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We give a six dimensional embedding for the Schwarzschild solution
which is described by elementary functions only.
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1. Introduction

The flat embeddings of physically relevant solutions of the Einstein
equations are of interest for many reasons. When one succeeds in con-
structing an universal analytic embedding, then the natural topology of the
space-time becomes explicit, and the geometry of the Riemannian space ac-
quires a simple interpretation of the geometry of some hyper-surface in a
higher dimensional flat space.

In particular, by studying the six-dimensional embedding of a Schwarz-
schild black hole, it has been shown ([1] and in much more detail [2]) that the
horizon, at » = 2m, is not a physical singularity of the solution, establishing
in this way a result equivalent to the Kruskal coordinatization [3].

The embedding technique used in [1] and [2], employed the simple Kas-
ner idea [4], which can be summarized in its essence as follows. Consider
the 2-dimensional Riemannian space

9=¢"%(z)|dz®@dz + edy ® dy], € =1. (1.1)

One can construct its 3-dimensional embedding using one of the two follow-
ing procedures.

* On leave of absence from the University of Warsaw, Poland.
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According to the first, one introduces the variables
p‘:= A7197(2) cos(Ay), q:= A"1¢ Y (z)sin(Ay), (1.2)
where X # 0 is a constant. Then, with

dp = —¢~ Vsin(Ay)dy + A7 cos(Ay)[¢ " (2)].d2 , (1.3a)
dg = ¢~ cos(Ay)dy + A7 sin(Ay)[¢ 1 (2)]zdz, (1.3b)

we have that

(dp)® + (dg)® = ¢7%(dy)? + (A7 (¢ (2)].) de? (1.4)
so that the metric becomes
g=[6"%— (A7 [¢7]:)?] (d2)® + e((dp)”® + (dg)?). (1.5)

Therefore, in the regions where the coefficient of (dz)? has a definite
sign, we can introduce the variable

ri= [ VI62(@) - a6 @)L de. (1.6)
Thus we reduce the metric to the 3-dimensional flat form
g = +dr ® dr + ¢[dp @ dp + dg ® dg], (1.7)
having at the same time
PP +¢ =27"7(2). (1.8)
Inverting (1.6) for z = x(r), we obtain the 3-dimensional embedding
{y=irdr®dr+e[dp®dp+dq®dq], (19)

P2+ ¢% = A"2¢7 2 x(r)].

The free constant A can then be chosen so that the integral (1.6) is as
simple as possible, for a given ¢ = ¢(z).

The alternative variant of the Kasner method employs hyperbolic func-
tions. It may be reached from the previous treatment in terms of trigono-
metric functions with the formal replacements

A—iX, p—ip, ¢g—4q, ¢—¢.
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As far as we know, this Kasner method, in its trigonometric or hyper-
bolic version, is the only known technique which is able to provide us with
the effective embeddings of the solutions to the Einstein equations.

In the case of the Schwarzschild black hole, as shown in detail in [2],
this technique works fairly well. Using the hyperbolic variant, one is able to
choose A so that the apparent singularity related with the horizon r = 2m
disappears in the integral (1.6) and the embedding is universal and an-
alytic. However, this embedding involves elliptic functions. This author
has (in principle) no aversion towards elliptic functions, which certainly are
manageable objects, as in particular has been demonstrated in the present
context in [2]. We strongly feel, however, that in general relativity, where
we have the freedom of choosing convenient coordinates, any time transcen-
dental functions occur, the reason of this is more related to the unskillful
choice of the coordinates, then to the very nature of the things involved.

[For instance, compare the Kinnersely description of the general branch
of the D-type solutions [5] of the homogeneous Einstein equations in terms
of elliptic functions, with the same result obtained much more simply in
terms of the rational functions in [6].]

Guided by this point of view, the main objective of this note is to provide
ezplicitly the embedding of the Schwarzschild solution in terms of elementary
functions. This implies, of course, devicing an embedding technique different
from the Kasner types. A technique satisfactory for our purposes will be
outlined in the following section.

2. Flat embeddings of conformally flat spaces

Consider a conformally flat Riemannian space CV,, (real) with the met-
ric given in terms of the (privileged) coordinates {z*} (a = 1,2,---,n) by

¢ (2 dz* @ dz” (2.1)
g=¢ ) Twvde” ® dz .

with A = const # 0 having the dimension of length, ¢ = #(z*/A), a
dimensionless function [7]. The coordinates z* have the dimension of length,
and the flat metric 7, is

7uvll = lldiag (1,---1, —1,---—1) || (2.2)
L S p——
n4 + n_ =n

There is a natural (canonical) procedure of embedding the metric (2.1)
in n + 2 flat dimensions, which is purely algebraic. (See [8] for details; here
we shall state only the main ideas.) Indeed, introduce the coordinates

et =g (E:Ai):c”; (2.3)
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then
NuvdE* @ d€” = ¢ 2, dz" @ d2” + d¢ 7! @, d[¢ nuat 2] (24)
Using this fundamental identity, we have that
g =nNudé* @ dE¥ — dp™ ®, d[¢ I nuzt2”]. (2.5)
Introduce now the coordinates (71! and ¢7*2 via

gn-{-] + £n+2 s = A‘b—l ,

€n+l _ €n+2 s = —A_1¢-17}#y3:“23v , (2.6)
and the (n + 2)-dimensional coordinates {4 = (¢£#, £nF1, ¢7+2), (with
AB,..-=1,2,.-. ,n+ 2), we have now

g =napde* ® de® (2.7)
with
n
linasll = | £ (2.8)

(0 )“

The metric g has thus been embedded into the (n + 2)-dimensional flat
space Fy, 2, of signature (ny + 1, n_ +1). Our conformally flat space CV,,
is then a n-dimensional surface in Fy, 2.

The equations which characterize the surface CV,, can be easily deter-
mined. First, we have

naBEAET = muughEY + (€71 + M P(EH - )
=:¢_2nuuz“3u“‘¢_znuuz#3V::0-
Since £#/(E™F1 + £712) = z# /A, we can state the first of (2.6) in the
form
I

(£n+1 +£n+2)¢[£n+T =A. (2.10)

£n+2]
Summarizing, we arrive at the description of our CV,, as the n-dimen-
sional surface in F,, 2 of signature (ny + 1, n_ + 1) determined by

g =napdt* @ dé¥, (2.11a)
0 = nap€ie?, (2.11b)

A= (€14 e"“)c»[gan:— (2.11¢)

=



An Embedding of a Schwarzschild Black Hole ... 879

This result is fundamental in the general theory of conformally flat spaces
in n dimensions and the theory of the conformal extensions Cp(n4,n-) of
the Poincaré group P(n4,n_) of the flat space of n = ny +n_ dimensions,
with signature (ny,n_).
In the present context, we can specialize these general results to the
case n = 2, with the function ¢ dependent only on one variable, say ul.
Consider thus the 2-dimensional conformally flat space

1

g=¢ 2 (fj—l—) [dzl ® dz! + edz? ® dmz] , €==x1, (2.12)

where ¢(z) is an arbitrary function [obviously, 8§/9z? is a Killing vector of
this space].

We will assume about this function that
dg¢(z)
2.13
dZ # 0 ? ( )

or that this function is invertible in the sense that

¢=¢(z) <= z=19(¢) (2.14)

According to our general theory, the space (2.12) can be embedded in
4 dimensions as follows

g=df! @ de! + ede? @ de? + de® @ de® — det @ de?,  (2.15a)

0= (€) + (£ + (€% - (6", (2.15b)
1
A= (8 +EY [ng_—g] . (2.15¢)

These formulae permit us now to construct a specific embedding of the
considered space in 3 flat dimensions. Indeed, denote

u:= £+ €L, (2.16)
Inverting (2.15 c) we have according to (2.14)
El = m,[)(%) . (2.17)

Substituting this into (2.15a) we have

2
g = ed€? @ d¢? + du @, [d(g3 — Y+ {‘%mp(%)} du] . (2.18)
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wegt, v e [{Aw(@a o

Then g is in the form of a 3-dimensional flat metric

Let

g=¢edw@dw+du®dv. (2.20)

It remains to work out equation (2.15b) in terms of the coordinates {u, v, w}.
We first write this equation in the form

ew® +(£1) +u(€® - ¢*) = 0. (2.21)
Thus, substituting for £! from (2.17) and for ¢3 — £* from (2.19) we have

w = fw(B)] va- [{Ew(@)] <0 e

Therefore, this equation amounts to
ew? + uwv = H(u), (2.23)
where H = H(u) which determines that

H(u) = u/u {Eda'“”(%) }2du— [u;b(%)]z (2.24)

We can now obtain a nicer expression for this function in terms of
¢ = ¢(z). Indeed, from

% [Hiu)] _ ;1_:, [¢(%)]z (2.25)

Afu

H(u)=u /u dufg [:p(%)r = —ud / ds(s)d(s). (2.26)

Alternatively, remembering (2.14), this result can be stated as

it follows that

Afu 1 P(Afu) 1
H(u) = --‘ll.A / d‘d)(S)-a—a‘ = —II.A / dZW . (2.27)
dy dz
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We can now summarize the result obtained in the following form. The
metric

1
g=¢"? (%) {dz‘ ®dz' +edz’ ® dzz} , €=1, (2.28)

with A = const. of dimension of length, ¢ = ¢(z) dimensionless and arbi-
trary but such that (d¢/dz) # 0, so that ¢ = ¢(z) < z = (o), can be
always embedded into the 3-dimensional flat space as

g=edw@®dw+ du®dv, (2.29)
with the embedding variables (u, v, w) submitted to the condition
0 = ew® + uv — H(u), (2.30)

where the function H = H(u) is constructed form ¢ = ¢(z) by the formula
which involves a single quadrature

#(4/)
H(y) = - Au / dr ey (2.31)
“dz

Note that the integration constant of the integral given above is without
any importance. This constant affects H according to H — H + ku (k =
const), and can be thus absorbed in (2.30) by a translation of v, t.e. v —
v + k, which of course does not affect the metric (2.29). Therefore, the
integration constant in (2.31) can be chosen in an arbitrary manner, e.g.
making H(u) — with given ¢ = ¢(z) — as simple as possible.

The embedding of metrics of the form (2.28) is essentially different from
the Kasnerian technique which employs either trigonometric or hyperbolic
functions. In the next section we shall illustrate the virtues of our method
in the concrete example of the Schwarzschild solution.

Strangely enough in the case considered it leads, as we shall see, to
integral (2.31) in terms of elementary functions and the embedding in terms
of elementary functions!

3. An embedding of the Schwarzschild solution

Consider the Schwarzschild solution given in its canonical form by

2m 2m !
g=-|1-—)dt@dt+(1-— dr @ dr

+7r%[d0 @ df + sin® 0dp ® dp] m > 0. (3.1)
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We want to construct an untversal analytic embedding of this metric
in a 6-dimensional real flat space by using the method described in the
previous section. In the first step, we introduce

2l :=rsinfsing, 2% =rsinfcos¢, z3=rcosh. (3.2)

The metric is then

g = (l—g_—)dt®dt+[1 l_m—l]dr®dr
+ de! @ de' + d2? @ dz? + d23 @ deB. (3.3)

Therefore it may be written in the form

9=9'+4", (3.4)
where

"= de! @ de! + dz? ® dz? + d2® @ d2® (3.5)

and

2m 2m
g = (1 - —)dt ® dt + o 47 ® dr (3.6)
r

with

= \/(31)2 + (22)2 + (23)2 . (3.7)

The problem consists now in embedding ¢’ into a 3-dimensional flat
space. For this purpose we write ¢’ as

g = (1 _ 2_""‘) [(1 2':m)2dr ®@dr—dt® dt] (3.8)
Therefore, defining
pim [ (9)
we can write
g'=¢"? (5’;—» [dp® dp — dt ® dt] , (3.10)

where
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This is exactly the canonical form of the 2-dimensional metric (2.28),
with A ~ 2m, z! ~ p and 22 ~ t in the case ¢ = —1. We have now to
compute the integral (2.31),

y(2m/u) )
H(u) = -2mu / dZm. (3.12)

According to the definition of ¢ = ¢(z) and of its inverse function
= (@), the upper limit of the integral is ¢ = 3—31, i.e., we have the

equation
-1/2
(1 - 2—"1) _2m (3.13)
r u
or N
m m m
r= 2:1+L+1--“_' (3.14)
u 2m 2m
- ()

Clearly, » = 2m corresponds to u = 0, and v = +00, correspond both
to r = 0. Positive r corresponds to 2m > u — 2m. This restriction we
will find later to be unessential. [For the moment, we can proceed with
the complezified Schwarzschild solution, considering the original coordinates
(r,p,0,t) and the constant m as complez, as well as all the corresponding
embedding variables. Then the problem of the range of r is unessential.]
Notice also that u — +2m yields » = oo.

To compute the integral (3.12) the most convenient thing is to use
simply » as integration variable. This we do in the two steps

H(u) = —2mu/(%) % - 2m/( ) 5 6w

The upper limit of the integral, according to (3.13), is then 2m/ (1-(u/2m)?).
For (dp/d'r)z, according to (3.9) we have

(gﬁ)z T %—)2 (3:19)

r

and for ¢ we have ¢ = (1—(2m/r))~/2. Therefore, our integral amounts to
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2m/(1—(u/2m)?)

—-u 2m dr
H(u) = om (1 _rz_n_%)z }ii(l _ 2_m)—1/2
2m/(1—(u/2m)?)
== / _rdr (3.17)
m 1 - 2m

The main point of our embedding procedure consists in the fact that
this integral can be easily computed in terms of elementary functions. For
completeness, we give below the details of the integration.

We have

2m/(1—(u/2m)?)
r3/2dr . .
H(u)= — / T (introducing r = s + 2m)

3e

2m(u/2m)? /[1-(u/2m)?]
= as 3/2
= — / \/3(8 + 2m)

- _21;“ / dv/s(s + 2m)®/2 (introducing v/3 = v2mw)

(u/2m)/y/1~(u/2m)?
= %“ (2m)? / dw(1 + w?)3/2. (3.18)

At this point, introduce as integration variable
w = sinh7. (3.19)

The upper limit will then correspond to 79 defined by

_u_
m

sinhny = ——2m (3.20)
V1 (ER)
which implies
1 1+ 54
o = Eln(l — -2Lm .
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Therefore, after the substitution (3.19) our integral amounts to

0
H(u) = (2m)2%“ / cosh* ndy. (3.21)
This we can easily integrate
H(u) _ ulfefm0 —e™4m0 +2(e?0 — e72M0) 1 6 (3.22)
(@m)2 ~ m38 4 er-e ] - .

At this point, we have selected the constant of integration in such a manner
that for u = 0 — 5y = 0 the integral vanishes, i.e., that H(u) has at least
a double root at u = 0.

It remains to express this result in terms of the variable u. This is easily

done
Hw) _w1f1([1+55]" [1- 5]
@m)? “ama | I\[T- = T+,
14,5 1-5% 1
+2( T am _ $)+3m +2m}. (3.23)
1-57 1433 2m

Perhaps the most reasonable policy in giving the final form to this result
consist in exhibiting this function in terms of the denominators singular at
u = 2m. Because
14 5% 2 1- 5% 2
l_fgzl_L—l; LEe ——1 (3.24)

2m

our function amounts to
Hu) wulj1 4 —4 +1 —4 1
(2m)? "2m4|4{(1- = )21—— (1+355)2

2 2 =
+2[ ~1- +]+ 31n +:p}
7m

1- —';—,; 1+ 55 =
1 + 3
2m4 1——)2 (1+5%) 1+ 3%
3 14 5%
-1 L+3ln l}.
2m 2m
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This is already a fairly satisfactory form of the structural function, which
can be still more plausibly stated if we introduce the function

h(z) ::1-{(1_1z)2+132-31n(1—z)}; (3.25)

H(u) u u —u
—===—|h(—)-h{—] | .26
(2m)2  2m [ <2m) (2m> ] (3.26)
Having integrated our function H in terms of elementary functions, we
can now employ the results of Sec. 2. The part g' of the Schwarzschild

metric can be now represented in terms of the coordinates (u,v,w) — all
having the dimension of length — in the form

as

9' = —dw® dw + du®, dv (3.27)

with these variables fulfilling the condition

2
w u v u u —u
Y (. DI . AL 0 VY (i [ ok 2
(2m) t omam -~ 2m [h(2m) h(2m)}’ (3.28)
where the function h(z) is given by (3.25).
The part g" of the metric has the simple form of (3.5) and the flat

embedding coordinates (z!, z%,z3) according to (3.7) and (3.14) are related
to the variable u by the condition

r\2 z! 2 22\ 2 23\ 2 1 1 2
m m m m 1- m 1 + am
Of course, u = 0, corresponds in our coordinatization to the critical horizon

value, r = 2m. If we take the second embedding equation in this “quadratic”
form (3.29), the value » = —2m is also permitted. However, it should be

noted that with
u— 0 also h(-u—) - h(:g) -0,
2m 2m

and the first embedding equation (3.28) implies w = 0. Therefore, in terms
of our embedding variables, the horizons correspond to the set of points

u=0=w,v arbitrary, (2!)?+ (22)? +(2%)? = (2m)?, (3.30)

i.e. to a set of points of dimension 3, as it should be. Clearly noth-
ing special happens to our analytic embedding along this set of points;
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our 4-dimensional surface in the flat space with the cartesian coordinates
(u,v,w,z,2%,23) defined by the conditions (3.28) and (3.29) is analytic.

It is also clear that our embedding covers both the “exterior” and “in-
terior” Schwartzschild solution, from both sides of the horizon. Indeed,
u = 2m and u = —2m both correspond to > = oo, while u = 400 and
u = —oo yield r? = 0. These “exterior” and “interior” regions, within our
embedding are however in a sense disjoint — because of the singularity of the
4-surface at u = +2m. Perhaps if we constrain ourselves to the real ranges
of the embedding variables, the topology of the surface (4-dimensional) in
the flat space (6-dimensional) which corresponds to the Schwarzschild so-
lution remains still somewhat obscure. Within our treatment it seems that
the two disjoint sets of points, which according to the Kruskal treatment or
4 la Kasner embedding represent the distinct horizons, have become “glued”
in one set of points. But if we consider the original metric (3.1) as com-
plexified, i.e., a complex solution to the (analytic) Einstein equations over a
complex manifold there is no doubt that by our treatment we have produced
an analytic embedding of this metric in terms of elementary functions.

For the convenience of the reader, we will now summarize concisely
the result obtained. In the 6-dimensional flat space with the coordinates
(u,v,w,z,2%,23) and with the metric given by

g=—-dw®dw+du®, dv+de! ® dz + dz? @ dz? + dz° ® d=z° (3.31)
the 4-dimensional sub-manifold defined by the analytic conditions

-+ @) - (g ) oo
R L R 3

1 3

h(z):=i{(1_z)2 + l_z—3ln(1—-z)}.

where

For m = const, this space has the intrinsic geometry of the Schwarzschild
solution to the Einstein equation. If m and the embedding coordinates are
considered real, then the signature of the 6-dimensional space is obviously
(+ + + + —=), [The “4 la Kasner” embedding of [1] and [2] employs the
signature (+ + + + +—)!] Observe that when we keep m and the variables
real, the presence of the term In{[1 4 (u/2m)]/[1 — (u/2m)]} in the equation
(3.33), forces the range of u to be restricted to

2m > u> -2m (3.34)
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excluding u = +oo and therefore tovering only the values of 7 : c0 > » > 2m.
Thus, so understood, our analytic embedding covers only the Schwarzschild
exterior solution.

It may be also observed that the solution understood as internal and
external Schwarzschild solution exhibits strange duality. This can be seen
from the general formulae when it meets apparent singularity at » = 2m.

This work was written after the delay of several years. For the appear-
ance as it is I am grateful to Dr. R. Capovilla.

Of course, the aim of this paper was to show the existence of embedding
formulae which contain the elementary functions. On the other hand it is to
be stressed, that the author of this paper certainly agrees with Kruskaliza-
tion as the fundamental embedding.
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