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Diffusion and reaction of a foreign gas in a carrier gas is studied in a
hydrodynamic regime by means of the Bolizmann-Lorentz equation. It is
assumed that the reaction is relatively slow and can be treated as a per-
turbation. The hydrodynamic regime of the kinetic equation is derived
with the use of the Resibois perturbative method. The diffusion coefficient
and reaction rate constant are calculated in the third order approxima-
tion. The coefficients contain nonequilibrium corrections resulting from
the deformation of the distribution function by chemical reaction. The
nonequilibrium effect of thermally activated chemical reaction is calcu-
lated for models of reactive hard spheres. This influence can be significant
if molecules of the foreign gas are much lighter than those of the carrier
gas.

PACS numbers: 05.20.Dd, 82.20.Db

1. Introduction

It is well known that hydrodynamics of transfer processes and chemical
kinetics of bimolecular reactions can be founded on the kinetic theory [1, 2].
As a classical result of the linear nonequilibrium thermodynamics (3], the
Curie principle excludes the possibility of coupling of chemical reaction and
transport processes, in the sense that linear transport coefficients are not
affected by chemical reactions. This conclusion is not valid beyond the linear
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approximation. The transport coefficients for some most simple systems,
like dilute gaseous mixtures, can be calculated theoretically. It is shown
in this paper that the kinetic theory of gases provides also a possibility
to calculate the cross effects between chemical and transfer processes in
reactive gaseous systems.

The nonequilibrium effects associated with chemical reactions in gas
phase have attracted a research interest for over four decades [4-7]). Most of
these studies were concerned with nonequilibrium contributions to the rate
constant of chemical reaction in a spatially homogeneous gaseous system. If
the chemical process is relatively slow and the reaction can be treated as a
perturbation, the well-known Chapman-Enskog method [1] can provide the
normal solution of the appropriate Boltzmann equation. The corrections
to the reaction rate are obtained from the second order approximation of
the normal solution. It has been also demonstrated [6a] that this level
of approximation does not predict the interaction of chemical reaction and
transfer processes. Popielawski [8], and Cukrowski and Popielawski [9a] have
shown that the correction to the viscosity coefficient in chemically reactive
system can be obtained from the third order (Burnett) approximation of the
normal solution. Such effects have been also calculated from the solution of
the Boltzmann equation by the moments method [10, 11]. The modification
of the Chapman-Enskog method has been recently presented [12] as an
attempt to include also fast chemical processes. For intensively reactive
systems this approach leads to the results essentially equivalent to that of
the moment method [11, 12], but it does not extend the standard method
in case of slow reactions. On the other hand, the results of the moments
method and the standard Chapman—-Enskog method have been found not
completely coinciding [9b].

Following previous work on the quasi three-component system [13], this
paper is a study of diffusion of a reactive foreign gas A in a thermalizing
carrier gas C, so that the concentrations satisfy the condition

ng < ne. (1)

Both species are involved in an irreversible chemical reaction A + C, the
products of which can be neglected because of their low concentration. For
this specific system the kinetic equations can be reduced to the single linear
Boltzmann-Lorentz equation for the distribution function of the inhomo-
geneous, trace component. This presents an evident advantage over the
regular nonlinear Boltzmann equation. For linear(ized) kinetic equations
Resibois [14] developed the appealing method of derivation of the linear
transport coefficients, which adopts the perturbation technique of quantum
theory. It provides results equivalent to the Chapman-Enskog method, but
is more convenient and transparent in calculations. In the present paper
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the Resibois method is applied to calculate the rate coefficient of the chem-
ical and transfer processes, including corrections induced by the chemical
reaction.

In the following section the kinetic equation for the considered system
is transformed to the form appropriate for use of the Resibois method. The
perturbation solution in the hydrodynamic regime is presented in Section 3.
In the subsequent section, the general expression for the diffusion coefficient
and the reaction rate constant is extracted from this result. It is shown that
the standard Chapman-Enskog formula for the diffusion coeflicient is ob-
tained from the second order perturbation solution, while the corresponding
correction due to chemical reaction appears only in the next order approxi-
mation. As a numerical example, in Section 5 the effect of chemical reaction
on the diffusion coeflicient and reaction rate is calculated for two models of
reactive hard spheres.

2. Kinetic equation

The distribution function f(r,v,t) of position r and velocity v of molec-
ules of the foreign gas A at time ¢ satisfies the modified Boltzmann-Lorentz
equation [2]

of of

36 TV 5, = I+ R, (2)

where J(f) is the Boltzmann-Lorentz term for collisions with the total
(elastic and reactive) cross section do

55 = [ (£78) - 158) 10 - vc | dadue, 3)

and R(f) represents the correction due to the reactive collisions with the
cross section do*

R(f) = _/f'f,g(°) |0~ vg | do*dve . (4)

In Eqgs (3), (4) the primed distribution functions are calculated for postcol-

lisional velocities, and fc(,o) denotes the Maxwellian velocity distribution of
species C' at temperature T

(0) _ me \3/2 _mcvg)
16" ve) = ne (5557 e"p( 26T ) (5)

Above, mc denotes the mass of a molecule C, and k is the Boltzmann
constant. (We try to simplify notation by omitting the subscript “A” for
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symbols referring to the species A.) Because of condition (1), the elastic
collisions A — A have been neglected in Eq. (2).

It is worth to note that the kinetic equation (2) is presented in a some-
what different form than it was introduced in the well-known previous stud-
ies [5-7]. The Boltzmann collisional integral J is usually calculated only
for the cross section of elastic scattering. However, this differs from the
corresponding cross section of the nonreactive system, because reaction is
introduced in such a way that a part of elastic collisions are switched to
become reactive. Consequently, it is the total cross section that is equal to
the cross section of the original nonreactive system. Therefore, to obtain the
collisional term of the same form as for the nonreactive system, in Eq. (3)
the operator J has been appropriately complimented to account for the to-
tal cross section. This transformation results in modification of the reactive
term R, which in the form of Eq. (4) constitutes the actual perturbation of
the nonreactive system.

It is assumed that the inhomogeneous distribution function depends
only on one spatial variable, f(r,v,t = 0) = f(z,v,t = 0). The collision
and reaction operators, (3) and (4) respectively, retain this symmetry of the
distribution. In this case, applying the Fourier transform to Eq. (2) yields
the following equation

%2 biguad = J(8) + R(9), (6)

where ¢ is the spatial Fourier transform of the distribution function which
with the above assumptions has the following form

(g, v,t) = /e—iqu(z, v, t)dz. (7

The macroscopic reaction-diffusion equation is recovered from Eq. (2) in
the hydrodynamic regime, in which the reaction is slow and the scale of the
spatial inhomogeneities is large (relative to the mean free path of the gas
molecules), and accordingly the wave vector ¢ in Eq. (6) is small. Under
these conditions, equation (6) can be treated as composed of the principal
kinetic equation for the homogeneous evolution of the velocity distribution

8¢
'5{ =J (d’) ’ (8)
and the perturbation @ formed by the reactive and convective terms
Q(¢) = R(¢) — iqu, 9. (9)

The collision operator (3) is self-adjoint for the suitably defined scalar prod-
uct of functions
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(x8) = [ (o)) x"(w)(o)do. (10)

Above, 1) is the equilibrium Maxwellian velocity distribution of A

02
wo(v) = () om0 (-5 ()

which is the only stationary solution of Eq. (8). The perturbation @ is
not exactly the self-adjoint operator because the convective term is anti-
Hermitian. However, the simple form of this non-hermicity allows to apply
the formalism for the Hermitian operators if the right and left eigenfunctions
are used.

The long time behaviour of the system in the hydrodynamic regime is
determined to large extent by the structure of the spectrum of the operator
of Eq. (6). For hard spheres, the spectrum of the isotropic part of the
nonperturbed collision operator (3) has been extensively studied [15, 16].
In particular, it is recognized that the eigenvalue Ay = 0 is well separated
from the rest of the spectrum, which is negative. This qualitative feature
should also remain for the perturbed system if only the eigenvalues are not
too strongly shifted by the perturbation (9) — that means slow chemical
reaction and soft spatial inhomogeneities. The basic perturbed eigenvalue
Ap is a small negative quantity, while the relative magnitudes of the other
eigenvalues are much greater, A} /Ay > 1 for i > 1. In the long time limit,
modes formed by the higher eigenfunctions (i > 1) decay, and the prevailing
contribution to the solution of perturbed equation (6) in the hydrodynamic
regime is provided by the perturbed eigenfunction ), associated with the
perturbed eigenvalue Aj. Hence, the hydrodynamic solution of Eq. (6) is

o(gq,v,t) ~ qué(q,v) exp(Agt), (12)

for t >| Ay — A} |7'~| A} |71, Since )} is a finite negative number, the
distribution function (12) steadily diminishes, because for the system with
irreversible reaction there is no real stationary state which could be ap-
proached. The decay of distribution (12) is related to the depletion of the
concentration of molecules

nglt) = [ 6dv = (wnlg) = Ny exp(Nt). (13)
The irreversible reaction consumes molecules A at the steady rate whatever

is their concentration. However, in the hydrodynamic mode (12) the shape
of the velocity distribution is determined by the perturbed eigenfunction vy
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and it remains stationary. As 1 depends on the variable ¢ of the Fourier
transform, it represents the distribution function f nonuniform in space.

3. Perturbation solution

The standard perturbation calculus can be applied to solve the equation
for the basic eigenfunction

(7 + Q)0 = Aotbo - (14)

The eigenfunction and eigenvalue are expanded in the series

vh=vo+ P P 4., (15)
Ay =g+ MM 4@ 4 (16)

where ¥,(") and A, are the j-th order perturbation contribution to ¥
and Ay, respectively. Equations for these corrections are obtained in a
usual manner by introducing expansions (15), (16) into Eq. (14) in which
the perturbation @ is treated as the first order term. The familiar solutions
for the contributions of the first three orders in the notation of this paper
can be presented as [13]

20D = (5o]Q (o)) (17)
2@ = (40lQI1Q(0)) , (18)
2 = ($olQIQTTIQW0)) - A (w0 | QI3 Q(WY) -  (19)

In the above equations overline denotes orthogonalization with respect to
the kernel of J, which in this case is generated only by

X = x — (%olx)%o - (20)

For the functions of the form (20) the inverse operator J~1! is well defined.

The eigenvalues can be expressed explicitly in terms of the reactive and
convective components of the perturbation operator @ of Eq. (9). In the
obtained expressions certain contributions vanish for symmetry reason. The
function (v¢ | is symmetric with respect to the inversion of v, and can pro-
duce finite terms only when combined in the scalar product with a function
of the same symmetry. The collision J and reaction R operators retain the
symmetry of the transformed function in the velocity space. Consequently,
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the convective component iqu, of the perturbation @ is the only factor of

A:,(j ) antisymmetric with respect to v,. Evidently, only the terms which
involve even number of the convective operators provide nonvanishing con-

tributions to /\a(j ). One then obtains the eigenvalues

A = (4ol R(0)) s (21)
33 = —(%ol BRI E(0)) + ¢ (tbolvad " (vathn)) , (22)
26 = (o RI T RITR(a)) — (ol B(0)){b| BT > E(¥0))

n q2 [—(’l,bolvzj—lsz_lm) - <¢0|sz_1RJ—l(vz¢0)>

~ (ol BT 0,7 (wa90)) + (ol B(%0))(tbolvad ~2(va0))] - (23)

Summing up Egs (21)—(23), the eigenvalue Aj in a third order approximation
can be written in the form

Ay = a— Dg?, (24)

where a and D contain the respective terms of Eqs (21)-(23), which do not
contain ¢ or are proportional to g2, respectively.
Using (24) in Eq. (14), the hydrodynamic regime of Eq. (6) can be
written as
3¢

E = (a - Dq2)¢. (25)

Introducing in (25) density n, with the use of Eq. (13), and taking the
inverse Fourier transform one obtains

2
g—r—lzan+Da n

51 527" (26)

4. Diffusion coefficient and reaction rate constant

Eq. (26) is the familiar reaction-diffusion equation. According to Eqgs
(21)-(24), the diffusion coefficient D is a sum of the second and third order
terms

D® = _ (g | v2d "} (vzt0)) (27)
D®) = (yolvgJ T RI "} (vz%0)) + (Yolvad "Fvad T R(%0))
+ (Yol RI 1 02d ~1(vat0)) — (%ol R(%0)){(%olvad 2 (vatho)) . (28)
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The term D(?) is exactly the standard Chapman-Enskog result [1] — the
effect of chemical reaction on diffusion is not predicted at this order of ap-
proximation. It is only the third order term which provides the correction to
diffusion coefficient induced by reaction. Expression (28) is rather involved,
but can be presented in a form more suitable for practical calculations. As
J and R are Hermitian operators, the second component of D(3) is trans-
formed as

(Yolvad ~vad T R(%o)) = (7 (vatbo)|vad T R(%0)) - (29)
Above term coincides with the third component of D) since
(Yol RT Y vzd ~1(vz40)) = (v ~* R(%0)|J ~* (v2¥0)) (30)

and the scalar product is symmetric for real functions. It is also useful to
put the other terms of D(3) in a more symmetric form

(olvad "' RI " (vetho)) = (I (vatpo) | RT  (v2tho)) » (31)

(Yolvad ~*(vzth0)) = (T 7 (v210)|T ™ (vz90)) - (32)

Egs (27), (28) are then conveniently expressed in terms of the functions
w(v) = ~J ' R(%o(v)), (33)
vax(v) = I (v2%0(v)) .- (34)

w and yx are isotropic functions of v, and represent the first order corrections
to the eigenfunction 1p. Using (29)—(34) the components of the diffusion
coefficient can be written in the form
D = Dop = ~§(%olv’x), (35)
D) = —Hwlo’x) + (vax|B(vaX)) = F(WolR(Yo))(xlv*x) - (36)

Similarly, the reaction rate a consists of three contributions of successive
orders

o = (yo|R(%)), (37)
o® = — (%o RT ' E(%0)) = —(to| R(w)), (38)
of®) = (40| RIT'RI=TR(0)) — (%o|R(%0)) (0| RI "> R(o))

= (w | R(w)) — ($o|R(sh0)){wlw) . (39)

The term a()) is a quasi-equilibrium reaction rate, calculated assuming the
Maxwellian distribution. The next order terms present the corrections due
to deformation of the equilibrium distribution [6, 7].
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5. Reaction-diffusion for models of reactive hard spheres

To calculate coefficients (35)—(39) for particular molecular model one
has to obtain w and x from the equations

J(w(v)) = —R(%o(v)), (40)
J(v2x(v)) = (v2tho(v)) - (41)

As in the standard manner of the Chapman—Enskog method, w and x are
assumed in the form of expansions

w(v) = %o (alsﬁj)z(cz) + a8 () +..) (42)
x(0) = g0 (oSN () + b1 N () +-.) (43)
where Sgp ) are the Sonine polynomials of the dimensionless velocity
2
2 MU
T (44)

Equations for the coefficients a, and b, are obtained by taking the scalar
products of Eqs (40), (41) with the appropriate Sonine polynomials. In
further calculations, expansions (42), (43) were confined to the first two
terms.

We apply the models of reactive hard spheres of diameters d4 and d¢
for the components A and C, respectively. It is convenient to express the
results in terms of the characteristic time scales related to the frequency of
elastic collisions

87rkT)1/2

()" = nodie ( (45)

and reactive collisions

(rr) ™! = nedic ( )1/2 sy exp(—¢), (46)

where ds¢c = (d4 +d¢)/2 is a the collisional diameter, and g = mmc¢/(m +
me) is a reduced mass. ¢ and sy denote respectively the dimensionless
activation energy and steric factor for reactive collisions, explained in more
detail below.

Eq. (41) does not involve chemical reaction and is the same as in the
Chapman-Enskog method [1]. The scalar products for the operator J are
calculated as the brackets in Ref. [1].

($oeSP ()T ($oeS D (c))) = — [e5P(c), e5P(?)]

8xkT

Ac’ (47)
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For hard spheres, the solution for x in the form (43) is known

bo = —3r, [Mc[l - McH]) Y, (48)
H
__3 4 4
br=-27s [Mc[l -MCH]] ’ (49)
where m me
My= —— Mg =—C°_ 50
A m+ me ) c m+ me ’ ( )
M

H= . (51)
30 — 44Mc + 27TMZ
Solution of Eq. (40) requires specification of a model of chemical reac-
tion. The reactive cross section involves the relative velocity of colliding
molecules :
g=v-—1vc. (52)

Two models are considered, in which reaction takes place with the probabil-
ity ss (steric factor) if the relative velocity satisfies the following condition:

Model I. The Prigogine model (4]

lgl>g". (53)
Model II. The line-of-centers model [5a]

e-g> g‘ > (54)

where e is the unit vector along the line connecting the centers of the re-
acting molecules at the instant of impact. The threshold relative velocity
g* determines the activation energy of the reaction which is defined in the

dimensionless form R
*

_ K9
€= T (55)

The coefficients of expansion (42) for both models can be presented in the
common form

; 77 2\ i 2 i

% = Gt (6 +1M2) B + 1M2E]] (56)
;s TiMc i ;

% = goear; 1B+ B (57)

where ¢ = I,II is the index of the model, and the coefficients for the re-
spective models are
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£
Ef =}+2+e,  Bl'=i+e, (58)
Bl=t4is2-0, Bf-lie-o (59)
and
G =5—6Mc+ TM3. (60)

The quasi-equilibrium reaction rate constant (37) for the above models
has the form

1) Eg
= 2 61
al TR b ( )
where

EOI_—I—{—s, E[{I:l. (62)

The lowest order correction to the reaction rate can be calculated by means
of Egs (38), (42) and (56), (57)

T7 m+m ; i ;
o = Iy (6 (B + ML + BD?) . (69)
TG
The relative correction to the reaction rate constant
(2)
a
- = 4

is presented in Fig. 1 as a function of the relative molecular mass M4, for
the activation energy ¢ = 1.5 . The results presented in Figures have been
calculated for a steric factor s; = 0.02 . The small value of sy has been
chosen in order to keep low the probability of reactive collision and ensure
that the obtained results remain in the range of validity of perturbative
solution. The dependence of 7 on the activation energy ¢ is plotted in
Fig. 2 for the mass M4 = 0.05, which lies in the range of M4 where the
effect is most significant. (¢f. Fig. 1)

In terms of the expanded functions (42), (43), the effect of the chemical
reaction on the diffusion coefficient, Eq. (36), is expressed in the following
form

(3) _ _ ifo i " (mMiE:
D = ~Dcpgai(2 - 10H) + 1063 H + AL (#?M2ES
+ HMo(2 - 11H)E} + (3 - 5H + 15H))E} - K,) |, (65)

where
Ef =343+ 21e? 1136% + 264,
EfT =3 4+ %c - 9¢% + 26, (66)
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Fig. 1. The relative correction 7 to the reaction rate constant as a function of the
relative molecular mass M4. The dimensionless activation energy ¢ = 1.5, and the

steric factor sy = 0.02.
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Fig. 2. The relative correction 7 to the reaction rate constant as a function of the
dimensionless activation energy e. The steric factor s; = 0.02 and the relative

molecular mass M4 = 0.05.
K; = (3 + HMo(5- 6Mc) + H*(15 - 30Mc + 112 M2 - 38M2))

X(2+ 26+ €%) + 2HMZe® (-1 + 28 H(1 - Mc) - HMc + He) , (67)
Kir=1+eHMc(1+ ¢+ 4¢?) + 4H?MZe3. (68)
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The diffusion coefficient of reactive gases can be obtained also by means
of the moment method [10, 11]. The result, when specified to the system
considered, has the following form in the notation of this paper (cf. Eqgs
(69), (70) of Ref. [11])

kg (eSg (o | (I + B)(cto))?
(c

" 2m (ST () | (7 + R)(ST ()

et | (7 + R)(ewo)) - (69)

It has been verified [10a, 11] that for a nonreactive system, R = 0, Eq. (69)
provides the proper result Dgog. The relative correction to the standard

diffusion coefficient

_D-Dgg _ DG

Dce DcEg
has been calculated for both models using Eqs.(65) and (69). Figure 3
presents v for the activation energy ¢ = 1 as a function of the relative
molecular mass M 4. In Figure 4 the correction ¥ for the molecular mass
M, = 0.05 is plotted vs. the activation energy e.

(70)

7

?

~
. AN
\
| i
| —— Model I Eq.(65)
- — — Model | Eq.(65) i
! - — Model I| Eq.{(69) |
- I' ------------ Model 1| Eq.(69) ‘:.._\
.
f i
-0.2 . e . ' . : . s
0.0 0.5 1.0

My

Fig. 3. The relative correction v to the diffusion coefficient, as a function of the
relative molecular mass M4. The dimensionless activation energy € = 1, and the
steric factor s; = 0.02.
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Fig. 4. The relative correction v to the diffusion coefficient, calculated by means of
Eq. (65), as a function of the dimensionless activation energy e. The steric factor
85 == 0.02 and the relative molecular mass M4 = 0.05.

6. Discussion

Both the correction to the reaction rate constant, Eq. (63), and to the
diffusion coefficient, Eq. (65), are obtained from the perturbative solution.
However, while the former results from the second order approximation, one
has to resort to the third order terms to calculate the latter. In this respect
the Resibois method offers some conveniences in solution of the Boltzmann~—
—Lorentz equation for the reactive foreign gas, because it allows simple for-
mal manipulations of the otherwise involved expressions.

Application of the perturbative solution inevitably entails a question
about limits of its validity. For the standard Chapman-Enskog method
it is well known that this problem is not precisely resolved. The Resibois
method, however, is a direct adaptation of a conventional quantum mechan-
ical perturbation calculus, and the range of its applicability is determined
by the standard requirement that a shift of eigenvalues by a perturbation is
relatively small compared to separations of eigenvalues. For hydrodynamic
solution (15), (16) this condition can be written as

F Ao |=] Ap || A1 ] - (71)

The eigenvalues \; for the hard spheres operator are known in the literature
(15], and the relation (71) can be explicitly evaluated. Since the wave vector
g can be infinitesimally small, condition (71) is effective only for the reactive
component of the perturbation. In particular, for the considered models it
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means that the steric factor sy is sufficiently small, and its limiting value
depends on the parameters M4 and e.

The nonequilibrium corrections to the rate coefficients of transfer and
chemical processes result from the deformation of the molecular velocity
distribution by the chemical reaction. While the chemical reactions mod-
eled by Eqs (53), (54) depress the high energy tail of the distribution by
removing preferably faster molecules, the elastic collisions tend to restore
the Maxwellian shape of the distribution. The point of balance of these both
processes determines the magnitude of demaxwellization. From this point
of view, presented in Figs 1, 3 dependence of the corrections on the relative
mass M4 is very instructive. The effect is most significant in the Lorentz
limit, M4 — 0, then rapidly decays and remains relatively small for inter-
mediate and small values of M 4. Such a slope can be explained as a result
of competition between the relaxation process and chemical reaction. If the
masses of molecules A and C differ substantially, the exchange of energy in
elastic A —C collisions is not effective. In more precise terms, times of elastic
relaxation of nonequilibrium modes are longest if molecular masses of the
species are disparate [15]. The mechanism of elastic scattering is then not
enough efficient to restore the equilibrium velocity distribution perturbed
by the chemical reaction. On the other hand however, the perturbation it-
self decays in the Brownian limit, M4 = 1. In this range the conditions for a
reactive collision, Eqs (53), (54), effectively does not depend on the velocity
v of the heavier molecule A. The probability of reaction in a single colli-
sion becomes a constant, independent of velocity. Depletion of molecules
by reaction is uniform, and the shape of the velocity distribution remains
nearly unperturbed. Consequently, the corrections remain small even in the
Brownian limit M4 — 1, despite weakening of relaxation processes. The
result of the moment method [10a, 11], Eq. (69), predicts dependence quite
contrary to that expected on the basis of the above qualitative arguments.

Both corrections exhibit extremes as the functions of the activation en-
ergy € , presented in Figs 2, 4. For the correction 7 the largest effect can be
observed around ¢ = 1.5, coinciding with the result obtained for a homo-
geneous system with the reaction A + A — products [7]. For higher ¢ the
correction tapers off, because the reactive collisions become less frequent.
On the other hand, for small values of ¢ the molecules are consumed rela-
tively more uniformly from the whole range of velocities and the deformation
of the molecular energy distribution is weaker.

Nonequilibrium effects related to chemical reaction are often explained
in terms of decrease of temperature of reactants [7, 17], caused by consump-
tion of highly energetic molecules by chemical process. Shizgal and Karplus
[6b,c] recognized this effect, which may be calculated as
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T'=T(1-a1), (72)

where T' is the effective temperature of reactant. In the simplest manner,
the modified rate coefficients can be calculated by introducing 7" into the
standard formulas for the reaction rate constant, Eq. (61), or diffusion coeffi-
cient, Eq. (35). This approach leads to satisfactory results for the correction
to the reaction rate {7, 17]. However, the result obtained in this way for
the diffusion coefficient provides different predictions than correction (65),
as can be checked by expansion for small a,.

The relative correction to diffusion coefficient calculated from Eq. (64)
becomes positive for higher values of M 4. This result seems somewhat odd,
but has been recently confirmed by computer simulations [18]. This issue
will be addressed in more detail in the forthcoming paper, which will present
a comparison between the analytical and numerical results.
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