Vol. 26(1995) ACTA PHYSICA POLONICA B No5

POSSIBLE ENHANCEMENT OF INTERFEROMETRY
METHODS IN HEAVY ION COLLISIONS*

P. Fioir

Institute of Physics, Slovak Academy of Sciences
842 28 Bratislava, Slovak Republic

(Received December 31, 1994; revised version received February 7, 1995)

Interferometry methods have become a well established technique in
heavy ion collisions experiments. We present the method for obtaining
a more comprehensive information about the spatial structure of source
emitting identical particles. It is shown that this information can be
extracted by a one dimensional fourier analysis of the filtered correlation
function. Further possible enhancement of the method is sketched. Some
technical aspects of the proposed technique are discussed.

PACS numbers: 25.75. +r

1. Introduction

The idea of measuring properties of a source of identical particles by cor-
relation experiments originated in radioastronomy. The angular diameter
of the star Sirius was successfully determined by HBT method [1] in agree-
ment with predictions. In experiments on antiproton-proton annihilation
in 1959 the correlation effect in like-sign two pion angular distribution was
discovered. This effect was interpreted in (2] as a result of B-E interference
of the wave functions of emitted pions. In the simplest form sufficient for
our purposes, the correlation function for a static source can be expressed
up to the normalization factor as:

C(Af) ~ / / FE)F(E)a(F, 2o oo o) 2351355, (1)

* Work partially supported by Open Society Fund at Comenius University,
Bratislava.
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where py,p; are momenta of emitted identical bosons and f(Z) describes
the geometrical distribution of the source. The squared absolute value of
Splz is:

[¥12]2 = L[eP1%1¢iP2%2 | o P1521P2%1|2 — | | cos(AZ- AF),  (2)

and it depends only on the relative momentum of the emitted bosons Ap =

P1 — P2 and on the relative position of the emission points AZ = Z; — Z5.
2 2

For a Gaussian source f(Z) ~ e~(*"/E°) the correlation function (1) can be

calculated analytically:

C(AP) ~ //}w1212e—(5¥—5§)/R2d3§1d352 =14 e IB1-RPRY2 (3

By fitting experimental data for the correlation function with (3) an
approximate radius of the spherical source can be determined. A more com-
plicated Gaussian parametrization of the correlation function [3] separates
the longitudinal, outward and sideward dimensions of the source. Statistical
errors of correlation function data in heavy ion collisions (HIC) experiments
become smaller, what might allow to use a more sensitive methods of char-
acterizing the geometrical properties of sources.

This work was partially motivated by the non smooth behaviour of the
experimental correlation functions found in [4]. Most of the predicted the-
oretical correlation functions do not exhibit the interesting structure in the
Ap > 100 MeV/c region’. The influence of Coulomb final state interaction
(5, 6] for charged particles is also not able to generate the behaviour close
to that found in [4]. It is not excluded that the origin of the structure of
results [4] is absolutely different than we intend to suggest. In any case the
method described in the following paragraphs, if applied to the future HIC
experiments, could allow to do a more selective comparison of the theoretical
models with experimental data.

In the following section we define the longitudinal correlation function
which is subsequently used in the definition of distance spectrum of the
source in Section 3. In Section 4 we discuss the reconstruction of the dis-
tance spectrum function from the longitudinal correlation function and some
technical aspects of this procedure. In Section 5 we present a simple exam-
ple — the toy model — as the illustration of the method. In the last part
we consider the possibility to apply a tomography techniques based on the
approach presented here.

In the whole paper we deal only with the influence of the spatial distri-
bution of source on the correlation function. The effects of the final state

! The oscillations in theoretical shapes of the correlation functions for photons
can be found in {7}, but see also [9].
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interactions and the coherence of emission are not considered here. It is
assumed that they do not affect the principles of the method presented.

2. Longitudinal correlation function

Let us consider a spatial static three-dimensional source emitting pairs
of boson particles. Because of B-E interference effect, the emission ampli-
tude of a pair of particles with relative momentum Ap = p, — p; depends on
the relative position of the emission points. We can decompose the relative
momentum of the detected pair into transverse and longitudinal compo-
nents Ap = Ap; + Ap;, where the longitudinal direction is chosen along the
beam in the HIC experiment. Thus we have:

AP-AZ = (Afy + APy) - (A%, + AZ) = Afy - AZ) + Af; - A%, (4)

Let us choose events with a small transverse component of relative momen-
tum

|Ap:| < |Ap . (5)

Then the transverse separation of emission points does not have influ-
ence on the correlation function for our set of data. An analogous consid-
eration can be made for the set of events filtered by the condition

|Ap:] > |Api] (6)

or one can choose the sideward and outward selections used e.g. in [3] but we
shall now concentrate on the correlation function for data events fulfilling
the condition (5) — the longitudinal correlation function. In this case after
the substitution (4) into (1) and assuming (5) we have:

C(Ap) = / / F(Z1)f(£2)(1 + cos(AZ - AF))d3E,1d32,
= //F(z})F(z%)(l + cos(Az; - Apy))dzidz?, (7
where F(z;) = [ f(zi, £:)d*Z;.

This means, that our 3D source produces C(Ap;) like a one dimensional
source with the distribution F(z;).

3. Distance spectrum of the source

Let us find how the longitudinal correlation function C(Ap;) looks like
for a two-point source (see Fig. 1a). This two point source has a distribution



928 P. FrLip

function F(z) = 1/2(é(z — a) + §(z — b)). The longitudinal correlation
function then is:

C2(d,Apy) = /F(zl)F(zg)(1+cos(Apz(z1—zg)))dzldzz = 1+cos(Ap;-d),
(8)

where d = |a — b| is the separation of emission points. For a source with the
distribution function F(z) = Py -§(z — 1) + P2 - 8(z — z2) + P3 - 6(z — z3)
(Fig. 1b), where P; + P, + P3 = 1 the result is:

C(Ap1) = O + Pyy - C2(d13, Apy) + P13 - C2(dy3, Apy) + P23 - C2(d2s, AP(ls))),
where P;; = P; - P;, d;; = |2; — z;] and O is a constant shift which will not
be important in our further calculations. Based on this it seems appropri-
ate to define the Distance Spectrum of a source. Each source emitting pairs
of particles has its “squeeze” — Distance Spectrum. It is the probability
distribution for the emission of the pair in the distance D of emission points.

Fig.1a 43S(D)
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Fig. 1. The point-like sources and their distance spectra obtained by Monte-Carlo
simulation in the agreement with the analytical probability calculation.
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For the two-point source the distance spectrum is §(D) ~ §(D — dg) (see
Fig. 1a), for our three-point source (8) the distance spectrum is S(D) ~
P126(D - d]g) + P136(D - d13) + P235(D - d23) (see Fig. lb). In general
the distance spectrum for a one dimensional static source can be expressed
as:

S(D) = / F(21)(22)8(D — |21 — 22|)dz1dz3. (10)

Now we can write the longitudinal correlation function produced by a
source with distance spectrum §(D):

C(Ap) = 0' + / S(D)C2(D, Apy)dD . (11)

A distance spectrum does not contain complete information about
the spatial distribution of a source. Slightly different spatially distributed
sources can have the same §(D) (see also Section 5). The distance spectrum
of another point-like source is shown in Fig. lc.

4. Inverse transformation

Expression (1) for the correlation function can be after the formal inte-
gration written in the form:

C(AP) = 1+ |f(AP), (12)

where f(Ap) = f etAPEf(Z)d3Z. The absolute value in expression (12)
destroys the phase information in the fourier picture f (Ap) of source distri-
bution. This breaks the possibility to perform the inverse fourier transfor-
mation in order to get f(Z).

In this Section we shall show that the remaining information in | f(Ap)|
has certain physical meaning and that its extraction is at least theoretically
possible.

The form of expression (11) is sufficiently simple. Therefore one could
consider a possibility to gain the function S(D) from C(Ap;). As we shall
see, the §(D) is just the information contained in C(Ap;). According to
(11) and (8) we have

C(ap)=0"+ /S(D) cos(Ap; - D)dD. (13)

The constant shift factor can be separated from the correlation function
data and so we can write:

C(ap) = / S(D)cos(Ap; - D)D), (14)
0
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where C(Ap;) is the correlation function with the shift factor removed.
Expression (14) is fourier transformation and we can try to perform the
inverse fourier transformation in order to obtain §(D) from experimental
data.

S(D)= [ C(Ap) cos(api- D)d(Ap:). (15)
0

Because of the fact, that we measure C(Ap;) only in discrete points it
is necessary to replace integration by summation.

points

Sp(D)= ) C(Api)cos(Api-D)(Api ™" ~ Ap)).  (16)

However a more relevant problem is that the integration region in (15)
includes the values of Ap; which cannot be measured ( high Ap; ). The
cut-off in Ap; is present due to energy conservation considerations and due
to the growth of statistical errors in a high Ap; region. The influence of such
a cut-off on the result of Fourier transformation leads to the oscillations in
the resulting (D) (see Fig. 2a) regardless of the number of measured points
in the region (0, Apmax). Similar problems occur e.g. in digital FIR? filter
design. Fortunately these oscillations can be suppressed by the Method
of Windows [8]. The method is based on the simple multiplication of the
original function to be fourier transformed by the Window Function, which
suppresses the values of the original function near the cut-off (see Fig. 2a).

points

Sw(D)= 3 W(8p))C(Api)cos(Api- D)(Ap ™" - App).  (17)

There are several types of the Window Function. In Fig. 2a a simple
Gaussian function is used. The amplitude of the oscillations depends also on
the shape of the exact (without cut-off) result of the Fourier transformation.
The exact result of Fourier transformation of the function in Fig. 2a without
the cut-off would be Dirac delta function at the point dg = 3 fm. Such a
shape leads to a big oscillations.

The correlation functions and their distance spectra for the point-like
sources in Fig. 1b and Fig. 1c are shown in Fig. 2b.

The influence of statistical errors of correlation function data to the
resulting distance spectrum which is crucial for the eligibility of the method
is not considered in this paper.

? FIR = finite duration impulse response.
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Fig. 2. a — The correlation function C2(Ap) for two-point source (distance do =
3 fm) and the result of the inverse transformation without and with the Method
of windows. b — The correlation functions and the results of the inverse fourier
transformation for the sources shown in Fig. 1b and Fig. 1c (a = 2 fm).

5. Structured time dependent source

As we have already mentioned the sources with the same S(D) can be
different, but in spite of that, having the distance spectrum of a source we
can make some conclusions about the source. At least the average radius

R = /D-S(D)dD, (18)
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and maximal radius Rmax = Dmax in §(D) can be found from S(D).

Let us consider a three-dimensional source consisting of two separated
regions (Fig. 3c). Both regions A and B contribute to distance spectrum of
a source in longitudinal (5) analysis in the interval 0 < D < R. When one
of the particles comes from A and the second from B they can be emitted
in a distance interval K — R < D < K + R. The distance spectrum S(D)
in the interval R < D < K — R is suppressed as much as the parts A
and B are located. Original spectra Sysc(D) for such a source computed
by Monte-Carlo simulation, the correlation functions calculated according
expression (11) at 200 points in the Ap; < 2GeV interval and the results of
inverse transformation (16) for different separations K of parts A, B of the
source are in Figs 3a, 3b, 3c.
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Fig. 3. The distance spectrum SMC(_D) calculated by Monte-Carlo simulation, the
corresponding correlation function C2(Ap) at 200 points and the result of inverse
transformation (15) for the three different separations of the sources 4, B.

The real experimental situation is however a time dependent distribu-
tion of the source. The general expression for the correlation function in
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this case is much more complicated than expression (1):

C(Ap) = //w(zl, }71_’;:&)1”(22, & +Pl)(1+COS(AZ“AP‘L))J421J422 .

2
(19)

However, the influence of the spatial structure of the source could still
demonstrate itself in the oscillations of the correlation function at the higher
relative momentum region.

Following the simple approach based on (1) in the case of the time
evolution we have to take into consideration that the bosons emitted in
different times do interfere. This means, that the same region of the hadron
gas or quark gluon plasma emitting the bosons in two different times ¢; and
t2 at the positions £; and Z2 contributes to our distance spectrum of the
source like a two different regions emitting the bosons at the same time but
in separate points #; and Z2. Therefore an important question arises: How
big can be the time difference of the processes of emission for interfering
bosons ?

Let us denote the duration of the process of emission of a single boson as
To. As an upper limit for 7 the formation time of the emitted boson which
is of the order of 1 fin/c [11] could be chosen. It seems to be reasonable to
require a time overlapping of the processes of emission for the interfering
bosons in the B-E interference phenomenon. Assuming the Lorentz dilata-
tion factor v for 79 of emitted boson we obtain the rough restriction on the
time difference At of emissions of the interfering bosons in the form:

At < Tp-7. (20)

For a typical momentum of pions produced in heavy ion collisions the
time At is long compared to m; ! what is necessary for the influence of B-E
interference on correlation function [10].

Different spatial distributions in a different time intervals lead to differ-
ent distance spectra s(D,t). In our simple approach the correlation function
for a time dependent source could be expressed for 7 — 0 as:

é(Apy) = / 75(1), t) cos(Ap; - D)dDdt = 7[ / .s(D,t)dt] cos(Ap; - D)dD
0 0

(21)
but for 1y # 0 the information about the s(D,t) in the correlation function
is smudged with the uncertainty proportional to At given by (20).

It is clear, that by the inverse transformation (15) we can obtain only
S(D), the result of the time integration in (21). A combination of the
results obtained for different kinds of identical particles emitted in different
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stages of the evolution of the heavy ion collision or the results obtained for
filtered events which can be produced only during characteristic and short
time intervals of the evolution process could bring some information about
s(D,t).

6. B-E tomography

In this section we shall deal with the set of events fulfilling condition (6)
—— transversal events. Analogously to Section 2. the longitudinal separation
of emission points does not have influence on the transversal correlation
function® now, but condition (6) is not so selective as condition (5). We
have a freedom in azimuthal direction of Ap; and the emission points lie in
the plane orthogonal to the beam direction (see Fig. 4). It is possible to
apply some further condition to have the same one-dimensional situation
like in the preceding sections. For example the condition

Aﬁt ) ﬁ(p > IAﬁt X ﬁtpl ’ (22)
where 7i, is a normalized vector orthogonal to the beam direction (see

Fig. 4), selects the pairs with relative momentum in the direction of vector
.
@

Fig.4 transversal
plane .,

)

beam

Fig. 4. The plane transversal to the beam direction and the vector # with direction
determined by the angle . For the central collision the zero angle direction can be
chosen randomly. For a non central collision an asymmetry in azimuthal direction
in the distributions of the produced particles [12] could be used to determine the
zero angle direction.

3 The correlation function for the transversal set of events.
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However, the cylindrical symmetry of the radiating volume in HIC,
at least for the central collisions, instigates us to try to gain the whole

two-dimensional information from C(Ap;). Let us define two-dimensional
distance spectrum as:

sw)= [ / FE)FEID - (21 - 2225 P2y, (23)

S (5) is the probability distribution of emission of the pair of particles from

the points at relative position 7 — &3 = D on the transversal plane. Then
for our transversal correlation function

C(Ap) = / f(Z1)f(£2) cos(Apy - AZ)d®Z1d% %> , (24)

we can write

C(AF) = / $(D)- cos(Ap, - D)d*D , (25)

what can be proven by inserting (23) into (25).
For a set of transversal events fulfilling the condition (22) specified by
the angle ¢ the correlation function is:

C(bpg) = [ [ 5(B)cos(as, - (By + Di)iDydD}
= / [/ S(I-)‘)dDj,'] cos(Ap, - D,)dD,
= / So(Dy) - cos(Ap, - D,)dD,,, (26)

where the index “1” describes the orthogonal and the index “p” parallel
direction to the vector #i. Thus by the inverse transformation (15) we can
obtain the projection S,(D) of the two-dimensional distance spectrum § (D)
to the direction determined by the angle . This can be done for any
direction, for example in 2° steps of our angle ¢.

From such a set of projections one can get the whole S(D) by Radon
Transformation which is used in tomography [13].

It is hard to imagine that this technique could be applied to the in-
terferometry experimental data in heavy ion collisions. However in the
future HIC experiments e.g. at LHC the multiplicities/event could allow
to do something close to the ideas presented here. For the final decision
whether this tomography method is eligible or not a careful and precise
estimate of statistical errors is necessary. Computer simulations of heavy
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ion collisions experiments seem to be the appropriate way how to get these
estimates. Both the subjects — the description of Radon Transformation
and the analysis of statistical errors — are not included in this paper.

One can imagine that the proposed two-dimensional tomographic me-
thod is applicable and even more, that a time dependent three-dimensional
distance spectrum can be somehow gained. The question arises: What could
we see from S(D) or S(D,t) ? The author thinks that it could be possible to
see some signatures of the phase transition in this kind of analysis. In cos-
mology the phase transition as the only explanation of the inhomogeneities
in the distribution of matter in universe is used. We can hope that the phase
transition in HIC could lead to the formation of the inhomogeneities — the
bubbles in the volume of the collision. These bubbles emitting particles
in a different strength than the surrounding medium could be seen in our
distance spectra.

7. Summary

We have studied the influence of the spatial distribution of a source on
the correlation function in a set of longitudinal (5) events. It was found,
that spatially complicated structure of the source can lead to oscillations of
the correlation function. It is shown that from the longitudinal correlation
function the distance spectrum of a source in the longitudinal direction can
be derived. The radius of the source, which is used to characterize the
longitudinal size of the collision volume is expressed as a simple integral of
the distance spectrum. Some technical aspects of the suggested method are
discussed. The problem of the time dependence of spatial distribution of a
source is also considered. An analogous method for transversal set of events
and the possibility to use the tomography method in this approach are
considered. The proposed technique could evoke some ideas how to enhance
the interferometry methods in the future heavy ion collisions experiments.
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