HQET in the static (i.e. 7 = 0) case

Leg = f-lD4h, (12)
where h represents the field of the heavy quark. Consider the correlation
function _

C() = Y (0l Jr(,1) 7(3,0)[0), (13)
z

where JII and Jr are interpolating operators which can create or annihilate
a meson state in the HQET. For example, we may take J = hI'q where g
represents the field of the light quark and T is one of the Dirac matrices?.
For sufficiently large times, so that only the ground state contributes sig-
nificantly to the correlation function,

C(t) — Z? exp(-£t), (15)

where the constant Z is independent of the time. The exponent £ is equiv-
alent to the definition of A proposed in Ref. [23]

E:—&@WMMH
(0| hI'q | M)

(15)

* The generalisation to heavy baryons is straightforward.
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However £, and hence A defined through Eq. (15), is not a physical quantity,
since it diverges linearly as ¢ — 0 (as can be demonstrated in one-loop
perturbation theory). If the matrix elements in Eq. (15) are defined in the
MS scheme, then the corresponding definition of A contains an ambiguity
of O(Aqcp)- The linear divergence in £ appears due to the mixing of the
operator hD4h in the effective action, with the lower dimensional operator
hh. 1t is possible to subtract this divergence non-perturbatively by adding a
residual mass term §m hh to the action, where §m is determined by imposing
a suitable renormalisation condition, such as that in Eq. (11). We now
state explicitly our proposal for a physical definition of A, and for its non-
perturbative evaluation:

(i) Evaluate the heavy quark propagator in the theory defined by the action
(12), in some fixed gauge (the Landau gauge say). In practice this will
be done using lattice simulations. The heavy quark propagator in a
smooth gauge, such as the Landau gauge, is of the form (for ¢ > 0)

S (2,40,0) = (0| R¥(2)R7(0) | 0) = 6°(2) 67 A(t) exp(-At), (17)

where the ultra-violet divergences associated with the quark mass are
contained in the exponent A. 7 and j are colour labels, and unless
specifically required they will be suppressed below. A(t) satisfies the
condition

) d
Jlim ZIn{|4(1)]} = 0. (17)

In the explicit examples below we will use the following lattice covariant
derivative

Daf(2,t) = % (F(&.1) - U}(@t - a)f(&,t - a)) (18)

where {U,(Z,t)} are the link variables. Other lattice definitions of D4 are
also acceptable.
(i) Add a residual mass term to the effective action®

o 1
T 1 fma

where §m will be specified in (7i2) below. With the new action, the
heavy quark propagator (now denoted by S} ) is given by

(RD4h + §mhh) , (19)

i~ - t
85,(2,t0,0) = S1(2,¢;0,0) exp(— In(1 4 ém a);) . (20)

® The normalization factor 1/(1 + §ma) is introduced for convenience, as will
become apparent below.
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This result demonstrates that the divergences associated with mass
renormalisation do indeed exponentiate.
(i4i) We fix the residual mass counterterm §m by the condition

Ly o ptdmae) o Ly (15a(E,E+a0,0)] (21)
a t—oo a |534(Z,t; 0,0)|

v can be computed in numerical simulations by studying the logarithm
on the right hand side of Eq. (21) as a function of .
(iv) The “physical” definition of A is

J58~v:€+%1n(1+6ma) (22)

A is finite in the limit @ — 0 and is free of renormalon ambiguities. The
corresponding “subtracted” pole mass mg is defined by

mg =my - A. (23)

m‘s is independent of a, and contains no renormalon ambiguities. Thus

from the computed value of mg one can determine my;=(x), or any

other short-distance definition of the quark mass (up to uncertainties
which are now of O(1/mg)), using perturbation theory. This will be
discussed in Section 4.

The counterterm v defined above is gauge-invariant, in spite of the fact
that it is calculated from the heavy quark propagator in a fixed gauge.
The argument goes as follows. The linear divergence is eliminated from
any correlation function, i.e. for any external state, by subtracting from
the action (12) a term proportional to the gauge-invariant operator hh.
Since in this way one eliminates all divergences both for quark and
hadron external states, the coefficient of the mixing has to be gauge-
invariant. This must be true also for the finite non-perturbative term
which accompanies the linear divergence. The gauge-invariance of the
linearly divergent term has been checked explicitly in one-loop pertur-
bation theory. The same argument can be applied to the evaluation
of the subtraction constants which appear in the definition of a finite
kinetic energy operator, to be discussed in the following section.

It may appear more natural to define A using Eqs (21) and (22), but
with v determined at a small value of ¢, (t* say, with 1/¢t* > Aqcp)- In
particular it may seem that the value of A obtained from a measurement
at “short distances” can be used more reliably to determine some standard
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short distance mass in QCD (myzg(p) say, with p > Aqcp) using per-
turbation theory. This is not the case however, since in addition to the
non-perturbative contribution of O(Aqcp) to A, there is a perturbative
contribution which is proportional to 1/t*,

§% (Z,¢* + a;0,0
~Vpert(t*) = L In | perf( ,* = )

a |S;ert.(z’t*;0a O)I

1 a,CF a 2
_ .1 2 2

a 4r 7¢1n(1+t*) + O(Qs)’ ( 4)
aaCF Y

SR 0@) (@ a-0),  (25)

where Sper¢ is the heavy quark propagator in perturbation theory, which
for t > 0 takes the form

a,Cp

st
47

pert

(2,t;0,0) = §03) () 6% [1 - (1o In(t/a) + o) +...|  (26)

and the anomalous dimension of the heavy quark field (y4) and c¢; are
constants (in the Landau gauge 74 = —6). Cp is the eigenvalue of the
quadratic Casimir operator in the fundamental representation (Cr="%%3).
In order to determine A, from the propagator computed at a finite value
of t*, the perturbative contribution must be subtracted. The evaluation of
the term proportional to 1/¢t* in perturbation theory (which in practice can
only be performed up to some low order), becomes less accurate as t* is
decreased. The reason is that, although the calculation of the coefficient
of the term proportional to 1/t* becomes more accurate as t* decreases,
the presence of the factor 1/¢t* implies that the subtraction becomes larger
numerically and that the error due to (unknown) higher order pertubative
corrections also increases, reducing the accuracy of the result for A. For
this reason we propose to define §m from Eq. (21), i.e. from measurements
of the propagator at large values of £. In some simulations it may not be
possible to compute the propagators at sufficiently large values of ¢t for a
plateau to be reached (i.e. for the ratio of the propagators on the right hand
side of Eq. (21) to be independent of t). In those cases it may be necessary
to determine m2 from measurements taken at intermediate values of ¢, and
to perform the subtraction of the terms proportional to 1/t, either by using
perturbation theory or by fitting —v to a function of ¢ and extracting the
asymptotic value (i.e. the value as t — 00). In the following Subsection we
show that the latter method can be used to give a precise determination of
A, and hence of mg.
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2.8. Numerical results for A

In this Subsection we present our results for A [6]. We have determined v
from simulations on a 163 x 32 lattice at # = 6.0 (300 gluon configurations)
and on a 203 x 32 lattice at 8 = 6.2 (50 gluon configurations). In order
to obtain A using Eq. (22), we have combined these results for v, with
those for £ obtained by the APE collaboration at the same values of the
lattice spacing [24, 25]. All these simulations are performed using the O(a)
improved SW-Clover action [26], for which the errors due to the lattice
spacing are reduced from O(a) to O(a,a) [27)].

In Figs 1 and 2 we plot the results obtained for av(t), defined by

|S5(Z,t + a; 0,0)|
|S§(%,; 0,0)| '

au(t):—ln( (27)

as a function of the time. v is the asymptotic value of v(t) at large times.
We average the propagators in Eq. (27) over all values of &, which improves
the statistical accuracy. In order to determine the asymptotic value a fit of
the results for v(t) has to be made. We have tried a number of theoretically
motivated forms including v(t) = v + v/t (as suggested by perturbation
theory), and »(t) = v+ 7' In((t + a)/t)/a é. The asymptotic value is stable
against the different fitting functions, and we include the spread of results
in our quoted error. Our results for the mass counterterm are

av = 0.520 + 0.006 + 0.010 at S = 6.0, (28)
av = 0.445 4 0.008 + 0.010 at S =6.2, (29)

where in each case the first error is statistical, and the second is system-
atic, being estimated by the spread of results obtained with different fitting
functions and performing the fits using different ranges in t.

We now combine these results for v with those for the bare binding
energy £ from the APE collaboration [24, 25], to determine A using Eq. (22).
The APE collaboration find a€ = 0.61(1) at 8 = 6.0 and 0.52(1) at 3 = 6.2.
In order to convert the values of A obtained in this way in lattice units to
those in physical units we must determine the lattice spacing a. In quenched
simulations there is typically an O(10%) uncertainty in this, corresponding
to the spread of values one obtains from using different physical quantities
to set the scale. For this talk we will take a™! = 2.0(2) GeV at 8 = 6.0 and
a1 =2.9(3) GeV at 8 = 6.2. Thus we obtain

A=180+35MeV at B=6.0, (30)

A=220+55MeV at f=6.2. (31)

8 The fits obtained with this latter form are shown in Figs 1 and 2.
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Fig. 1. v(t) as a function of ¢ from the simulation at 8 = 6.0. The fit shown in this
figure is to the function v(t) = v + 4’ In((t + a)/t)/a, where v’ is a parameter.

Combining these two results, we take as our best estimate of A

A =190 4 30 MeV. (32)

This value is lower than many used in phenomenological applications of the
HQET, however it is the value corresponding to the definition of A4 we use.

The results obtained above are fully consistent with the preliminary
ones from 36 configurations on a 163 x 32 lattice at 3 = 6.0 which have
been presented in Ref. [7], (av = 0.50 £ 0.01 £ 0.02 to be compared with
Eq. (28) above).

Finally in this section we make some remarks about the numerical re-
sults, stressing in particular the non-perturbative nature of the effects.

(i) The contribution from one-loop perturbation theory to av is about
2.12a,, which is significantly lower than the values determined non-
perturbatively (Eqs (28) and (29)). For example, we estimate this
contribution using the boosted coupling a, = 6/47Buj, where ug is
a measure of the average link variable, for which we take ug = 1/8Kcyit,
where k¢ is the value of the hopping parameter at which the light
quarks are massless [28]. With this value of the coupling constant, the
one loop contribution to av is about 0.31 (0.28) at 3 = 6.0 (6.2), to be
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2. v(t) as a function of ¢ from the simulation at 8 = 6.2. The fit shown in this

figure is to the function v(t) = v + 4’ In((t + a)/t)/a, where 7' is a parameter.

(i)

compared to the values in Eqs (28) and (29). Other standard choices
for the coupling constant give similar values. We also note that the de-
pendence of the measured values of av on the lattice spacing in Egs (28)
and (29) is stronger than would have been expected from perturbation
theory. :

The FNAL group of Duncan et al. has studied the bare binding energy
£ as a function of the lattice spacing, and their results are consistent
with a linear dependence of the form [29):

aé'(a) =X+ a-’IFNAL . (33)

The value these authors obtain for Apnay, is 0.481(25) GeV, which is
almost 300 MeV larger than that for A in Eq. (32). We interpret the
difference as being due to different definitions of A, which differ by
finite terms of O(Aqcp). Our definition was designed to facilitate the
matching of the effective theory and full QCD (see Section 4 below).
This also underlines the obvious point that before using a value of A
from some determination, the matching procedure must be consistent
with the definition of A which is being used.
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3. The Kinetic energy — \

In this section we present our general proposal for the elimination of
power divergences and renormalons from the matrix elements of higher di-
mensional operators. We illustrate our method by considering explicitly the
kinetic energy operator hD?h.

8.1. Definition of the subtracted operator i—z]._)'%h

The matrix elements of the operator hD2h contain power divergences
because it can mix with the lower dimensional operators hDgh and hh 7. A
subtracted kinetic energy operator, one which is free of power divergences,
is of the form

hD%h = hD%h — I:f%;;(ﬁD4h+—&nﬁh)—czﬁh, (34)

where the constants ¢; and cy are fixed by imposing appropriate renormal-
isation conditions. We propose to define ¢; and c; by imposing that the
matrix element of thh between quark states with k = 0 (where k is the
momentum of the quark), and in the Landau gauge, vanishes

(h(E = 0)|RDLh|A(E = 0)) = 0. (35)

Although not unique, this is perhaps the most intuitive definition of the
kinetic energy of the heavy quark in a hadron. Specifically we determine
the constants ¢; and ¢z by using®

= -,

Y55 Dty=0,,( 01 (& t2) h(§, ty ) D3A(F, 1) h(0,0) [0)
TG0 [0)

¢y + ety = . (36)

—¢

> 2 (0] h{Z,t:)h(0,0) 0

In deriving Eq. (36) it is implied that we are using the action £’ given in
Eq. (19) which contains the residual mass counterterm. However, from the
discussion in the previous section we can readily see that this is equivalent
to using the action £ given in Eq. (12) which has no residual mass term.
The only difference in using the actions £' and L is a factor exp(vt;) in
both the numerator and denominator of the right hand side of Eq. (36).

7 The relation between power divergences in matrix elements of the particular

operator hD?h and renormalon ambiguities in dimensional regularisation is
subtle and not fully understood. A detailed discussion of this subject can be
found in Ref. [20].

8 From now on we will work in lattice units, setting ¢ = 1.
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For some important applications it is only the constant c; which is
required. This is because

5 5 (BDsh + §mhh)Si (2;y) = 6%(= - ), (37)

so that if the operators in a correlation function are separated (i.e. up to
contact terms), then the term proportional to c; vanishes. ¢ can also be
determined directly by eliminating the sum over ¢, in Eq. (36):

_ Y z.7 (0| h(Z,t2) h(F,t, ) D2h(F,t,) h(G,0) | 0)
(

Lt : (38)
S (01h(Z12)A(7,0)[0)

for t, # 0,t,.

Having defined the subtracted operator ﬁﬁfh, A1 can be determined
from a computation of two- and three-point correlation functions in the
standard way. Consider the meson three-point correlation function (the
extension of this discussion to baryons is entirely straightforward)

Cpa(tasty) = Y (01Jr (2, tz) h(3, ty) D3RG, ty)T5(0,0)[0) . (39)

z

For sufficiently large values of ¢, and t, — ¢,
Cﬁg(tz,ty) — 7%\ exp (—(€ —v)tz) , (40)
where A; is defined by Eq. (2), using the subtracted kinetic energy operator,

(H|hD%h| H)

A =
! 2my

; (41)

and H is the lightest meson state which can be created by the operator J}.
A convenient way to extract A; is to consider the ratio

Caa(tzyty)
D Yy
R(tz,ty) = _é_(i;_)——_ — A] . (42)

As usual A; must be evaluated in an interval in which R(¢,,t,) is indepen-
dent of the times t, and ¢, so that the contribution from the excited states
can be neglected. By the same argument as was given after Eq. (36), the
ratio in Eq. (42) can be evaluated using the action £ of Eq. (12) with no
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residual mass term. In the present case the difference between the matrix
elements of the subtracted and unsubtracted operators is given by

(H|RD%h|H) _ (H|RD*h|H)

. 43
2mpy 2my ‘2 (43)

We conclude this section by presenting the definition of the subtracted
quark mass up to, and including the terms of O(1/mg),

_ A
Mp=m+€-v- ", (44)
m
Q

where Mp is the spin-averaged mass, Mp = (Mg +3Mp-+)/4, which has no
contribution from the chromomagnetic operator. Eq. (44) must be modified
to include the effects of perturbative corrections. We denote the renor-
malised kinetic energy operator in some continuum renormalisation scheme
by hD2,_ . h. In one loop perturbation theory we have

cont
- o -
hD2 _ h = (1 + Er"-xf,g) RD%h, (45)

from which we derive

A1
—=-
ZmQ

MB:mg+£~u—<1+&Xﬁg)

y (46)

The term proportional to X 5, in Eq. (46) is absent in continuum formula-
5

tions of the HQET, and is a manifestation of the lack of reparametrisation
invariance in the lattice version. It has been calculated in Ref. [4].

Although we have restricted our explicit discussion to the kinetic en-
ergy operator, clearly the same techniques can be applied to a wide class of
operators. This includes, for example, the operators whose matrix elements
determine the 1/mg corrections to exclusive leptonic and semileptonic de-
cays of B-mesons [12]. In each case one can construct linear combinations
of higher and lower dimensional operators which are free of power diver-
gences and renormalon ambiguities, by imposing appropriate normalisation
conditions for matrix elements between quark states in a fixed gauge, and
at given momenta. This approach is a particular application of the general
method for the non-perturbative normalisation of lattice operators proposed
in Ref. [30].
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3.2. Preliminary numerical results for Ay

_ Our numerical results for A; are not as precise as for the binding energy
A. We have performed an exploratory computation using 36 gauge field
configurations on a 16° x 32 lattice at 3= 6.0, and the preliminary results
were presented in Ref. [7]. For the determination of A; it is only the constant
cz which is required (see Eq. (43) above) for which we find

a’e; = —0.82+0.12, (47)

where we have exhibited explicitly the powers of the lattice spacing. For
the bare kinetic energy of a pseudoscalar meson we find

hD*h
g2 HIRD7hIH) —0.75 + 0.15, (48)
2mpy

from which a®c; (see Eq. (47)) has to be subtracted in order to obtain A;.
Thus the subtraction proves to be a very large one, and at present we are
only able to determine the loose upper bound

|A1] < 1.0 GeV?2. (49)

This calculation will be repeated with several hundred configurations in
order to decrease the bound significantly, or to obtain a signal for A;.

4. Matching

In the preceding sections we have proposed a method for defining higher-
dimensional operators OI,;I,%ET, whose matrix elements are free of (ultra-
violet) renormalon ambiguities and power divergences, and which can be
computed in lattice simulations. In order to derive physical predictions
from these matrix elements it is necessary to calculate the corresponding
coefficient functions, i.e. the Cy, o of Eq. (1). The subtraction of the ultra-
violet renormalons from the matrix elements, implies the elimination of the
corresponding infrared renormalons from the coefficient functions, which
can therefore be computed in perturbation theory [22, 31, 32]. To illustrate
the “matching” procedure consider a simple situation for which we can write

Eq. (1) as:

A
022 (1) = ¢, (T;;z M) OHQET 4

1 o (me A\ HQET 1
+o s (M M)o (A)+o(m%), (50)
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t.e., where there is a single operator in each of the first two terms of the
heavy quark expansion (the discussion can readily be extended to the general
case). In Eq. (50) we have exhibited explicitly the dependence on the scale
M used to normalize the QCD operators ORCP (M) (i.e. the operators in
the full theory). A is the (hard) ultra-violet cut-off in the effective theory
(for example in the lattice formulation of the HQET A = a™!), and the
operators on the right-hand side of Eq. (50) are bare operators. mg can be

considered as the subtracted pole mass mg, defined in Section 2.

Note that although we have chosen to write Eq. (50) in terms of the
bare operators in the effective theory, this equation is equivalent to Eq. (1),
which is written using renormalised operators. From the bare operators
(computed in lattice simulations for example), one can determine the cor-
responding ones renormalised in a given (continuum) scheme by using per-
turbation theory, or by some non-perturbative method (such as that given
in Ref. [30]). The determination of the matrix elements of renormalised
operators of the effective theory may be a convenient intermediate step, but
it is not necessary. We choose instead to compute the matrix elements of
the QCD operators ORCP directly from the bare operators of the effective
theory.

With a hard cut-off the Borel transforms of the coefficient function C4
and the matrix elements of O§IQET do not have renormalon singularities at
u = 1/5. For example, in the large N 7 limit, the Borel transform of C in
the vicinity of u = 1/2 will have the structure

- m m —2u -2
cl(ﬂ@,%,u)«(l_‘zu) [(Af) ’ "%(%) ] (51)

where the tilde denotes the Borel transform. Although the residue of the
pole vanishes at u = !/;, both C; and the matrix elements of OgIQET contain
terms which, in perturbation theory, diverge linearly with the ultra-violet
cut-off A. The use of a hard factorisation scale to organize the heavy quark
expansion has been suggested by Bigi et al. [3] (see also Ref. [33] for a
very recent study of the definition of the higher twist operators relevant for
studies of deep inelastic structure functions). Our proposal is to subtract
these power divergences non-perturbatively, and to use the subtracted op-
erators, which are free of power divergences and renormalon ambiguities, as
the basis for the expansion in Eq. (1).

Following the discussion in the preceding sections, we define a sub-

tracted operator OggET which does not mix with O?QET,

05" (4) = 07T (4) - c(4)0T T (4), (52)
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where the dependence of the matrix elements of OHQET(A) on A is at most

logarithmic. ¢(A) is computed non-perturbatively, whereas the functions C,
and C; are calculated in perturbation theory. Eq. (50) can be rewritten as:

00D (31) = [01 (’;‘l—ﬂ %) " c(?c (Tﬂ‘?x’})] OFABT (4)

1o (me A HHQET L
+ QCZ(M M)o (A)+O(m,6). (53)

By using a combination of perturbatlve and non-perturbative techniques,
we have ensured that the coefficient of O HQET in Eq. (53) does not contain
terms which diverge linearly with A, nor ambiguities due to renormalon
singularities at u = !/,. The remaining ambiguities are of O(4%qp /m"c’z)
or less, and are associated with the renormalons at u = 1,3/ ---, or the
corresponding power divergences in matrix elements of operators of higher
dimension than O?QET. These can be eliminated by generalizing our proce-
dure to higher orders of the heavy quark expansion, by defining subtracted
operators OHQET OHQET --- which cannot mix with lower dimensional
ones, and usmg these subtracted operators as the basis of the expansion in
Eq. (1). Indeed by using such a basis one eliminates the ambiguities from
all coefficient functions, up to the order in 1/mg for which the subtraction
coefficients have been computed. Of course in general the coefficient func-
tion of 0§IQET depends logarithmically on A, the dependence being given
by the anomalous dimension of O?QET.

Throughout this talk we have been stressing the necessity of performing
the subtractions of power divergences non-perturbatively. We now present
a specific example demonstrating this explicitly. Consider the evaluation
of the subtraction constant ¢(A4) in the case for which O?QET = hh and

OHQET hv - Dh as happens in the expansion of the QCD operator
QQ, where @ is the field of the heavy quark in the full theory, and in
the discussion of A in Section 2.2. The Borel transform of the forward
matrix element of OgIQET between heavy quark states of momentum k
(T = (h(k)| hv - Dh |h(k))), in the vicinity of u = /2, has the structure

—2u
T(u) (T-—-lz—u) [—2'0 -k (_—2})1—16) - A] . (54)

The residue of the pole vanishes at u = /2, in a similar way to that in the
coefficient function Cy in Eq. (51). The two terms in the square brackets
in Eq. (54), contribute equal and opposite ambiguous terms of O(Aqcp) to
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the matrix element of O?QET at v-k = 0. In perturbation theory however,
the first term does not appear at v - k = 0, and hence the Borel transform
of ¢(A) contains a renormalon at u = 1/;. It is for this reason that we insist
on the non-perturbative determination of the subtraction coefficients.

One can also imagine performing the matching completely non-perturbativel
by simulating both the HQET and QCD (with a bottom quark) on the lat-
tice. However the latter requires a very small lattice spacing, a~! > my,
which will not be possible for some time to come. Moreover, once one is able
to simulate the b-quark directly (and reliably) on the lattice, the necessity
of using the HQET is removed. It may still however, be a useful guide to
scaling properties and symmetry relations.

5. Conclusions

In this talk we have reviewed the method proposed in Ref. [5] for defin-
ing higher dimensional operators of the HQET, in such a way that their
matrix elements are free of ambiguities due to (ultra-violet) renormalon sin-
gularities, and of power divergences. We have illustrated our approach by
proposing a physical definition of the binding energy A (= my — mg) and of

the matrix elements of the subtracted kinetic energy operator ({H ]5?9]11 )
The definition of the higher dimensional operators involves the subtraction
of lower dimensional ones with the same quantum numbers. The subtraction
coefficients are determined by imposing normalisation conditions on Green
functions between quark and gluon states (or in the case of 4, on the heavy
quark propagator). Lattice simulations of the HQET allow for a numerical
evaluation of the subtraction coefficients, as well as of the matrix elements
of the subtracted operators, and we have presented a determination of A
and a bound for A; [6]. The renormalisation procedure proposed above can,
however, be applied with any other non-perturbative method for computing
matrix elements in effective theories. Our approach can also be extended
to other cases, for example to the higher twist contributions to the struc-
ture functions of deep inelastic scattering, and to the higher dimensional
operators which appear in QCD sum-rules.

Having defined operators 0§2ET whose matrix elements are free of
renormalon ambiguities, we still have to match the HQET operators onto
those of QCD, i.e. to determine the coefficient functions Cr o of Eq. (1).
This is done using perturbation theory, by calculating the matrix elements
of ORCD and OE,%ET between suitable external states, and combining the
results with the subtraction coefficients which have been computed non-
perturbatively (see Section 4 above).

The subtractions necessary to obtain physical matrix elements appear
to be substantial. For the binding energy A the subtraction is of a linearly



Heavy Quarks, Renormalons and Lattice 753

divergent term, and we were still able to obtain a result with good precision
(see Eq. (32) above). For the kinetic energy we need to subtract a quadrat-
ically divergent operator, and with 36 configurations we were only able to
obtain the bound in Eq. (49).

The procedures described in this talk allow one to study quantitatively
many important physical processes and quantities in heavy quark physics
using a systematic expansion in the mass of the heavy quark. These in-
clude the leptonic and semi-leptonic decays of heavy mesons and baryons,
as well as relations between the masses and lifetimes of heavy hadrons. The
“subtracted pole mass” is a suitable parameter for the expansion.

I warmly thank Guido Martinelli, Marco Crisafulli and Vicente Gimenez,
for such a stimulating and enjoyable collaboration. We have benefited
from interesting discussions with M. Beneke, L. Lellouch, M. Neubert and
J. Nieves. I acknowledge the support of the Particle Physics and Astronomy
Research Council through the award of a Senior Fellowship and that of the
European Union by the contract CHRX-CT92-0051.
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