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A model of microdomain growth in three-dimensional systems like
metals or ceramics is adapted to describe the growth kinetics and structure
formation in competitive mass exchanging systems like biomembranes, lig-
uid crystalline materials or polymers. The theory proposed assumes that
the material in question can be partitioned into pieces (microdomains,
clusters, grains) and concerns with modelling of the growth process in a
time-dependent regime (i.e., when the so-called long tail kinetics is intro-
duced). As a result, power and logarithmic laws of the average radius of
the growing domain against time are obtained and some other probabilis-
tic characteristics of the process are analyzed. An extension to disruption
or defect processes in biosystems is presented. The approach developed
can serve to elucidate some experimental results got e.g. for multilamellar
lipid bilayers which till now are exclusively interpreted in terms of the
Kolmogorov—Avrami model.
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1. Introduction

Many different growth and structure formation processes have care-
fully been studied in recent years by physicists, materials scientists as well
as by technologists (cf. , [1, 2] and references therein). The normal grain
growth, till now related preferably to metallic and ceramic materials [3-5]
may stand for a proper example of the microdomain growth in which both
competition of the grain population within the system as well as complex-
ity of it are permanently observed. Till now, this phenomenon has mostly
been modelled by means of computer simulations using the Monte Carlo
technique (¢f. [5]) and by providing an analytical description based on a
diffusion-type equation for evolution of the grain (domain) population when
fluctuations of the grain boundary are imposed on the system. One may
find some other descriptions of this process, e.g. the mechanism of reduc-
tion of the grain boundary energy [6] or very recent modelling based on the
Voronoi tessalation concept [7, 8]. Since the systems described are inter-
acting systems of grains it seems to be quite natural that such modelling
could also be applied to more complicated physical situations. Namely,
we think of the growth and/or some disruption (in particular defect) pro-
cesses occurring in agglomerates understood here as objects made of smaller
subunites which are somehow glued together strongly enough to keep the
structure as a whole. Examples of such agglomerates are model biomem-
branes or bilayers (treated as three-dimensional objects) being the systems
of lipid domains (grains, clusters) which may interact with each other [9].
Because, however, these complex diffusion-relaxation or diffusion-reaction
[10] systems are recently understood in terms of the so-called long tail or
fractal kinetics {11, 12], therefore a certain modification within the classical
description is needed just for better reflection of the cooperative kinetic be-
haviour of those systems (cf. [13] and references therein). In this work we
wish to describe two kinds of growing processes: a purely growth process
which does not lead to creation of a final structure (unlimited growth) and a
growth process which leads to the structure formation (limited growth). In
Section 2 we briefly sketch a model of the normal grain growth of materials
introduced by Mulheran and Harding [4, 5]. Next, we modify this model
in order to adapt it for a description of anomalous kinetic behaviour of the
“soft matter” system [12, 14] and microstructure (pattern) formation [8]. In
Section 3, analysis of the model is carried out. The last Section 4 contains
final remarks.
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2. Description of the domain growth kinetics in agglomerates
like biomembranes or liquid crystalline materials

There are two main theories of the normal grain growth with differ-
ing mechanisms driving the growth, i.e. caused by the surface tension of
the curved boundaries [6] and caused by random fluctuations of the grain
boundaries (it is named the random walk model) [4, 5]. In the latter case,
the mechanism for the growth is the migration of particles across the bound-
aries. Individual atoms (or rather clusters of atoms) move from one grain
to its neighbour changing grains volume and only surface atoms take part
in the process. So, grains grow by gaining or losing atoms and if any grain
shrinks to zero size then it cannot re-nucleate and is lost for ever. The
second mechanism is correct when the grain boundary energy is negligible
in comparison to the thermal energy of the boundary atoms and this is the
case when the thermal fluctuations are important for the growth kinetics. In
this theory, the spatio-temporal evolution of the system consisting of grains
of volume v is represented by the following equation of diffusion type [4, 5],

8 02
52 F(0,8) = 55 [D(0,)f(v, 1)}, (1)

where f(v,t) is the distribution function of grains of volume v at time ¢
(a number of grains of volume v). The diffusion coefficient D(v,t) has to
reflect the fact that the net flux of the migrating particles is proportional
to the surface of an individual grain [5],

D(v,t) ~ v?/3, (2)

Notice that this term represents the scaling of the number of available sur-
face sites (atoms) with grain volume (the basic ideas of the scaling concept
can be found e.g. in [15]). One can prescribe the boundary conditions as
follows [5]

f(O,t):f(oo,t):O, (3)

which means that: no new grain may nucleate when a certain one is shrunk
to size zero and no single grain has to dominate the structure as a whole. A
more careful and detailed presentation of the aforementioned approach can
be found elsewhere [4, 5, 16]. Phenomena described by the formalism are
kinetic, which mostly relies on exchanging individual atoms or molecules
among grains (microdomains, clusters) , so a certain grain can grow or
shrink in its size simply by gaining or losing atoms or molecules. The afore
presented formalism can be adapted to the description of such phenomena as
growth, structure formation or even disruption in biomembranes, ¢f. Fig. 1.
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Fig. 1. Sketch of a possible realization of the growth process: (A) at the early

stage of evolution; (B) for “long” times. In the case of unlimited growth, the

growing process is still continued. In the case of limited growth, the situation in

(B) corresponds to the final structure (a limiting state of the system).

In biosystems or in “soft matter” systems like biomembranes, the co-
operative structural changes in lipid bilayer membranes can be associated
with either the growth of lipid domains or with some kind of disruption
(defection, lysis, phase separation) of the membrane material (or a part of
it) caused by certain species like proteins, anaesthetics, impurities, etc. [9].
Both are closely connected to the strength of interactions in the system
which are in general the lipid-protein interactions [9]. We know [12] that if
the biological process involves diffusion of proteins within the lipid matrix
and the protein thermodynamically prefers certain lipid domains then the
size of these domains and their lifetime are of great importance. It can lead
to the fractal reaction kinetics of the process and cannot be understood in
classical reaction-kinetic terms [12]. To be more concrete let us recall the
gel-to-liquid crystalline phase transformation of some multilamellar lipid-
bilayers [17] or the defect process of lipid model membranes, i.e., the fluid
mosaic model of the structure of biomembrane due to Singer and Nicolson
or formation of liposomes [9]. The latter can be done on the basis of cer-
tain experimental [18, 19] and theoretical [20] studies of the defect process
in model phospholipid membranes (for review see also [13] and references
therein) where interactions between melittin and some lipid molecules cause
the formation of defects in the bilayer. These defects result from the fact
that each group of lipids within the range of action of a protein molecule,
which also likely tends to diffuse in the lipid environment, constitutes a
domain with different thermodynamic and structural properties compared
to the nonaffected lipids. Defects would emerge at the interfaces between
the affected domains and the nonaffected surroundings resulting in a desta-
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bilization of the gel phase of the lipid bilayer [19]. In such systems also
another kind of disruption may take place like lysis, phase separation or
even gel-to-liquid crystalline phase transformation {21, 14]. Under these
physical circumstances, however, the system in question tends to fall into
pieces, separated subunits or subdomains and for long times a limiting sta-
tionary state is eventually reached [18]. An example of how the small helical
polypeptides poison a lipid bilayer structure is carefully studied in [18] for
states close to equilibrium. In this case, a possible scenario of the structure
formation is roughly sketched. The main conclusion which comes from the
investigation is that the whole defect process would lead to the formation
of a “frozen” or “static” essentially time-independent structure of the poi-
soned piece of material. Just for encountering those observations that, in
general, seem to be rather quite time-sensitive, we assume that the diffusion
function D(v,t) is of the form

v2/3
D(v,t) = Com, k>0, (4)

where Cj is a positive constant (it ensures correct units). The v-dependence
of D(v,t) follows from the same arguments as leading to the relation (2).
The explicit dependence of the diffusion function (4) on time might have its
origin in the random nature of growth or disruption (fragmentation) pro-
cesses: mass of microdomains changes stochastically in time due to random
attachment or detachment of molecules or atoms (or adsorption-desorption
processes [22] at the grain boundary). In particular, the exponent h might
be related to probabilistic characteristics of a model put on the migration
process across domain boundaries just as it has been justificated in two
Refs [23, 24] for other kinds of processes. In general, it could be related to
the spectral dimension of the process studied (e.g., when chemical reaction
is taken into account; c¢f. batch reactions described by [25, 26]).

3. Analysis of the model

Our model is based on the random walk model (1) with the diffusion
function (4) and with the boundary conditions (3). This model can be
solved exactly with the result

7 —gut/3
F(v,t) = Av'/3a~7/4(t) exp (m) ) (5)
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where A is a constant which takes into account normalization of the distri-
bution function f(v,t) and

Qitlli-;—h_—l for 0<h<1,
a(t) = { In(1 +¢) for h=1, (6)

_ h—1
1-1 l_'tt for h>1.

Now, let us present the first three moments (v™(t)) of the process for
n = 0,1,2. The zero-moment, (v%(t)), is equivalent to the number of mi-
crodomains in the system and for long times it has the asymptotics

(2°(1)) & a73/4(2). (7)

The first moment, (v(t)), is a total volume of all microdomains and is

constant,
(v1(t)) = V = const. (8)

From this equation one can calculate the constant 4 in (5) which is propor-

tional to V,
1/4
A= ( 9 ) v_. 9)
16Co I'(3)

The second moment, (v%(t)), behaves asymptotically as

(v2(8)) o a¥/2(2). (10)

The most important physical characteristics of the process is the mean ra-
dius ray(t) of the microdomains defined by the relation

Vo (2°(2))r3, (t) (11)
and asymptotically r,y(t) behaves as
rav(t) o al/4(2). (12)

From the relations (6) it follows that one should distinguish two cases.
Namely, the case which represents a pure growth of the agglomerate, z.e.
a dynamic case, for h € [0,1], and the case of limited growth for A > 1.
As to the first case, we can distinguish three interesting types of behaviour
of the system. Namely, for h = 0 one gets the classical behaviour of the
Mulheran and Harding model which was successfully applied to the normal
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grain growth in metals and ceramics. This may also be a sub-case reflecting
the growth of unaffected domains. The next sub-case,

Pav(t) o tO—R)/4 (13)

where 0 < h < 1, would still be responsible for the growth of unaffected do-
mains or grains, but then the growth is slower because of some more subtle
and “time-consuming” effects as e.g. interactions, pH-changes of the envi-
ronment, water penetration, diffusion of proteins or convection of clusters,
chemical reactions at boundaries, etc. [9, 27, 28]. Note that these two sub-
cases differ substantially from the “conventional” case ray(t) o t1/? and
which is also valid for one-dimensional systems because then the normal
grain growth process is represented by the standard diffusion equation with
a constant diffusion function (cf. , [29, 30] for details). The last sub-case
(h = 1) is given separately by

rav(t) o In'/4(2). (14)
As to the second case (h > 1), one can observe that
rav(t) — const. as t— o0 (15)

which means that microdomains stop to grow! It may be interpreted as a
formation of structures ( frozen or “static” ones). It is worth to stress that in
the case of unlimited growth, the volume fluctuations (v(¢)) — (v1(¢))? grow
with increasing time as it is expected (see Eqs (10) and (8)). In the case
of limited growth, in turn, the volume fluctuations saturate for a limiting
stationary state. It is another supporting argument for the formation of a
stable final structure like that obtained e.g. in the experimental work [18].
Let us also repeat once more that our model is purely kinetic and has no
microscopic details of the process included. Some speculations concerning
more detailed mechanisms of the growth or fragmentation process could be
done by e.g. more careful analysis of values of the exponent h [25, 26, 31],
but it seems to be beyond the scope of this paper.

4. Final remarks

Let us first summarize the results obtained in the paper. Namely, in
Section 2 we have presented the description of the grain growth kinetics in
agglomerates (biomembranes or liquid crystalline materials) that is based
on the model of normal grain growth (cf. , [4, 5]). The basic extension
relies on the modification of the diffusion function D(v,t) given by Eq. (4).
It has serious physically interesting consequences which lead to broader
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as well as more accurate description of many types of growth and structure
formation phenomena not necessary being limited to the growth of ceramics
or metallic materials. Experimental examples concerning the growth and
pattern formation processes are reported elsewhere (cf. [9, 21, 17| and
references therein). Looking at the results revealed in Section 3, it is clear
that the formalism proposed can be applied for the description of not only
the pure (unlimited) growth process in materials in a more “subtle” way (at
least, the logarithmic sub-case of A = 1 can be mentioned here), but also
the limited growth process (some kind of structure formation) represented
by the sub-case of h > 1 (for details, see Eq. (6)) which, in general, may
likely occur in biomaterials or “soft matter” systems [28, 32, 13].

Let us also make here a general comment to the situation that we
studied. Namely, we are of the opinion that Eq. (1) with an adequately
chosen function D(v,t) could even be accepted as a generalization of the
phenomenological Avrami (or Kolmogorov—Avrami) equation {33, 17)

d dv,
ZF(t) = N1 - F(t) ==, (16)

where N is a number of randomly distributed nuclei per unit volume each
of which will grow to a volume V,, at time ¢, and F(t) is a time-dependent
fractional completion of a sample transformed to a new phase {17, 33] (¢f. ,
(16] for a critical discussion). It may probably provide an interesting expla-
nation for understanding the phase transformations in lipid bilayers {model
lipid membranes) which follow classical kinetics but with small fractional
dimensionalities [21]. Such results, but based on more realistic physical
foundations (e.g., that the number of lipid domains is never constant dur-
ing the transformation process), can easily be recovered by means of the
description presented above. Moreover, it can be believed that some subtle
effects like e.g. lipid-lipid interactions or presence of other molecules (e.g.,
mobile or immobile proteins or even anaesthetics) and their influence on the
behaviour of the whole system, etc., are possible to be accommodated in
Eq. (1), especially when performing a reasonable modification of the formal-
ism due to Mulheran and Harding (which is sketched above). This can at
least elucidate some discrepancies between the values measured and those
which may be obtained on the basis of the simple Avrami model [21]. Note
also that both descriptions, i.e. done by Eq. (1) and by Avrami equation,
are here of interest in the regime of the interface-controlled growth (cf. ,
[34], especially Chap. 5) represented in this model by the function D(v,t)
in Eq. (1).

An important problem, which is associated to the modelling of the pro-
cess under investigation, is related to the microscopic justification (from the
“first principles”) of the form of the diffusion function D(wv,t), in particular,



Description of Microdomain Growth ... 1029

determination of the value of h-exponent. We hope that the problem will
attract future attention.
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