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We study the properties of nonrelativistic models of bb quarkonia. We
want to check if the present data can be reproduced by such a model within
the experimental errors. A general formula including as special cases many
existing models is introduced. The properties of a family of models are
investigated. We find a new potential in the form of ay/r —b/r + A, which
is agreed with data.

PACS numbers: 12.39. Jh

1. Introduction

There is no entirely satisfying theory of heavy mesons. Methods like the
lattice QCD or QCD sum rules give only approximate results. One can also
look at heavy quarkonia by means of nonrelativistic quantum mechanics.
This approach is very simple and appears to be successful with predictions
of mass spectrum and decay widths.

Models proposed recently by some authors, make it possible to fit the
mass spectrum of bottomonium within the precision of about 2.3 MeV per
level [1, 2]. It is much better than expected from estimates of the necessary
relativistic and field theory corrections, which are of order of some tens
of MeV. The standard explanation of this fact, is the absorptions of the
corrections by redefinition of physical parameters of the system and using
an effective Hamiltonian. In the infinite quark mass limit, the effective
potential should be identical with the physical static interquark potential.
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For heavy mesons this equivalence is also present, but only approximately.
Thus, we believe, that good understanding of the problem, will let us learn
something about the relativistic theory. Especially, we are interested, if
the present set of observables may be fitted consistently by a nonrelativistic
model, within its experimental errors. If a general failure of different models
happens, one could extract from the results some hints on how to construct
the relativistic model.

2. The observables

This paper is based on a set of experimental data for bottomonia [3],
which can be easily expressed in terms of quantum mechanics. We know
with good precision, the masses of five bb states below the BB threshold.
It is hard to describe the physics over this threshold in the language of the
QM, because of strong coupled channel effects and of the related mixing
the states with the BB continuum (Ref. e.g. [4]). The P states have well
separated fine structures. Their splitting is a purely relativistic effect. To
get rid of it, we use the centre-of-gravity masses.

Other observables, which can be fitted, are electric dipole transition
widths (between S and P states), associated with dipole matrix elements.
They also should be averaged over the fine structure. From leptonic decay
widths of the three § states we can extract the absolute values of the wave
functions at the origin. We use here the Van Royen-Weisskopf formula (5]
with the first order QCD correction. The correction factor to the zero-
order value of the leptonic decay width is 1 — (16a,/37), which is about
0.7 at the my scale [3]. It is significantly different from 1, so we can expect
that unknown, higher order corrections are also important. This theoretical
uncertainty introduces a common systematic error, for the extracted S-wave
functions at the origin, which is about 10% .

3. The model

The nonrelativistic system of two interacting bodies of mass m; each
can be described by the three dimensional Schrédinger equation:

V2
D) + V(1)) = BE(). (1)

Now, we may scale the separation vector 7, and use a dimensionless
vector £ = A7 instead. We decompose also the potential in a following
way: V(z) = Cv(z) + A, where C and A are constants, and v(z) is a
dimensionless function. The proper choice of A brings the potential v(z)
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to its simplest, canonical form. In the case of a central potential we can
separate the angular degrees of freedom and make the substitution:

Wnlm(i) = Sa_n;;(’ic—)ylm(n) ’ (2)

to obtain a one dimensional, reduced equation for the eigenfunctions and
the eigenvalues:

._dd?‘Pnz(:c) + [Cv(:c) + I(I:; 1)] eni(2) = entpni(2). )

This equation is much simpler, than the Schrédinger equation, we started
with. It contains only one parameter c, instead of the four parameters in
equation (1). This reduction does not disturb testing of the agreement of the
results with experimental data. This is so, because the observables which
we take into account depend on their dimensionless equivalents in a trivial
way. So our strategy is to use such quantities built of observables, that they
can be calculated from the reduced equation (3). We choose

by = M,s — M;s by = Mss — Myp by = M,s — Myp
Mss — Mg’ Mys — Myp’ Mys — Mys’
_ |#2s(0)? 5 — 1Zs(0)?
T [#s(0)2” > #s(0)”
bs = |#15(0)|2/3(2P|RI3S), b7 = |#15(0)|2/3(LP|R|2S),
(25|R|2P
b = (1S|R|2P;' )

We also define a x? measure of the quality of the fit

8 th _ rexp
Z[b L/ ] (5)

i=1

where o(b;) is the experimental error of the parameter b;. This has two
important features — different types of quantities are involved here, and
it can be calculated from the reduced equation. So, we can optimize the
agreement of the model with experiment, using only the reduced set of
parameters, with significant time gain.

There are a few types of potentials used in literature. All of them
are monotonically increasing with increasing » and are concave. Most
of them are singular at the origin. Some of them are QCD motivated,
like the Cornell potential (v(z) = =z — 1/z) [6], the “Indiana” potential
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(v(z) = (z — 1)2/z In(z)) [7] or the famous Richardson potential defined in
momentum space [8]. Other, purely phenomenological potentials have usu-
ally the form of the difference of two power functions: one increasing and the
other decreasing (v(z) = z® — z7P). Some examples are models proposed
by: Lichtenberg et al. (a = 0.75, 8 = 0.75) [9], Song and Lin (a = 0.5,
B = 0.5) [10], Martin (a = 0.1, 8 = 0) [11], Heikkila et al. (o = 25, 8 = 1)
(4]. Note that also the Cornell potential belongs to this family (a = 1,
B =1).

We confirm the result of Buchmiiller and Tye [12], that the various
realistic potentials for quarkonia, become very close to each other in the
physically important region. We obtained evidence that QCD motivated
potentials (Richardson, “Indiana”), which have not the explicit form of the
difference of two power functions, can be successfully approximated by a
function of this form (of course only for the intermediate interquark dis-
tances). Thus, we focus our attention on our general potential and expect,
that it includes a sufficiently wide class of models.

4. Results and discussion

We calculated our dimensionless observables from the experimental
data. For each type of potential, we varied the ¢ parameter in our reduced
equation, to find the minimum of the x?. In particular, we applied this
procedure to the general form of the potential with fixed exponents a and
B, to obtain the minimal x2, as a function of these exponents. The x* map
gives us reasons to propose a new potential. It appears, that there exists a
small region on our map, where x2 < 7. Seven is the number of degrees of
freedom of the fit — eight observables (4) minus one free parameter. We
have chosen one of the potentials from this region, because of its simplicity.
It is

1
v(z) =z - o (6)
TABLE I
The observables from data and models
61 bz b3 b4 b5 bs b'{ bs X2
exp. 0.6290 0.7738 0.2187 0.49 0.43 2.31 1.59 0.110
error 0.0005 0.0057 0.0009 0.11 0.07 0.16 0.15 0.009
This paper 0.6292 0.7744 0.2191 0.49 0.36 2.26 1.37 0.124 6.5
Indiana 0.6299 0.7829 0.2202 0.48 0.36 2.18 1.33 0.124 15.5

Lichtenberg 0.6283 0.7950 0.2172 0.48 0.36 2.19 1.34 0.126 26.3
Richardson 0.6276 0.8106 0.2150 0.47 0.36 2.18 1.34 0.127 T4
Song-Lin 0.6382 0.7246 0.2375 0.49 0.35 2.04 1.21 0.112 850
Cornell 0.6128 0.8951 0.1946 0.47 0.37 2.42 1.55 0.142 2220
Martin 0.6363 0.6891 0.2707 0.54 0.38 1.81 1.06 0.032 3720
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Having found the best model from comparison with the data, we can
go back and calculate the dimensional parameters, by comparing the di-
mensional observables with the results of reduced equation. From |¥;5(0)|,
Mss — Mys and M;s, we can simply calculate the values of A, m; and A.
The best potential in real space (7in GeV~!, V in GeV) is

0.46121
V(r) = 0.70585(/r — . ) + 8.81724 (7)
and the corresponding mass is
my = 4.79333 GeV. (8)

In Table I the predictions of 7 models are compared with the experi-
mental data. As seen from the quoted values of x%, only potential (7) yields
results consistent with the data.

5. Conclusions

The proposed nonrelativistic potentials for bb quarkonia, become very
similar to each other, if they fit the data well. The reasonable potentials
can be described or successfully approximated by the difference of two power
functions. Thanks to trivial scaling properties of all observables, it is possi-
ble to reduce the number of necessary parameters of a model, with no loss
of generality. Using the x? measure, we studied the quality of the fit in
the parameter plane, and we have found the new, simple potential (7) with
significantly better x? than the other proposals. We have proved, that an
effective, nonrelativistic model can describe the bottomonium system within
the experimental errors, although the deviations of the b7 and bg are rather
large in all models including ours and may well become a problem when
data improves. It is encouraging that studying a purely phenomenological
model, without assuming anything about the exponent of the short range
part of the potential, we obtained the Coulomb-like behaviour of the poten-
tial near the origin. Such a behaviour corresponds to one-gluon exchange.
The shape of the long distance potential is not linear, but square root like.
This is probably due to the fact that the wave functions test only the region
below 1 fm and the linear confinement is not seen there.

REFERENCES
[1] D. Besson, T. Skwarnicki, Ann. Rev. Nucl. Part. Sci. 43, 333 (1993).

(2] L.P. Fulcher, Phys. Rev. D42, 2337 (1990).
[3] Particle Data Group, L.S. Brown et al., Phys. Rev. D50, 1173 (1994).



834 L. MoTYkA, K. ZALEWSKI

[4] K. Heikkild, N.A. Tornqvist, S. Ono, Phys. Rev. D29, 110 (1984); Z. Phys
C23, 59 (1984).
[5] R. Van Royen, V. Weisskopf, Nuovo Cimento A50, 617 (1967).
[6] F. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D21,
203 (1980).
[7] G. Fogelman, D.B. Lichtenberg, J.G. Wills, Lett. Nuovo Cimento 28, 369
(1979).
(8] J.L. Richardson, Phys. Lett. 82B, 272 (1979).
[9] D.B. Lichtenberg et al., Z. Phys. C41, 651 (1989).
[10] X.T. Song, H. Lin, Z. Phys. C34, 223 (1987).
[11] A. Martin, Phys. Lett. B100, 511 (1981); B93, 338 (1980).
{12] W. Buchmiiller, S.-H.H. Tye, Phys. Rev. D24, 132 (1981).



