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It is shown that the known instability of quadrature components of
electric field during squeezing corresponds to two kinds of Lyapunov in-
stability. One of them represents an instability of dynamics of averages
and the other reflects a fundamental instability of the operator valued tra-
Jjectories. The latter instability can be characterized by means of quantum
characteristic exponents. The main result of the paper is the derivation
of the correct Lyapunov exponent at the level of the Heisenberg picture.
This shows that the quantum exponents correctly characterize properties
of unstable dynamics of quantum observables.
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1. Introduction

It seems that a standard viewpoint concerning the status of chaos in
quantum theories can be summarized as follows.

In classical mechanics there exist systems whose evolution in a phase
space is nonlinear. For such systems, if additional nonintegrability condi-
tions are satisfied, two phase space trajectories

t— (qt), At)) (1)

that are initially close to each other can diverge in such a way that the
distance between them grows exponentially with time, the growth rate being
the so-called Lyapunov exponent.

In quantum theories evolution of states is unitary hence linear and con-
serves scalar products of states. It follows immediately that not only the
distance (generated by the norm of a Hilbert space) between two states
is conserved by such an evolution but also the dynamics is integrable and
quasi-periodic. Accordingly, on very general grounds no chaotic evolution of
quantum states is possible. This property of quantum theories is the main
difficulty in defining the notion of quantum chaos [1].

The situation is, in some respect, analogous to the problem of a quantum
description of classically nonlinear phenomena like, say, a second harmonic
generation, since their classical description involves a nonlinear evolution
in a phase space (in symplectic formulation of classical electrodynamics the
role of the canonical coordinates can be played by electric and magnetic
fields). Still, in spite of this there does exist an appropriate quantum de-
scription of the phenomenon, but the nonlinearity is transferred from states
to observables. (Notice that in classical mechanics canonical coordinates
can play the role of both of them and (1) can be regarded also as the trajec-
tory in the space of observables.) The Heisenberg equations of motion can
be nonlinear operator equations although a solution to them is, of course, a
one-parameter family of linear operators. It happens that this is a sufficient
condition for a proper quantum treatment of classically nonlinear processes
even though the evolution of states in nonlinear quantum optics is always
linear.

Motivated by this observation two of us proposed in [2, 3] definitions of
quantum Lyapunov exponents as a possible tool for investigation of stability
properties of operator equations. In the present paper we apply in Section 2
these notions to the fixed Hamiltonian system. Then, we apply our analysis
to a model describing the evolution of squeezed light in a nonlinear medium:.
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2. Hamiltonian system

Let us consider the system defined by the Hamiltonian
H = twala + z'h-'zi(a)‘2 -d?), (2)

describing a kind of a parametric amplification [4, 5]. Although the equa-
tions of motion remain here linear also in the Heisenberg picture, the system
will reveal a typical Lyapunov instability. Therefore, it can be utilized for
testing the meaning and correctness of the proposed definition of quantum
characteristic exponents (see also Section 3).

Time evolution of the annihilation and creation operators in the Heisen-
berg picture is given by

a(t) = (cosh 2t - i-}‘;- sinh 2t) a(0) + % sinh 2t ol (0), (3)
at(t) = (cosh nt+ i% sinh .Qt) at(O) + —;—; sinh 2t a(0), (4)

for w? < k%, where 2 = +v/k? — w2. For w? > &2 one has
a(t) = (cos 't - i%—,— sin .Q't) a(0) + —g; sin 2't at(O) , (5)

at(t) = (cos 't + i—;—,— sin .Q't) aT(O) + 5—,— sin 2't a(0), (6)

where 2! = +v/w? — k2,

Consider now the quadrature operators

Pa(t) = %(ei“ a(t) + == al (1)), (7)
Qult) = %(eia a(t) - e~ al (1)), 8)
satisfying the “Hamilton equations”
d,
ZaFalt) = —Qa(1), (9)
= -Qalt) = Pal?). (10)

Let us consider a coherent state a(0)|w) = w|w) and denote w = |wle®®.
From now on let us consider only the hyperbolic case (squeezing) w? < &2
(see also Section 3). We find
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(w|Pa(t)|lw) = [wl ( 1t (cos(a +60)+ —= sm(a +6)+ —= cos(a 0))
4ot (cos(a +6) - %sin(a +6) - % cos(a — 0))), (11)
(w|Qa(t)|w) = vl ( 1t (sm(a +60)- = cos(a +6)+ —= sm(a 0))

+e (sin(a +6)+ %cos(a +6) — —g—sin(a - 0))) . (12)

These formulas show that, depending on the sign of §2, one part of the
averages exponentially grows whereas the other asymptotically vanishes.
For example, the exponential growth of (w|P,(t)|w) does not occur for
2 > 0 if and only if

cos(a + 0) + -;—sin(a +0) + %cos(a -0)=0. (13)

A small change of either a or 6 leads to exponentially divergent trajectories.
Thus even without calculating any characteristic exponents we find here a
typical Lyapunov instability.

A standard method of describing the instability of squeezing quadra-
tures [7] is to replace the annihilation operators by their eigenvalues corre-
sponding to some coherent state. In this particular context this is justified
since the equations are linear and, as we have seen, the averages are evi-
dently unstable. This, semiclassical in nature, method can, of course, fail
if the Heisenberg equations of motion will be nonlinear operator equations,
as is often the case in nonlinear quantum optics. In such a case this kind of
substitution destroys important quantum characteristics encoded in the al-
gebraic relations between the annihilation and creation operators. It follows
that from this perspective some operator criterion for instability of operator
trajectories is essential. This role, as we shall demonstrate below, is played
by quantum Lyapunov exponents.

At this stage we shall consider three kinds of exponents, defined as

Mo = Jim 2inf(w) 222 @) = tim Zinl L (wlQa(®lw)], (14
- 2] 09
X = Jim 7la| Z(wlQa(®lw)]- (16)
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Exponents of the form (14) and (15) were proposed in {2]; equation (16) is
just a classical Lyapunov exponent applied to the trajectory

t - (w|Qa(t)w). (17)

The three exponents have different meanings. Quantities Ay ., and A, are
notions characterizing the stability of solutions of the Heisenberg equations
of motion with respect to changes of parameters in observables. Moreover,
since |w) is a-independent the exponent Ay, is simultaneously a classical
exponent characterizing the stability with respect to a of the dynamics
(17). Exponent ), is not capable of detecting any instability with respect
to modifications of states but is a purely operator criterion on existence of
trajectories that are unstable with respect to changes of initial conditions in
the Heisenberg equations of motion. Indeed, since the norm of an operator is
physically a maximal average of the observable represented by this operator
it follows that a positivity of A, indicates an existence of a state whose
corresponding trajectory (17) is unstable. The third exponent Ay measures
the stability of the trajectory (17) with respect to modifications of states.
A simple calculation shows that

’\a,w =dp=1 (18)

for £2 > 0 and

for 2 < 0 unless A\q,, = Ag = —00 which may occur if the conditions of
the form (13) are satisfied. The unboundedness of Q(t) and P,(t) makes
however A, = oo, which shows that a straightforward application of the
norm version of the exponent does not lead here to a proper characterization
of the instability (this difficulty will be always present if a derivative of an
operator is unbounded). In this case we have to consider a modification of
Aa- We shall consider two possibilities.

In the first place we can use the freedom present in the definition of the
quantum Lyapunov exponent given in [2] where one considers a directional
derivative in some direction in a Banach space of linear operators. Since

Qa(t) = (cosh 0t — —% cos 2a sinh ﬂt) Qa(0)

w K .
+ (-E sinh 2t + psin 2a sinh .Qt) P,(0)

:Qa(t, Qa(o)a Pa(o)) ’ (20)

we can differentiate Q4 (£, Q(0), P«(0)) in a direction E Qo (0) E, where E
is some projector cutting off the spectrum of Q,(0) and making £ Q,(0) E
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bounded. The derivative is defined as
Dgg.0)EQalt) =

m % (Qa(t, Qa(0) + s EQ4(0) E, Po(0)) — Qa(t, Qal0), Pa(O))) . (21)

We find that

K .
Dg g.(0)EQalt) = (cosh ot — 7 cos 2a sinh .Qt) EQ.(0)E. (22)
Now, since the derivative is a bounded operator the difficulties encountered
for A, disappear and we can calculate the modified exponent

Aq = lim %ln”DE Q.,(O)EQa(t)” (23)

equal again to 2 for £2 > 0 and -2 for 2 < 0, which shows that not
only the exponents are independent of the cutoff but also yield the correct
characterization of the instability. A physical meaning of this result is that
in order to characterize a stability of operator equations it is sufficient to
consider those trajectories in the space of observables that differ initially by
a bounded operator.

Another way of circumventing the difficulties with the unboundedness
of amplitudes is the following. Consider an operator

== [ ulwal, (24)
On

where {O,} is an increasing family of compact subsets of the complex plane
C, I, /' 1and O, / C. The cut off operators I,,PoI, := P} and
I,Qual, := Q7 are bounded and satisfy the “Hamilton equations”. The
exponents
alt)

= Jim ] S0 %

t—oco t ( )
are equal to A}, = Ay, = Ap which suggests another possible definition of
quantum Lyapunov exponents

AP = lim AR = |0, (26)
n—oo
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3. Example: squeezing in x(?) nonlinear medium

An analysis of the squeezed light in a nonlinear medium having the
second-order susceptibility x(?) leads to the following equations (see [6],
Section 11):

d
Ea(z) poced kat(z), (27)

d .
—al(z) = k*a(2), (28)

where a(z) is the annihilation operator, k is the coupling constant and &*
stands for the complex conjugation of k. The dependence of a on z is a
result of the one dimensional propagation of the electric field along the
z-axis. Obviously, the equations (27), (28) lead to

2
ra(z) = alz). (29)
It is easy to observe that the same equation can be derived from the Hamil-
tonian (2), where now |k| is equal to 2 and w = 0 (¢f. (3)). Such a
Hamiltonian would appear if we included in (2) explicitly. an oscillatory
time dependence of a, and then eliminate the free evolution by the interac-
tion picture. The solution to equations (27), (28) is

k

si ,zaJr .
HEICDRIC) (30)

a(z) = cosh(|k|z)a(0) +

Now it is clear that we can apply the results of Section 2 to analysis of the
propagating squeezed light. In particular, we have

Py(2) =1 ([e'klz sin a + e~ ¥ cos a] a(0)

+ [_elkiz sina + e %1% cos al at(t)) s (31)
w1 dQE(z)) _
N = fim tim 2 S < 182 0, 52

where we put for simplicity ]LI:T = —1. The last assumption is discussed in [6].
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4. Concluding remarks

The quadrature operators P, and Q. of squeezed light exhibit typical
Lyapunov instabilities. The instability of averages follows from the more
fundamental instability of observables, and the latter can be characterized
at the level of the operator equations by means of the quantum Lyapunov
exponents. The fact that the values of quantum exponents are the same as
those of classical exponents applied to averages suggests, that the quantum
exponents can play a role of a universal tool applicable to more compli-
cated nonlinear operator equations, where no semiclassical replacements of
operators by averages would be justified.

On the other hand, it was shown [3] that a chaotic behavior of a two
level system interacting with a single mode of the electromagnetic field that
appears after semiclassical approzimations does not correspond to positivity
of quantum Lyapunov exponents calculated without such approximations.
This suggests that a semiclassical treatment of a quantum model can change
important quantum features of the model.

Finally, let us remark that the exponent A ., can be also given a purely
operator interpretation: It measures a divergence of operator trajectories
t — Qq(t) with the distance being given by a “metric” induced by a state,
thus the “metric” weaker than the one induced by the norm. Again, since for
general reasons no instability occurs for trajectories in the space of states,
the instability of averages must have a purely operator meaning.

The fact that some instabilities can occur even for quantum systems is
not new [3, 9, 8] and is not in itself particularly important here. What is im-
portant, is the fact that the quantum exponents form a tool that works and
hence can be applied for a broader class of nonlinear quantum phenomena.

We are grateful to K.Zyczkowski for his remarks. M.K and W.A.M.
acknowledge the support from K.B.N. (project PB 1436/2/91).
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