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Some technique of reduction of the sdiff( £?) SDYM equations to the
second heavenly equation is proposed. Then it is shown that the same
technique leads from the Moyal SDYM equations to the Moyal deforma-
tion of the second heavenly equation. The iterative solution of this latter
equation is discussed.
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1. Introduction

In a sense the self-dual Yang-Mills (SDYM) equations can be considered
to be a master system for the integrable systems in mathematical physics.
According to Ward’s conjecture [1-4] most of integrable systems should be
a reduction of the SDYM equations. Then a big effort has been made to
justify this conjecture [1], [2], [5-16]. Especially a great deal of interest
has been devoted to the reduction of the SDYM equations to the self-dual
Einstein equations [9-16]. Thus it has been shown, amongst other things,
that the symmetry reduction of the sdiff(£?) SDYM equations leads to the
first or the second heavenly equation [9], [11], [13-16]; (sdiff(£?) denotes the
Lig algebra of the area preserving group of diffeomorphisms of the 2-surface
).

It is well known that the first or, equivalently, the second heavenly
equation describe the general metric of the self-dual vacuum space-time [17]
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and that these equations are integrable by the twistor methods [18-20}. In
1976 one of us (J.F.P.) and Robinson [21] brought ten vacuum Einstein equa-
tions in complex space-time to one second order nonlinear partial differential
equation for one function under the only assumption that the anti-self-dual
part of the Weyl tensor was algebraically special. (Mutatis mutands this can
be also done in the case of the real space-time of the signature (+ + ——)).
The equation obtained is called the hyperheavenly equation and in a sense it
can be considered as a deformation of the second heavenly equation. Many
interesting solutions of the hyperheavenly equation are known [22-24] but
we are far from understanding the whole mystery of the hyperheavenly
equation. In particular we do not know whether this equation is integrable.

Therefore it seems to be highly interesting to consider integrable defor-
mations of the heavenly equation. Now as the Moyal algebra appears to be
natural deformation of the sdiff(¥?) algebra it is almost obvious that one is
interested in the Moyal deformation of the heavenly equation. In the case of
the first heavenly equation this has be done by Strachan [31] and Takasaki
[32]. However, from the “hyperheavenly” point of view one should rather
analyse the Moyal deformation of the second heavenly equation. This has
been done by Takasaki in his distinguished paper on the KP hierarchy [33].
Here we are going to give a slightly different approach.

Section 2 of the present paper is devoted to the connection between the
sdiff(¥?) SDYM equations and the second heavenly equation. It is shown
that some symmetry reduction of the sdiff(£?) SDYM equations leads to
the second heavenly equation. The same is done in the case of the evolution
second heavenly equation introduced in Ref. [34].

In Section 3 the main points of the Weyl-Wigner—Moyal formalism are
presented. This formalism, as it is well known, has been developed in order
to represent the quantum mechanics in the form of the classical statistical
mechanics [25-27], [35-38]. In our paper we are only interested in the parts
of the Weyl-Wigner-Moyal formalism where the correspondence between
operators and functions on the phase space is considered and where the
Moyal algebra is analysed.

Then using the results of Sections 2 and 3 we find in Section 4 the
Moyal deformation of the second heavenly equation , which is known to be
integrable [33]. Following Strachan [31] we present the iterative method of
finding the solution of this equation.

There exist many papers devoted to the heavenly equation and, espe-
cially, to its integrability. With the present work we would like to open
a discussion on the integrability of the hyperheavenly equation, as in our
opinion this equation is much more important for general relativity than
the heavenly equation.
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2. SDYM equations and the second heavenly equation

Here we propose a reduction od the sdiff(¥?) SDYM equations to the
second heavenly equation ; (sdiff(X?) denotes the Lie algebra of the area
preserving group of diffeomorphisms of the real 2-surface ¥?). Similar re-
ductions are well known in the literature [9], [11], [13-16]. However, our
approach can be easily modified so as to lead to the Moyal deformation of
the second heavenly equation. We deal with the sdiff(X?) SDYM equations
in the flat 4-dimensional real manifold R* of the metric

ds® = 2(dz @ dz + dy © dj), (2.1)

where z,y,%,7 are coordinates on R* and ® stands for the symmetrized

tensor product, i.e., dz ® di def %(d:z: ® di + di ® dz), etc. In what follows

we assume that ¥? is such that [28-31], [39,40]
sdiff(£?) = the Poisson algebra onX?. (2.2)
(Remark: In the case when ¥? is a 2-torus T? one has the isomorphism

sdiff(T?) = su(oo) [28-31], [39]). Consequently the sdiff(¥?) Yang-Mills
potentials on R* take the form of the hamiltonian vector fields [15]

od; 0 0%; 8 . -
1—Wa_p_'5p—a'—q’ze{z,y’z,y}’ (2’3)

where ¢, p are (local) coordinates in ¥? and &; = &;(z,y,%,7,¢,p),% €
{z,y, %, 7}, are some functions on R* x ¥2,

It is known that the SDYM equations can be considered to constitute
the compatibility condition of the following Lax pair {7], [15], [41]

(32 + Aag)!p = —(Aa-, + /\Ag)w
(8y — A03)¥ = —(A, — Ads)¥, (2.4)

where A is the spectral parameter. Then the compatibility condition of the
system (2.4) yields the SDYM equations in the form

[63 + Aag, Ay — AA;,',] — [By — A0z, Az + AAg] = [Ay —AAz, A+ AA:,‘]] . (25)

Substituting (2.3) into (2.5) and equating independent powers of A one finds
the following set of differential equations

0:8, — 0,8, + {$5,8,}p+ X =0, (2.6a)
35§g - 6,75155 + {fi,fg}p +Y =0, (2.6b)
0,9 — 0: %, + ayfg - 3..,7@3,

+{®:,P:}p + {dsy’ Qﬁ}P +z2=0, (2.6¢)
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where {e,0}p denotes the Poisson bracket on X2, i.e.,

d_gfaf.a_.‘]___af@

{f.9}p = 3409 39 9q (2.7)

for any functions f = f(z,y,%,9,¢,p) and g = g(2,y, 2, ¥, ¢, p). Moreover,
X,Y and Z are arbitrary functions of (z,y, 2, #) only. From (2.3) it follows
that without any loss of generality one can put

X=Y=2=0. (2.8)

Henceforth, we assume that the condition (2.8) holds. Consider now a
special solution of the sdiff(£2) SDYM equations when

A =0=A4,. (2.9)
Then without any loss of generality we put
c=0=¢,. (2.10)
Consequently, Eq. (2.6¢) reads (remember that (2.8) holds)
0.8z + 9,85 = 0. (2.11)

From Eq. (2.11) one infers that there exists a function 8 = 4(z,y, %,7,¢,p)
such that
$: = -0y and &5 =0.0. (2.12)

Inserting (2.12) into (2.6b) we get
0:0:0 + 0,050 + {0:0,0,0}p = 0. (2.13)
Now we impose the following symmetries on Az and Aj

[0z — 84, A3] = 0 = [0, — O, Aj]
[0y — Op, Az] = 0 = [0y — Op, Ay)]. (2.14)

Thus there exists a function @ = @(z + ¢,y + p, Z, §) such that
0(z,y,2,9,4,p) = O(z + ¢,y + P, 2, 7). (2.15)

Substituting (2.15) into (2.13) one obtains the well known second heavenly
equation [17] for one “key function” @ = @(z + ¢,y + p, %, §)

0:0:0 + 8,8;0 + (920)(820) — (0:0,0)* = 0. (2.16)



The Moyal Deformation of the Second Heavenly Equation 893

Concluding: with (2.9) and (2.14) assumed one can reduce the sdiff(X?)
SDYM equations to the second heavenly equation (2.16).
Finally, observe that assuming the following symmetries

[0z + 0z, Asz] = 0 = [0, + 03, Ag]
[By + O, As] = 0 = [3, + 0y, 43, (2.17)
we can find a function H = H(z — %,y — ¢, ¥, p) such that
8(2,9,2,9,9,p) = H(z — 2,9 - ¢, §,P) - (2.18)
Substituting (2.18) into (2.13) one gets
82H — 8,05H + (0.0, H)(8,0pH) — (0:0,H)(82H) = 0. (2.19)
This is exactly the evolution form of the second heavenly equation found in

Ref. [34].

3. The Weyl-Wigner—Moyal formalism

In this section we intend to consider some points of the Weyl-Wigner—
Moyal formulation of the quantum mechanics in the phase space (for details
see Refs. [25-27], [35-38]. Let H be the space of quantum states of a spinless
particle in R!. Given operator f in H one defines a function f = f(g,p) on
the phase space R! x R! = R? according to the formula

+o0

W:fr f=flep) % / (q - f’;—Iflq + g) exp(%ﬁp)dﬁ- (3.1)

- 00

Thus one arrives at the one to one correspondence (the Weyl correspon-
dence) between some class A; of linear operators in H and some class
C1 C C*(R?; C) of functions on the phase space R2. From (3.1), we obtain
the mapping W1 :C; 5 f — f € A; (the Weyl application) to be

W= = G / F(s ) expli(ud + vi)ldpdv,  (3.2)

where § and p are the position and momentum operators, respectively, and
f stands for the Fourier transform of f

f=Ffpv)= / f(q,p) exp[—i(uq + vp)|dgdp. (3.3)

R2
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Let f,§ € A; and let f and g be the corresponding functions i.e., f = W( f)
and g = W(§). Let also f o § € A;. Then one states the natural question:

What a function does correspond to f o g7 The answer to this question is
well known and it leads us to the Moyal *-product. Namely, we have

W(fog)=fxg, (3.4)

where

fxg= / dq'dp'dq" dp" f(¢',9')9(q", p")

(xh)? h)2
X exp {?,;i[(q -Yp-9") - (- ¢")p~- p')]}
:_(7‘.:7[-1)2 / dg'dp'dg"dp" f(¢+ ¢',p+p")a(a+ ¢",p+P")

21
X exp [h (ql 1" qllpl)] . (3.5)

By simple but rather long manipulations the formula (3.5) can be brought
to a more transparent differential form

f*y=fexp(%5)y, (3.6)

where P is the Poisson operator

ple 3.7
L (3.7)
acting according to the rule
png 0 09 de
PPt o0 OO0 At g gy, (33)

dqdp (9p 0q

Now as for any functions f, g,k € Cy such that (fxg)*h and f*(g*h) are
well defined the following relation holds

(Fxg)xh=fx(gxh) (3.9)
and, moreover, as by (3.6), (3.7) and (3.8)

lim fxg= fg (3.10)
h—0
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one can consider the Moyal *-product to be a deformation of the usual
product of functions. Concluding, we arrive at the associative operator
algebra (A, +,0), A C A;, and associative function algebra (C,+,*), C C
C1 C C*®(R?;C), such that the Weyl correspondence W : A — C defines an

algebra isomorphism. Let f,§ € A and let [f,§] = def fog—gof. Then by
(3.4) and (3.6) one gets

W(5hd) = 5(Feg—gr=2fsin(5P)g,  (311)

where f = W(f) and g = W(§). Define the Moyal bracket {-,-}ps to be the
following mapping

(o haiCXC = C{fogn 2 = sin(; " B (3.12)

It is an easy matter to show that (C,+,{-,-}ar) is a Lie algebra which
we denote by M and call the Moyal algebra [26-33]. It is evident that

the Weyl correspondence defines an isomorphism between the Lie algebra

Ar (A, +, L[-,-]) and the Moyal algebra M (see (3.11)).

From the definition(3.12) of the Moyal bracket one infers that
hli_l_g{'V}M ={s}p. (3'13)

Thus the Moyal algebra is a deformation of the Poisson algebra. Using the
well known Taylor expansion of the sine we obtain

k 2k 2k
{9} = 2(2(1941-)1 (5) Ty (3.14)

There exists an alternative approach to the operator representation of
the Moyal algebra (28, 29, 31, 37]. Namely, substituting the Bopp operators

. def | th 6 . pdef  th D
— P=p—- —— 3.15
i~Q= g+ 295 P P 35 (3.15)
into (3.2) one gets the isomorphism between The Moyal algebra M and
some Lie algebra By, = (B, +, %[,-]) of operators acting in C*°(R?;C).
More precisely, we define the mapping (the Bopp application) B=1 : C; 3
f — f(B) ¢ By, where B is some class of operators acting in C*®(R?; C)
by

B7(f)= fB) =

(2m)? / F(p, v) expli(p@ + vP)|dpdv . (3.16)
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Using the Baker-Campbell-Hausdorff formula we obtain
expli(ud + vP)] = expli(pa + vp)] expl— 2(w2 — v)]
pli(u = expli(pg +vp)lexp[-5(u5 — V5,

= expli(ug + vp)] exp(2 P). (3.17)

Consequently, the Bopp application (3.16) can be rewritten in a compact
form

B-1(f) = f® = fexp(5 7). (3.18)

Therefore, )
fBNg)=fxg. (3.19)
From the very construction of the Bopp application it follows that for f, g, f*
g€y
B l(fxg)= fB)oyB), (3.20)

Hence by (3.18) one has

(fexp(5 Pg)exa(y P) = (fexn(S PY)o (gexp(ly P)).  (3:21)

™~

Finally, we arrive at the Lie algebra isomorphism M = By, where By,
denotes the Lie algebra (B=1(C), +, 7%[*,])-
Note that from (3.18) we find, assuming g—£ =0,

29 :(B) pong th « =

i - — = .22
i.e. %3% f(B) can be considered to be a deformation of the hamiltonian
vector field.

Define

def .
(uw) = €(up)(®P) = —expli(ug+ vp)l, w,v€R'. (3.23)
Then by (3.12) one gets

2 . h
{e(ulm)’e(ﬂ-zwz)}M = ﬁsm[g(/‘lw - I‘2V1)]e(u1+#2.l'1+"2) . (3.29)

Hence for any f,g € C we have

1 2 .k i
{f,9}m =W1£ gsm[g(muz—#2V1)]f(u1,1/1)

X G(H2s V2)e( g+ g vy +vg) I1dV1dp2dV2 . (3.25)
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Now it is an easy matter to carry over the above considerations to the
case when the phase space appears to be a 2-torus T2 endowed with the
symplectic structure dgq A dp. Here, for any smooth function f = f(g,p) on
T? one has

+ o0
Wrlf)=f= 1)2 S f(m,n)expli(mi+np)],  (3.26)
where
f(m,n) = / f(g,p) exp[—i(mgq + np)ldgdp, m,ne€ Z. (3.27)
T2

(The index T' means that we deal with a torus). Then a.na.logously as before
we arrive at the Moyal algebra M, the Lie algebra of operators A7 (Mr &

) and the Bopp application BT with the corresponding operator Lie
algebra B = Mr (compare with Refs. [28-31]).
Define

def .
€(m,n) = e(m,n)(q,p) = - exp[z(mq + np)], m,n€ Z. (3.28)
Then (3.12) yields
p I
{e(mhnl)’ e(mz,nz)}M ~h sm[—2—(m1n2 - many )]e(m1+mz,n1+nz) - (3.29)

Therefore, for any smooth functions f and g on T? one has
2 h

{fa g}M z ﬁsin[a(mlnz - mznl)]
(2 ) my,ma,n1,n2€Z
X f(ml’ ny)g(ma, n2)e(m1+m2,n1+ng) . (3'30)

Analogously we can deal with the Moyal algebra for other 2-surfaces [30].

4. Moyal deformation of the second heavenly equation

Now we are prepared to consider the Moyal deformation of the second
heavenly equation.

Let |¥# >= |¥(z,y,%,§) > be a H-valued function on R* and let 4; =
ai(z,9,%2,9), i € {z,9,%,7}, be Ar-valued functions on R%. Then the
compatibility condition of the following Lax pair (compare with (2.4))

ih(8 + A3;)|B) = —(ax + Aag)|®),
ih(8y — A3:)I®) = —(ay — Aa3)|®), (4.1)
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where A is the spectral parameter, yields the Ay SDYM equations in the
form

[0z + A8y, y — Adz] — [0y — A0z, a4z + Adg) = A [dy — Adz, az + Aag]. (4.2)
Analogously as in Section 2, we are looking for the solution of (4.2) when
a; =0=ay. (4.3)
Eqs (4.2), with (4.3) assumed, read
0zdz + Oya; =0, (4.4a)
Oza5 — 0345 + Jlas,a5) = 0. (4.4Db)
Using the Weyl correspondence (3.1) one gets

Ozaz + Oyaz =0, (4.5a)

65(1@ — (950.5 + {ai,ag}M =0, (4.5b)

where a; = ai(z,y,%,¥,4,p), 1 € {,y,Z, 7}, are the M-valued functions on
R4

a; def W(a;). (4.6)

From (4.5a) it follows that there exists a function § = 0(2,y, £, §, ¢, p) such

that
az = —8,,6' and ag = 639. (4.7)

Substituting (4.7) into (4.5b) we obtain the Moyal deformation of Eq. (2.13)
in the form
02030 + 0,050 + {026,0,0}np = 0. (4.8)

Now, as before, we impose on a; the symmetries

(0z — 09)az = 0 = (0, — 3q)ay
(8, - 9p)az = 0 = (8, — Op)ag. (49)

From (4.7) and (4.9) it follows that there exists a function @ = @(z+ ¢,y +
P, Z,7) such that

0(2, ¥, 2,9, ‘Lp) = @(2} +4¢,y+p,Z, '!7) . (4'10)

Finally inserting (4.10) into (4.8) one obtains the Moyal deformation of the
second heavenly equation

0:.0:0 + ayag@ + {az@,ay@}M =40. (4.11)
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0 =0(z+4q,y+p%79).

It is of some interest to express the conditions (4.9) in terms of a;, j = £, 7.
First one quickly finds that, with (4.9) assumed, the Fourier transforms of
az and ag read

a; = / aj(z + ¢,y + p, &,7) exp[—i(pq + vp)|dedp,
R2
. v R [ ' "o
= expli(uz 4 vy)] / aj(q,p,% 9)exp[—i(pg + vp )ldg dp ,
Rz
j=%,73. (4.12)

Therefore, substituting (4.12) into the formula (3.2) defining the Weyl ap-
plication W1, we find that ¢; = W~1(a;), j = 2,7, have the following
form

&j:&j(z+é,y+ﬁ7iyg j:i!,g. (4'13)
It is quite evident that the formulas (4.1) to (4.4b) and (4.13) can be easily
written down in the Bopp operators language. Especially for (4.13) one gets

~(B) _ +(B) ih 9 _ih o
aj _aj (z+q+ ) ap’y+P 9 3q1‘c’y) J=2,9. (4‘14)

(B —
ag- )= B 1(c'tj).

In order to find the Moyal deformation of the evolution heavenly equation
(2.19) we assume the following symmetries

(8, + 85:)% =0= (63 + Bi)ag
(0y + 0¢q)az = 0 = (8y + Og)ay. (4.15)

Then (4.7) and (4.15) imply the existence of a function H = H(z — &,y —
4,9, p) such that

0(2!, y,iagsq’p) = -H'(:c -Z,y— ¢, ﬂ,p)- (4‘16)
Substituting (4.16) into (4.8) we arrive at the Moyal deformation of Eq. (2.19).
O2H — 8,0;H + {0yH,0.H}p = 0. (4.17)

H=H(z—-%y-q,%p).
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It is an easy matter to show that the conditions (4.15) as expressed in terms
of W~1(a;) = aj, j = &, 7, give now

&J =&j(3_£,y_q’g’ﬁ)9 j=2,9, (418)
or in the Bopp operators language

- o . h 0 h 0
B l(aj):ag-B) =a(.B)(:B z,y— q_z2 ap’ Y, p— 12 aq), j=2,9. (419)

5. Integrability

It is known [33] that the Moyal deformation of the second heavenly
equation (4.11) is integrable. Here, following Strachan [31], we present the

iterative method for constructing the solution of this equation. From (3.14)
one quickly finds

1)* 5 28 2s+1 s
{f,9}m = 2(2( +)1), (5) E( -1)? (2 +1)
x(ag’“—fag;f)(aga;’“—f ). (5.1)

(Compare with (2) of Ref. [31] or (1.1) of Ref. [30]. It seems that in those
formulas the factor (-1) has been missed).
Now as @ = @(z + ¢,y + p, %, §) (see(4.11)) the formula (5.1) yields

(0.0,8,0} 2 = 2(2( i);)' (g)mf( Ly (23+1)

x (02:+2-191@)(0102° 1?77 @). (5.2)

Consider @ to be the following power series in %

0= Z:O@n (-;-‘-)n . (5.3)

On=0,(z+qy+p%79), n=01,....
Substituting (5.3) into (4.11) and equating the coefficients of the same pow-
ers of % we get the system of differential equations

(3] r—2s 2541
(-1)** (2541
33@+33@r+22223+1). ;

s=0 m=0 ;=0
X (02°%2738§0,,)(8202° 2 I @r_m_2,) = 0, r=0,1,.... (5.4)
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Hence for » = 0 one finds
020300 + 040500 + (3:@0)((9;@0) - (3,,3,,@0)2 =0, (5.5)

i.e. the second heavenly equation.
Then for r =1

0,0:01 + 3,,6,7@1 + (6:@0)(6201)
+(8200)(8261) — 2(8,0y00)(8:0y01) = 0. (5.6)

Therefore, given @9 Eq. (5.6) is a linear partial differential equation on @;.
Generally, for any r > 1 the formula (5.4) gives

85050 + 8,050 + (820,)(026,)
+ (8300)(332/@1') - 2(023;/@0)(6::831@1') = VT‘(@O’ sery @1‘—1) ’
(5.7)

where V. = V.(@q,...,0,_1) are some functions of their arguments. (From
(5.6) and (5.7) it follows that V3 = 0). Concluding, we observe that the
system (5.4) consists of the second heavenly equation (5.5) and the set of
linear partial differential equations of the form (5.7).

Similar considerations can be done for the Moyal deformation of the
evolution second heavenly equation (4.17).

We are grateful to Maciej Dunajski for his interest in this work.
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