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The Stiickelberg formalism can be regarded as a field-enlarging trans-
formation that introduces an additional gauge symmetry to the considered
model. We define and calculate the appropriate BRST charge. The phys-
ical state condition, demanding that a physical state is to be annihilated
by the BRST charge, is shown to be equivalent to the Stiickelberg physical
state condition. Several applications of the approach to the formalism are
presented. The comparison with the BFV procedure is given.

PACS numbers: 11.15.-q, 11.15.Tk

1. Introduction

The choice of variables used to describe a quantum field theory should
not have any physical significance. This field redefinition invariance is a
quite nontrivial issue in quantum field theory. Complications may arise
already at the level of free theories. An additional well known complication
arises when one considers renormalizability of a gauge theory: it can only
be shown after introducing extra degrees of freedom (the unitary gauge is
formally nonrenormalizable). Recently, it has been proposed to apply the
BRST symmetry idea to the field redefinition problem [1, 2]. We would
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like to show how these tools work in the Stiickelberg formalism case [3-5].
The application of the general formalism presented in [1, 2] to a concrete
and popular physical model allows for a deeper insight into the Stiickelberg
formalism. Moreover, it suggests its generalization to the general case of
a vector field with the non-Yang-Mills type of self-interaction. We shall
also discuss the relation of the field-enlarging transformation to the Batalin-
Fradkin-Vilkovisky (BFV) formalism [6, 7] exemplifying it for the anomalous
U(1) chiral gauge theory [8-14].

2. Abelian case

Let us consider an Abelian “massive gauge field” A, with the following
Lagrange density:
2
L= —%F,,,,F’“’ + 5-ALAF, (1)

where

Fp,y = a“Ay - ayAp' .

We would like to restore the gauge symmetry broken by the mass term
by introducing an additional scalar field. To this end, let us perform the
following field-enlarging transformation [1, 2, 10, 11]:

A, =4+ l-a,&qs =g, (4. 9). 2)

The substitution of (2) into (1) gives (we will write A, instead of A4},)

L=-1F, Fr 4+ m 4 Ak 1 10,8000 + mA, 04, (3)
Now,
5C 5L 6L (69, 8gu )
= — —_— T e— v 6 3 4
6L 6A“6A“+ 5¢5¢ o, (M 64, + 5 ¢ (4a)

and the Lagrangian density (3) is invariant with respect to the following
gauge transformations [1, 2]:

56(z) = a(z) (4b)
-1
84, (2) = - [ dtaaty [""’“‘A ‘”)] () 228D (4,200 (), (40

where « is an arbitrary function. The explicit form of the functional g,
given by (2) leads to:

$4,() = - [ dhadtyg"5(z - )] mP I =D a() =~ tuae).
(4d)
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In order to quantize this model we have to remove the gauge freedom.
Let us consider the following gauge fixing term

Ly =-) (O“A“ - %qb)z . (5)

The gauge-fixed Lagrangian density takes the form (the ghost term is omit-
ted)

E:—%FFVF/“'" mz_z'Al‘A“—A(a#A“)2+%ap¢6“¢~in-;¢2, (6)

This is the standard Stiickelberg form of the Lagrangian for a massive
Abelian gauge theory! The BRST charge of this model for the symmetry
(4) is given by

QBRST = / &z (BOoc — 80Bc) =1y (c} By - B,[ck) . (7
k

where B is the auxiliary field that linearizes the gauge-fixing term, ¢ denotes
the ghost field and the subscript k labels states in the momentum space
representation [13]. The property that Abelian ghosts decouple imply that
the state vector space V can be decomposed into a direct product V =
V' ® Vrp, where the Vpp contains only ghost fields and all other fields
belong to V'. The BRST-physical-state condition, QgrsT|phys) = 0, takes
in our case the form

By |phys) = 0, for all k. (8)

When one combines this with the B-field equation of motion, one gets:
m
22
which is precisely the Stiickelberg physical state condition. Let us notice

that, although the gauge fixing term breaks the gauge symmetry (4), the
Lagrange density (6) is still invariant with respect to (4) if

(6u4% - 226) Ipbys) =0, (9

m

Oa o= 0. (10)

This explains the nature of the “extra” symmetry of the Stiickelberg

model: the gauge fixing condition allows for such a restricted invariance.

Of course, other gauge fixing conditions are also possible. They will give us

other possible forms of a massive Abelian gauge field model. It is obvious
that the condition ¢ = 0 leads to (1) (unitary gauge).
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3. Non-Abelian case

The non-Abelian “massive gauge field” has the following Lagrange den-
sity:
L= —-1TtF,, F* + m?Tr(A,4%), (11)

where
Fo, =0,A% - 8,A% +g fabCA;‘;Af, X

To generalize the construction to the non-Abelian case, let us perform
the field-enlarging transformation [1, 2, 4, 5]

A, =g, (4, 0)=Ut AU - -;-UTa“U, (12)

where the scalar field U takes values in the adjoined (unitary) representation
of the gauge group. This results in (as before we drop the prime sign over
the gauge field)

-2
L=-1TcF,, F* + m*Tr (4,4*) - 2’-'5—'& (a,,UUTA")

2

m

- (U’fapUU*a‘*U) . (13)
It is convenient to rewrite the U field as
_ ig 4 a
U(z) = exp (m¢ (2)T ) ,

where 7% denotes the Lie algebra generators of the gauge group. Eq. (13)
then can be rewritten as

L=—3TeFu, F* + m*Tr (A, A*) + 2mTr (0, 04%) + Tr (8,00%¢) . (14)

As in the Abelian case, this Lagrange density is invariant with respect to
the following gauge transformations (see Eq. (4))

54° (2) = o (2) , (15a)
645 (z) = = (Dpa)®(2) , (15b)

where D, denotes the covariant derivative. To quantize the model we have
to choose a gauge condition. The gauge-fixing condition

Lot = ~XTr (8,4 - %s)2 (16)
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leads to the Lagrange density (we omit ghost fields)
L=—LTeF,, F* + m*Tr (4, 4%) + ATx (9, 4%)?
2
+ Tr(9,404¢) - -Tré?, (17)

which is the standard Stiickelberg’s one. Other gauge conditions provide
us with more sophisticated forms of the massive non-Abelian gauge field
Lagrangians. The BRST-physical-state condition, due to the presence of a
more complicated ghost sector, has not such an obvious interpretation as in
the Abelian case, but it still contains the condition that removes the scalar
component of A,. Indeed, we can write [15, 16]

m .
@BRsT = ¢* (3;“4“ - ;fb) ~ $fSctcln., (18)

where ¢® and 7, are the ghosts and their canonical conjugate fields. Then
we have

QBrsTI¥) = *Gal¥®) + Feoc? [Galu?) - Golvl") — i)+,

(19)
where G = (B“A“ - -"fqb) and (%) denotes the ghost-number i component
of the state

k=n 1 X
=3 Leor ey,
k=0

Unfortunately, we cannot ensure that there are no BRST—physical states
which comprise components with nonzero ghost numbers: at least academic
examples of such theories can be given [16]. However, Yang-Mills theories
seem to be safe from such complications and the BRST-physical-state con-
dition is sufficient to guarantee that physical states have ghost number zero
[16, 17]. This means that the BRST-physical-state condition implies the
Stiickelberg one:

@BrsT|phys) =0 =) (auAa” - %:49‘15“) 0 = 0. (20)

4. Applications

In this Section we would like to describe two possible applications of
the described approach to the Stiickelberg formalism. First, we shall gen-
eralize the approach to the case of a vector field with a non-Yang-Mills
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types of couplings, that are often introduced while discussing possible de-
viation from the orthodox standard model of the electroweak unification.
Then we shall consider the anomalous U(1) chiral gauge theory and show
how the Stiickelberg formalism is related to the Batalin-Fradkin- Vilkovisky
procedure.

4.1. Vector field with non-Yang-Mills types of couplings

Very often, one has to use an effective Lagrangian as a low energy
approximation to a not yet known ultimate theory. For example, such con-
siderations are important for analysing the possible existence of anomalous,
that is not present in the standard model, weak vector bosons couplings for
a triplet and a singlet vector field [18-23]. Of course, one have to find a
clever way to reduce the enormous number of possible additional interac-
tion terms. Usually, one takes symmetry as a guiding rule. One can impose
only the conditions of Lorentz and U(1)em invariance {18, 19] on such an
effective Lagrangian. It is also possible to require invariance with respect
to the SUL(2)®Uy(1) but with the SUy(2) gauge symmetry nonlinearly
realized [20-23]. We would like to show by using the Stiickelberg formalism
that these models are related. Let us suppose that the Lagrangian density,
motivated by the observed electroweak particle spectrum, has the general
form

C(Ft,, 4w Wi 2, 4:) (21)
that is constrained only by the requirement of invariance with respect to
the Lorentz and the Uem(1)-gauge symmetries. Wﬁt and Z, denote field

mediating weak interactions. A, is the photon. F,’f,, denotes the differ-
ent vector field kinetic terms and ; all matter fields. The field-enlarging
transformation (12) takes for this case the form

1 ( 9zZ,  V2gwW}

= _ ' _ T . T
*\VigwW; 922, )’W"*W» vtwu -ivte,u, (22)

¥ — R(U)Y, (23)

where _
U(e) = exp (L7 () 77)

and R denotes the appropriate matter field representation. The condition
UtU = 1 introduces a non-linearly realized SUz(2) gauge symmetry to the
model. This condition removes also the scalar particle from the physical
spectrum. Effectively, the transformation (22) can be realized by the sub-
stitution

gWWf — tr [TiW'] , (24a)
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9z% — tr [7*W'], (24b)

where 7% = 3(m1 £ ir;) and 7; denote the SU(2) generators (the Pauli
matrices multiplied by 7). Note, that if we do not perform (23) then the
matter fields are gauge invariant. So, in fact, we have two types of gauge
symmetry at our disposal (these symmetries are not equivalent in the chiral
case, see the next subsection and Ref. 12). As before, various gauge fixing
conditions lead to different representations of the model. This generalizes
the considerations presented in [18]. Note, that the possible cut-off depen-
dence of the results of calculations of physical quantities in effective models
makes the above considerations a quite non-trivial issue. Examples od such
calculations can be found in Ref. [18].

4.2. Anomalous chiral U(1) gauge theory
Let us consider the following Lagrange density
2 .7 ,
L= —%F,“,F"” + A AP iyt (0, +igAL) YL, (25)
where 1, = (1 — 7°)4 is the left-handed Weyl field. The transformation

(2) leads to the following Stiickelberg Lagrangian (as usual, we omit the
ghost sector)

L=-1F, Fr 1 (4, +08,0) +ifpy" (0, +igA, +ig0,0) vz . (26)

The Fujikawa method [25] can be used to derive the equality for path inte-
grands

_ 3
gPpy*0,00y = 3;12 *YPIOF,, Fpy . (27)

So finally, we have (the path integral is understood)
2 . 7 .
L=- %vaFpu + _”’."2_ (Ap. + 6;49)2 -+ u/)L’y“ (6‘,, + ng“)‘tf)L

3
- 33«2 VP7OF,, Fop . (28)
Here, the last term is the result of the anomalous transformation of the
fermionic determinant. It depends on the spacetime dimension {11-12, 22—
23). Now, it is obvious that the Stiickelberg formalism has to be put in force
as a field-enlarging transformation. The addition of the scalar degrees of
freedom alone would neglect the last term in (28) and the symmetry would
not be restored. The Lagrangian density given by (28) can be obtained by
the BFV quantization procedure [5, 7] (plus the gauge-fixing and ghosts sec-
tors). The main idea of this formalism is to convert second class constraints
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to the first class ones by introducing new canonical variables (BFV-fields)
(6-8]. Then one chooses the gauge by adding a gauge-fixing fermion field
and, possibly, integrates out some fields. This leads to a correct quantum
action. The new (effective) constraints for (25) have the form [8]

¢ = 7 + m?8, ¢' = dim* + m2A® — 50 4 7, (29)

where (6, 7g) is the canonical conjugate pair of BFV fields, 7, denote the
canonical conjugate momenta for 4, and j# = gyy#4) is the current density.
We have

[¢(2), ()] = [¢(2),¢' (v)] = [¢'(2),¢'(¥)] = 0. (30)

It is well known that in the Hamiltonian formalism the first class con-
straints reflect the presence of gauge symmetry. To get the orthodox form of
the Stiickelberg Lagrangian in the BFV formalism one has to choose a spe-
cial gauge condition [8] (the BFV procedure provides us with a gauge-fixed
Lagrangian). In our approach, when the additional symmetry is explicitly
introduced, there is full analogy between the Stiickelberg scalar field and the
BFYV field: we still have to choose the gauge in (28). Different gauge con-
ditions result in (equivalent) representations: no special gauge is required.
The explicit form of the additional symmetry allows immediately to answer
the question (8] why the simultaneous appearance of both the kinetic term
of the scalar field § and the Wess-Zumino term in the BFV formalism re-
quires the presence of the gauge field mass term. The answer is: the mass
term is necessary because it compensates the transformation of the scalar
field kinetic term. Otherwise the symmetry would be broken.

5. Concluding remarks

The Stiickelberg formalism can be regarded as a field-enlarging transfor-
mation that introduces an additional gauge symmetry to the model. Such a
transformation does not influence the S-matrix because it is a point transfor-
mation. The well known theorems concerning point transformations imply
this [26]. If one fully analyses the BRST structure of the model one gets
that the Stiickelberg-physical-state condition is implied by the requirement
that the BRST charge annihilates physical states. It is also possible to vi-
sualize direct analogies with the Batalin-Fradkin—-Vilkovisky quantization
procedure. The Stiickelberg approach allows to keep track of additional sym-
metries. This is not always possible in the abstract formulation. The origin
of the “antifields” (a canonically conjugate field introduced for each field
with the opposite Grassmann parity) can be understood in an analogous
way [27, 28]. The formalism can be also used to analyse the bosonisation
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phenomenon [11, 29] and quantization of anomalous chiral theories {12, 13].
Wide application of the formalism in the effective Lagrangian models, along
the lines discussed here can be anticipated [16).
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