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The process of adjustment of local microdynamics to the spin rela-
tionships occurring from the lattice’s architecture of the system in con-
sideration, is of the main interest of the note. Qualitative arguments are
formulated to make this process responsible for the violation of the mean
field theory approach.

PACS numbers: 05.50.4+q, 05.70.Jk

1. Base for CA theory

One of the problems in the theory of cellular automata is to understand
how cellular automata can be meaningfully grouped according to their struc-
ture and behavior. The empirical fact coming from computer simulations,
such that cellular automata stabilize after many time steps seems to be the
best base for the research. However, in general, cellular automata with very
similar transition rules may behave quite differently, while cellular automata
with very different transition rules may behave identically.

So far, two classification schemes, considered to be quite general have
been proposed. Each of these schemes attempts to divide cellular automata
into distinct classes.

The first scheme, formulated by Wolfram {1] and further developed
by Stauffer et al. [2, 3] determines classes via qualitative features of the final
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states of a lattice. Roughly speaking, automata are classified according to
their long time effect to a lattice pattern.

The second scheme — the generalized mean field approach, proposed
by Gutowitz and Victor [4, 5], provides the classification according to CA
action on probability measures. The probability measure 7u resulting from
the application of a CA rule  to a probability measure yu is given

Tu(A) = p(r71(4)),

where A is a p-measurable open set of configurations. Any measurable
open set of configurations can be represented as a union of sets known as
cylinder sets. Therefore, the action can be rewritten as an infinite system
of the following equations:

Prob**!(8) = Y §(r(B, b))Prob*(B), (1)
B

where the probability of a finite block b at time ¢ + 1 is the sum of the
probabilities at time ¢ of the possibly smallest blocks B which lead to the
block b under the rule 7. Therefore, knowing the probabilities of all B blocks
one gets probabilities of all b blocks at the next time step.

So that, the crucial point of the Markov classification lies in the ap-
proximation of the measure by, so-called, n-step Markov measures. n-step
Markov measure is an assignment of probability by a Markov process to n
-element block states (so-called n-step spatial memory).

Moreover, the maximum entropy assumption- which means here that
blocks are uniformly distributed all over the lattice, closes the infinite system
of equations (1). It opens the possibility to perform the iteration of the map
(1) an infinite number of times. Because of it, one can say that the range
over which a cell potentially interact becomes infinite. However, the results
obtained this way and the computer simulation results do not always overlap
as we see in the next sections. There exists microdynamics for which long-
range interactions cannot be replaced by the finite-range statistics.

The longtime behavior of CA comes from the simultaneous action of
the two kinds of interactions: the microscopic rule which is responsible for
the changes of a single automaton state with respect to the states of its
neighbors and the lattice architecture, which fixes the location of the cells
in space and specifies the neighborhood of each automaton.

The independence of CA simulations of the lattice symmetries is crucial
for a certain class of CA applications. It contains, for example, solving the
Navier-Stokes equation with CA lattice gases. It has been noted [6], that for
such a case the system at the macroscopic scale is isotropic when considered
on the triangular lattice. It means that the orientation with respect to the
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triangular lattice is irrelevant from the macroscopic point of view, although
it plays its role on the microscopic level. This observation is not true for the
case of the square lattice. The CA system with a similar microscopic rule
but considered on the square lattice does not exhibit isotrophic behavior.
Thus, it conserves the lattice symmetries.

Generally, one can say that if the lattice relationships vanish with time,
the mean theory is a good enough approximation to a system. However, if
the lattice interactions take over the CA dynamics the mean field tools fail.

How can we understand taking over the CA dynamics by lattice inter-
actions?

Let us concentrate on CA defined on a square lattice with deterministic
and homogeneously set some dynamical rule. Moreover, let the next time
step state of a spin be influenced by the states of its nearest neighbors. It
means that the state of four spins located North, West, South and East with
respect to a central spin site, as the whole unity, determines the value of
the central spin in the next evolution step. The only source of uncertainty
is via an initial lattice state prepared at random.

The complete presentation of experimental data coming from the com-
puter simulations of such CA is presented in [7]. It is noticed there that
among these systems one can find a great number of CA such that with
probability close to 1 they stabilize with some peculiar patterns. These
patterns are distinguishable from the sea of all possible patterns by the
following property: at any site of a lattice a rule can be read as the shift
of the state of the same located for the whole lattice nearest neighbor. It
means that the whole lattice state is conserved in time up to the shift by one
lattice step from one of the four lattice directions— South, East, North or
West. These states, named moving structures, have been noticed firstly
in [3]. In [9] there is described the other class of CA corresponding to the
moving structure stabilizing class of CA, members of which stabilize with
patterns on which the rule is performed as a shift connected with a spin flip
(so-called oscillating moving structures).

Concluding, due to the interactions between a CA rule and the lattice
relationships, a CA pattern is transferred during the evolution in such a
way that all local configurations on which a rule acts differently from some
globally chosen shift movement, vanish. It means that these states of neigh-
bors which do not yield the proper nearest neighbor state are not present at
final patterns of the moving structure type. Moreover, it was notified that
CA can be identified almost uniquely via the type of the absent neighbor-
hood states, [7, 8]. The analyses of the absent neighborhood states can be
done, for example, by considering the distribution of neighborhood states
on a lattice. Although this is a statistical tool, it is good enough in the
case of pointing at not present neighborhood states. Let us call these ab-
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sent neighborhood states as odd neighborhood states as their action
does not agree with the shift direction which is adjusted by the remaining
neighborhood states.

Applying this characterization to CA which do not reach final patters
as the moving structure, two new CA classes can be named. The first group
consists of CA for which distance from their final lattice states to the moving
structure is little, if one measures the distance in probability to find odd
neighborhood states on the lattice state. Moreover, this distance is often
slowly decreasing in time. The second group contains of CA for which the
distribution of neighborhood states stabilizes quickly, in less than few steps.
However, there is no visible sign that any neighborhood state will vanish.

The set of all neighborhood states consist of 16 elements, named here
6o ...015 (Fig. 1). These elements can be considered as the input blocks
in the Markov approximation. Furthermore, the corresponding action map-
pings (1) can be formulated and iterated, as follows:

Probi*!(4;) = 3 §(r(B,6;))Prob*(B)  (2)
o1
'] 02 . 03
B=(°w A‘;E )= 74,7555 8
95 oy

and according to maximum entropy assumption the following simplification
is made:

ON
Prob%(B) = Prob’( 9W0 e =
S

b 0
Prob!(6g) Prob*(6n| eg, ) Probt(6w| 991" ) Probt(6| Wo By (3
E w S

If the results of the action map on these blocks coincide with the ex-
perimental data- one can say that Markov approximation characterizes CA
in a satisfactory way. However, there are rules for which the maximum
entropy assumption fails very quickly. The lattice dependencies cause that
the particular blocks are not randomly distributed.

To see the process of lattice influence, we will analyses CA with rules
which are shifts of the South neighbor state in case of all neighborhood
states except one. Hence, the set of odd neighborhood states with respect
to a considered rule will consist of one element only at each case.
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Fig. 1 is to introduce the neighborhood states notation as well as to
fix two standard ways of grouping them. They are listed there, firstly, in
pairs according to the up-down spin-symmetry, and secondly, in mean-field
sets which joins neighborhood states for which the total sum of states is the
same.

The statistics of the data for distribution of neighborhood states in fi-
nal lattice states which were obtained in our computer experiments and
the results which come from the iteration of a dynamical mapping in the
Markovian approximation (2) (3) for all rules having as one odd neighbor-
hood state : fg, ...,0,5 are presented in Table L

The size of the lattice in our simulations was taken as L = 96. One
can read this size as little. However, thanks to its not large value, the
desired effects could be seen quickly. Our earlier works on CA ensure us
that properties examined by us are size independent [9]. In particular, to see
the independence one may compare the number of steps in CA evolution
to reach the moving structure stabilization which represents time of CA
evolution, with the lattice size.

2. Local rule versus lattice architecture

Each of the four nearest neighbor configurations, which defines the
neighborhood state for a central spin, effects the central spin state in the
next time step. This action can be interpreted as overtaking the state of one
neighbor by the central spin. Therefore, one can talk about the shift (anti
shift, if the flip of a spin state is associated with the action) of a neighboring
spin state. Although pointing at one particular direction is impossible in
case of a single spin evolution, but spreading this interpretations to two,
three, four, ... neighboring spins, one can settle rather restricted set of
active shift directions for any dynamics. This is the reason to understand
the spin state changes as seeds of lattice regions which are shifted as a whole
unities towards one direction. The area of the particular shifted region is
larger if more probable are neighborhood states which support via the CA
rule this shift. The pressure of the common shift is so high that neighbor-
hood states which act against it (odd neighborhood states) are transferred
into suitable ones.

To elucidate the process of decaying of odd neighborhood states let us
consider the following extreme situation: only a spin at an ¢th node is in the
odd neighborhood state, while all other spins have the proper neighborhood
states. So, all spins but not the ith, take the state of the South nearest
neighbor, while the ith spin takes the opposite the South neighbor state,
see Fig. 2. In the next time step, ¢ + 1, the odd neighborhood state will
become the proper one. So, the original odd neighborhood state disappears.
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However, the perturbation of the lattice caused by flipping og spin state
makes possible reconstruction of the odd neighborhood state, if only the
odd neighborhood state has the following property:

() I

OF = ON,
ow = —0g,

then at the right side of an ith node (marked R in Fig. 2), the following
neighborhood states: 83, 84, 617 and 0,2 can appear.
(i) If

OF = —0g,

oW =O0ON,

then at the left side of an ith node (marked L in Fig. 2), the following
neighborhood states: 6;, 84, 617 and 614 can appear.
(ii) If
ON = —0g,

then at the bottom side of an ith node (marked B in Fig. 2), the fol-

lowing neighborhood states: 83, 04, 05, 67, 03, 610, 611 and 012 can

appear.

The list of possible to reconstruct neighborhood states does not contain
the following ones: 0y, 6¢, 09 and 615. These four neighborhood states will
vanish with probability close to 1 at the first time step.

Next case to consider is the rule with #;; being the odd neighborhood
state. Let us notice that the neighborhood state 633 can survive on a lattice
at all listed possibilities. The joint probability to reconstruct this neighbor-
hood state at the first step when states of spins are scattered at random on
a lattice, is /s (Prob®{o; = 1} = Prob’{o; = -1} = /). Let us have a
look at the properties of the distribution of neighborhood states for this rule
listed in table 1. The results of computer simulations and iteration in this
case exhibit rather large discrepancy. The statistical predictions provide
the large number of spins having 615 neighborhood state and not vanishing
number of spins having #1; neighborhood state while the reality, expressed
by data from computer experiments, gives the rigid South shifted moving
structure in all 100 experiments and almost complete magnetization with
all spins up of the each final lattice state (in 79 experiments the magneti-
zation was complete). To explain this fact, let us look again at the process
of transferring of neighborhood states. According to the dynamical rule 61,
transfers into 65, however it itself can be found at the left, right or bottom
of its old place. Moreover, 635 does not build in any active (=changed by
611) lattice configuration. It means that 6;5 cannot be changed by this
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rule. So, at each time step new spins from the lattice have 65 neighbor-
hood state. Moreover, ;5 states crates in this process side by side making
the increase of clusters with all spins up. Therefore, after few steps the
lattice state looks like islands of all spins up surrounded by spins with re-
main neighborhood states. At each time step these islands are enlarged if
only any spin with 0y, state is at their borders. The increase of #;5 regions
makes squeeze of the region for other possibilities. So that, the assumption
on random distribution of neighborhood states is broken. The probability
that 6,, is involved in configuration with +1 around is bigger than it comes
from the statistics. Therefore, configurations providing the increase of 61
states, (as it happens while iterating) are less probable on the real lattice
and spins with 6, neighborhood state are not present.

The remaining neighborhood states, depending on to which “recovery
case” (i), (ii) or (iii) they belong to, could be reconstructed on the lattice.
However, the probability to find them after first time step when the lattice
is prepared at random is /4 in both cases (i) and (%), and /s when (%) is
considered.

Generally, all these rules provide the experimental results overlapping
the iteration predictions (within the STD-error interval), (see Table I).
Moreover, all CA with these rules reach the moving structure stabiliza-
tion in few steps. During such a short period, the assumption on random
scattered blocks (maximum entropy assumption) is fulfilled and the statis-
tical predictions characterize the system faithfully. Especially, existing if
the geometrical relation between particular rules - £ 7 disturbance to the
South shift, in case of dynamics with s and ;¢ as the odd neighborhood
state, as well as #;, and ;4 as the odd neighborhood states, can be exactly
found by comparing the distribution of corresponding neighborhood states,
(see Table I for the neighborhood correspondence). The case of CA patterns
obtained after the evolution governed by rules with 63 or 819 odd neighbor-
hood state is additionally interested by the fact that it involves up-down
symmetry, also. This extra symmetry origins from the global rule prefer-
ence for up spin state in case of the first rule and down spin state when the
second rule is considered. This global feature is expressed via the number
of neighborhood states resulting up. The rule with 05 as the odd state has 7
of 16 neighborhood states giving up spin state while the rule with 8¢ as the
odd state, provides 9. Since the number of neighborhood states resulting
up is the same when rules with 6, and 8,4 as the odd neighborhood states
are considered, and equals to 7, the equivalence of neighborhood states in
this case does not mix states belonging to up-down symmetric domains.



...Square Lattice of Spins 1019
3. Closing remarks

If the rule considered on CA does not point at the shift direction as ev-
idently as it occurred in the examples of the previous section, (two, three,...
odd neighborhood states) the problem of choosing the common shift direc-
tion complicates. Therefore, while closing we want to some give some hints
about the mechanism of designation of the global shift direction for general
CA and for the complete explanation of this problem one can search in [7].
The main role in stating the global shift is played by properties of a local
rule while its action is considered with respect to the neighborhood states
belonging to the mean-field sets B or B’ (see Fig. 1) of neighborhood states.

Roughly speaking, if a rule restricted to any of these set of states means
a shift, then the more popular shift direction, either B or B’ direction,
becomes the global shift. The support to the level of popularity comes first
of all from the global voting property of a local rule. It means that if a rule
yields more up spin states than down, then the B’ shift. direction is leading
and reverse. In case, when there is no preference by a rule in a spin state,
then the less number of odd neighborhood states makes the popularity of a
shift higher. However, if there is still “equivalence” between shifts, a lattice
reaches the state satisfying both shifts.

In case when a rule neither on B nor B' states is a shift, then there
are more than two lattice simple shifts that must be taken into account. As
the result of variety of movements these rules could produce very regular
patterns consisting of one, two or three neighborhood states only.
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