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In these lectures the field of wetting phenomena is introduced from
the point of view of statistical physics. The phase transition from partial
to complete wetting is discussed and examples of relevant experiments in
binary liquid mixtures are given. Cahn’s concept of critical-point wetting
is examined in detail. Finally, a connection is drawn between wetting near
bulk criticality and the universality classes of surface critical phenomena.

PACS numbers: 05.70.Jk, 68.10.Cr, 68.45.Gd

1. Situation and motivation

This survey aims at providing a pedagogical treatment of selected recent
advances in the field of wetting phenomena and, in particular, wetting phase
transitions. While the viewpoint is that of statistical physics, the strongly
interdisciplinary character of the field should be stressed. Also in chemistry,
biology, and several applied sciences wetting phenomena receive a lot of
attention. One fascinating example is in biology, where the liquid behaviour
of embryonic tissue is a subject of much recent interest. The tissue spreading
in embryos strongly resembles basic wetting behaviour of immiscible liquids
(Steinberg and Poole 1982, Steinberg 1993). This analogy has recently
inspired joint research of physicists, biologists and physicians (Forgacs et
al. 1991).

In spite of the common occurrence of wetting phenomena in daily life
and their great relevance for technological applications, the popularization
of modern developments in this field has been rather limited. Articles by
experts that are quite accessible for nonspecialists include Moldover and
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Cahn’s pioneering experimental investigation of the wetting phase tran-
sition, as published in Science (1980), and de Gennes’ article about the
spreading of a liquid drop in Pour la Science (1984). More recently, in Na-
ture, Heslot et al. (1989) described their experimental discovery of molec-
ular layering in the spreading of liquid drops. The formation of mist, dew,
and breath figures was extensively treated by Beysens and Knobler in La
Recherche (1992).

For our purposes it is convenient to distinguish two periods in wetting
research in physics and physical chemistry. Before 1977, wetting phenom-
ena were studied with emphasis on the characterization of the adhesion
properties (such as the contact angles, for example) as a function of the
structure and composition of solid substrata and liquid adsorbates. In this
context, the work of Zisman (1964) and his collaborators must be men-
tioned. Also the Russian School (Deryagin and co-workers) has done im-
portant pioneering work on the subject. References can be found in de
Gennes’ review on the statics and dynamics of wetting phenomena (1985).
Then, in 1977, the transition from partial wetting (nonzero contact angle) to
complete wetting (zero contact angle), was recognized to be a (first-order)
surface phase transition by Cahn, in Landau theory (1977), and by Ebner
and Saam, in density-functional theory (1977). From then on, the emphasis
has been shifted towards the investigation of phase transitions and critical
phenomena associated with wetting.

One point of particular interest, and which was the main theme of
Cahn’s pioneering paper (1977), is the role of the bulk critical point (of the
adsorbate) in wetting phenomena. This issue is relevant not only to funda-
mental experimental and theoretical physics, but is also important for ap-
plied science. This is illustrated by Cahn’s application in metallurgy (1979)
of his discovery of “critical-point wetting” (1977). Concerning this applica-
tion, experiments that examine the growth of composites as a function of
the wetting behaviour, which is apparently controlled by the temperature
distance from a bulk critical point, were described by Grugel and Hellawell
(1981). In 1987 Delannay et al. reviewed the wetting of solids by molten
metals and its relation to the preparation of metal-matrix composites.

Between 1977 and 1981, it was established that the wetting phase tran-
sition may be continuous (or “critical”) instead of first-order. Sullivan found
a critical wetting phase transition in density-functional theory (1979, 1981).
Abraham accomplished an exact calculation of a critical wetting transition
in the two-dimensional Ising model (1980). On the experimental side, the
wetting phase transition demonstrated by Moldover and Cahn (1980) in
simple ternary liquid mixtures appeared to be of first-order character. Sys-
tematic insight into the different theoretical possibilities, including multi-
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critical transitions, was gained after the derivation of global phase diagrams
for wetting by Nakanishi and Fisher (1982).

Among the previous reviews of the field the following are of particular
relevance to topics addressed in this survey. An introduction to three-phase
equilibria and wetting transitions, including contact line phenomena and
line tension, is given in Rowlinson and Widom’s book Molecular Theory
of Capillarity (1984). An extensive and systematic classification of mul-
tilayer adsorption phenomena was developed by Pandit et al. (1982). A
short review with emphasis on early experimental results was presented by
Moldover and Schmidt (1984). The review by de Gennes (1985) aims at
a unified picture of the physical chemistry, statistical physics and fluid dy-
namics of the spreading of liquids on solids. Sullivan and Telo da Gama
(1986) focussed on wetting transitions and multilayer adsorption at solid-
fluid and fluid-fluid interfaces. The lecture of Fisher (1986a) on interface
wandering in adsorbed and bulk phases, pure and impure, offers a system-
atic introduction to the scaling theory of interfacial phase transitions. A
thorough survey of the statistical mechanics of wetting phenomena, a sum-
mary of experimental results, and an extensive bibliography are contained
in Dietrich’s review (1988).

The Les Houches volume on Liquids at Interfaces presents tutorial ar-
ticles on wetting and related interfacial phenomena. In particular, Evans
(1990a) discussed microscopic theories of simple fluids and their interfaces,
Cazabat (1990) dealt with experimental aspects of partial wetting, com-
plete wetting and wetting films, Schick (1990) gave an introduction to the
statistical mechanics of wetting and summarized the theoretical and ex-
perimental state of the art, and Beysens (1990) reviewed experiments on
wetting and adsorption, restricting attention to fluid and fluid mixture in-
terfaces. In recent reviews, Evans focussed on fluids adsorbed in narrow
pores (1990b), Forgacs et al. (1991) treated interfaces in ordered and dis-
ordered systems, and Léger and Joanny (1992) dealt with liquid spreading.
The recent Les Houches volume on Dynamical Phenomena at Interfaces,
Surfaces and Membranes (1993), which contains the aforementioned biolog-
ical contribution by Steinberg, features a number of wetting-related reports
that illustrate the interdisciplinary character of the subject.

Clearly, the field of wetting phenomena has been — and continues to
be — very active and has been reviewed from various angles in the last ten
years. However, some gaps have not yet been filled. For example, a thorough
discussion of critical-point wetting, involving a critical analysis of Cahn’s
controversial argument, is missing and will be developed here. Another
raison d’étre for this survey is the new perspective that has been added
to the field by the advance, since 1990, of the study of the line tension at
wetting. The surprising diversity of thermodynamic singularities associated
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with this excess free energy has revealed that interesting critical phenomena
occur at first-order wetting transitions. Since the experimentally accessible
wetting transitions to date are (almost) always of first order, this finding
merits special attention. A thorough discussion of the line tension at wetting
has been published recently as a review article (Indekeu 1994), and will
therefore not be included here.

2. Partial wetting versus complete wetting

In order to introauce the basic phenomena and terminology, we consider
the following simple setting. Suppose we have a solid container S filled
with liquid L and vapour V at two-phase coexistence, as in Fig. 1. We
distinguish three interfaces: liquid-vapour, solid-liquid, and solid-vapour.
The associated surface free energies are 71y, Ys1, and ysy. The figure shows
that there is a tendency towards wetting rather than drying. Indeed, out
of the two adsorbed phases, liquid and vapour, the solid substrate prefers
the liquid and disfavours the vapour. This is evident from the rise of the
liquid near the wall: the contact angle 6 is less than 90°. Experimentally,
the contact angle must be measured close enough to the wall, that is, within
a few percent of the capillary length ag (Rowlinson and Widom 1984). This
length is a measure of the distance over which the liquid-vapour interface is
curved, and results from the competition of surface tension and gravity. It

is defined as
29y
ag = 1/ —_ 2.1

where g is the gravitational acceleration and Ap is the density difference of
liquid and vapour. Typical values of ay are of the order of one millimeter.
Preferential adsorption of the liquid phase is expressed by the inequality

YsL < Ysv - (2:2)

Fig. 1 shows that, although the vapour phase is disfavoured, a direct wall-
vapour contact is still tolerated. However, when the preference for adsorp-
tion of the liquid would be further increased (for example, by changing the
temperature), the vapour may become excluded from contact with the wall.
This possibility is shown in Fig. 2. There, a liquid layer has intruded between
solid and vapour. This is termed complete wetting, whereas the previous
situation (Fig. 1) represents partial wetting. The thickness of the liquid
wetting layer in the case of complete wetting is typically a few hundred A,
and is a result of the competition between gravity and intermolecular forces
(Kayser et al. 1985, 1986). For complete wetting the inequality (2.2) is,
of course, a fortiori satisfied. Moreover, at complete wetting a solid-vapour




Introduction to Wetting Phenomena 1069

interface does not exist anymore as a single entity in thermodynamic equi-
librium, but consists of the combination of two separate interfaces. The
equilibrium surface free energy of the solid-vapour interface is consequently
defined as

Ysv = ¥sL + Tiv, at complete wetting. (2.3)

This is called Antonov’s rule. For partial wetting, on the other hand, we
have the strict inequality

Ysv < YsL + Yv » (2.4)

which expresses that although a solid-liquid contact is preferred, a solid-
vapour interface has lower free energy than the combination of solid-liquid
and liquid-vapour interfaces. In the case of partial wetting Young’s law
expresses the mechanical equilibrium of the forces (per unit length) that
the interfaces exert on the contact line along which they meet. (Recall
that surface free energies are energies per unit area and thus forces per
unit length.) Balancing the components of these forces along the direction
parallel to the substrate and perpendicular to the contact line (i.e., the
vertical direction in Fig. 1) leads to

Ysv = 7si + YLv cos b (2.5)

1

A
4

7
Y/

Fig. 1. Partial wetting of the solid con-  Fig. 2. Complete wetting: a liquid film
tainer wall (S) by liquid (L), at liquid-  separates solid and vapour.

vapour coexistence. The angle 8 is the

contact angle.

The angle 8 is the contact angle, shown in Fig. 1. Note that this law can also
serve as the thermodynamic definition of the contact angle, when the surface
free energies are known, but no direct observation of 8 is made. Indeed, in
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view of (2.2) and (2.4) we can always find an angle 0 < 6 < 90° so that (2.5)
holds. Clearly, complete wetting corresponds to § = 0. Young’s law needs
to be generalized as soon as the surface tension of the interface between
the two adsorbed phases is anisotropic. This is the case, for example, when
crystalline, or liquid-crystalline adsorbates are involved (de Coninck and
Dunlop 1987).

In thermodynamic equilibrium we must have

Ysv < YsL + Tv, (2.6)
and

YsL. < Ysv + Tv - (2.7)

Indeed, suppose that, for example, (2.6) is not obeyed. Then the supposed
free energy vsv of the solid-vapour interface can be lowered to the sum
vs. +7Lv by the intrusion of a liquid wetting layer between solid and vapour.
Consequently, after equilibrium has been reached, (2.6) is restored. Out of
equilibrium, however, violations of (2.6) or (2.7) are common. They result
in a positive spreading coefficient §*, with

8* = y5v — (¥sL. + 1) » (28)

where 7gy is the free energy of any possible state in which the substrate is
dry. This may be a metastable state, and in such cases 7§y > vysv, where
the latter always denotes the equilibrium value. (Likewise, S* > §.) The
consequences of §* > 0 are studied in the dynamics of wetting (de Gennes
1985, 1990, Léger and Silberzan 1990).

The phase transition from partial to complete wetting can be discussed
in terms of the equilibrium spreading coefficient S as follows. Note that
§ <0, in view of (2.6). Using Young’s law (2.5) we obtain

S = yv(cosf — 1), (2.9)

so that for partial wetting § < 0, and for complete wetting S = 0. The
wetting transition can now be characterized by the way in which S tends to
zero, or, equivalently, the way in which cos§ tends to 1. A typical case is
sketched in Fig. 3. The singularity in S at the wetting temperature T\, can
be written, for T — T, as

-S « (Tw = T)>~ >, (2.10)

or, equivalently,
0 o (Tyy — T)2—)/2 (2.11)
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4 T

Fig. 3. Sketch of cos# versus temperature in the vicinity of a first-order wetting
transition.

where a, is the surface specific heat exponent. If S vanishes with a discon-
tinuous first derivative (as it appears in Fig. 3), the wetting transition is
of first order and a, = 1. On the other hand, if a, < 1 the transition is
smoother and said to be continuous, or critical. Experimentally, first-order
wetting transitions are the rule.

What we have said so far concerning a wetting transition can be simply
reformulated to apply to a drying transition, which (if it exists) takes place
at § = 180°. We will adopt the following terminology, used by many authors:

complete wetting «<— 6 =0,

partial wetting <= 0< 8 < 90°,
partial drying <= 90° < 6 < 180°,
complete drying <= 6 = 180°.

For the “neutral” case (§ = 90°), there is no preferential adsorption and
thus no tendency towards wetting or drying. For a somewhat different
terminology, see Schick (1990).

Wetting and drying have a literal meaning when the adsorbate consists
of liquid and vapour. In more general situations, for adsorbed liquid mix-
tures, binary alloys, Ising magnets, etc., this literal meaning is lost and it
is a matter of definition what one calls wetting or drying. Sometimes (in
Ising models) the two are equivalent by symmetry, and one then simply
uses “wetting” when referring to “wetting and/or drymg Furthermore,
for adsorbed solids, “wetting” means coating.

Simple observations of liquid droplets and vapour bubbles at substrata
can be adequate for distinguishing partial wetting from complete wetting,
and can provide qualitative information concerning the possible presence
of wetting phase transitions in systems as simple as one-component fluids
at walls. However, the quantitative location of the transition as a function
of temperature, for example, requires careful experimental work and relies
on accurate measurements of, say, the contact angle. Very few experiments
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exist on transitions from partial to complete wetting in one-component ad-
sorbates at solid substrata (Dietrich 1988). In these simple systems there is
essentially only one control variable (the temperature T) that can induce a
wetting transition, and it often happens that the wetting behaviour is not
very sensitive to changes in T'.

Fig. 4. Partial wetting of the liquid-vapour interface by the methanol-rich phase in
the liquid mixture of methanol, cyclohexane, and water (with addition of a dye).

Fig. 5. Complete wetting: a lenticular film of the wetting phase spreads at the
liquid-vapour interface. The water concentration is lower than in the mixture of
Fig. 4.

In contrast, many thorough investigations of wetting transitions have
been made in adsorbed liquid mixtures. Observations of adsorbed droplets
are an adequate means of distinguishing partial and complete wetting in
these systems. This has been demonstrated convincingly in the seminal ex-
periments of Moldover and Cahn (1980). Binary mixtures of methanol and
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cyclohexane, with the addition of a small amount of water, display complete
wetting at very low water content and partial wetting above a certain (low)
water concentration. The wetting phase is the heavier methanol-rich phase,
which forms a layer on top of the lighter cyclohexane-rich phase, at the
interface with air or vapour. After shaking the mixture in a glass container,
either articulate droplets (distinctly marked off against the background) are
suspended from the upper interface (Fig. 4), or a broad lenticular film de-
velops (Fig. 5). The former corresponds to partial wetting and the contact
angle § can be measured (Moldover and Cahn 1980). The latter is the sig-
nature of complete wetting (¢ = 0) and under those circumstances there are
no suspended droplets. These observations are easy to make and the mix-
tures can be prepared quickly without special care. It is one of the favourite
“classroom” experiments on wetting. (Usually, one adds a dye to make the
wetting phase strikingly visible.) Strictly speaking, suspended droplets and
lenticular films are metastable and slowly diffuse away into the lower bulk
liquid phase, but the time required for equilibration is of the order of a
week. Achieving equilibrium wetting layer thicknesses in liquid mixtures is
a notorious problem (Kayser et al. 1986).

It is well known that equilibration is fast in one-component systems, and
this makes them suitable for reliable wetting experiments, in principle. How-
ever, we have already mentioned that, in practice, the experimentalist has
to face the serious problem, that the wetting properties of one-component
systems at substrata vary only weakly with adjustable parameters, such as
the temperature. Many fluids are “triple-point wetters” on many substrata
(Pandit and Fisher 1983, Dietrich 1988). That is, complete wetting occurs
already from the triple point on and persists until the critical point. On
the other hand, if partial wetting is found it is likely that the contact angle
decreases only slowly with increasing temperature and that the supposed
wetting transition takes place at rather high temperatures and correspond-
ingly high pressures (always assuming liquid-vapour coexistence). Experi-
ments in liquid mixtures are more rewarding, in spite of the equilibration
problem, because drastic phenomenological changes can occur under ambi-
ent conditions of p and T, as a function of a concentration, for example.
Also, some oil-water-surfactant systems display a wetting transition at a
readily accessible temperature. The transition can be recorded by direct
eye observation, by varying T at fixed overall concentration (Robert and
Jeng 1988).

From a fundamental point of view, wetting transitions in one-component
adsorbates deserve special attention and, indeed, most of the theoretical
work up to now has been devoted to them. On the experimental side there
seems to be no widely accepted precise determination of a wetting tran-
sition in a one-component fluid at a wall, under the strict condition of
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liquid-vapour coexistence. However, under the less stringent condition of
liquid-air coexistence, at ambient pressure, wetting transition temperatures
for one-component adsorbed liquids have been measured already long ago
(Bigelow et al. 1947). Indeed, as reviewed by Zisman (1964), and em-
phasized at a Faraday Meeting by Henderson (1986) and Moldover (1986),
molten pure compounds (fatty acids, for example) on so-called high-energy
surfaces (metals, glass, etc.) at atmospheric pressure (in air) were studied
by Bigelow et al. (1947). These authors found that at a certain tempera-
ture Ty, the condition of zero contact angle is reached (that is, § > 0 for
T < Tw,and 6 = 0 for T > Ty ). Of course, the interpretation in terms of
a surface phase transition was not known until 30 years later. Let us men-
tion two results of this beautiful early work. Firstly, for octanoic acid on a
platinum foil, T, = 23°C (the melting point of this liquid is at Ty, = 17°C,
and the boiling point at T}, = 240°C). Secondly, for octadecanoic acid on a
platinum foil, Ty = 106°C (Tyn = 70°C and T}, = 383°C). These adsorbed
liquids belong to the category of “autophobic liquids” (Zisman 1964). They
show nonzero contact angles (for T < Ty, ) on surfaces with which they have
previously been in contact, and on which, as a result of this contact, an
adsorbed oriented monolayer has formed.

Whether a liquid will wet a solid substrate completely (§ = 0), or
partially (6 > 0), apparently depends to a large extent only on the relative
magnitude of the liquid-vapour tension 71y and the so-called “critical surface
tension” . associated with the solid (Zisman 1964). One finds § > 0 as long
as Yov > 7¢, and 6 = 0 for vy < 9. This remarkable empirical finding is
due to Zisman and co-workers (1964). A theoretical explanation is far from
obvious. For the case of van der Waals forces, the pertinent arguments
have been reviewed by de Gennes (1985). We summarize them here. In
terms of the work of adhesion Wjgy, required to separate solid and liquid by
introducing a vapour between them, we have (Israelachvili 1985)

Wsi, = Ysv + TLv — TSL » (2-12)

which is often referred to as Dupré’s equation. Analogously, the work of
cohesion of the liquid Wy, required to separate the liquid in two parts by
introducing a vapour in between, is given by

WLL = 27LV . (2-13)

(The usual definitions invoke vacuum instead of vapour, a distinction we
may neglect for dilute vapour phases.) Using (2.5) we can now write

WSL _

Tv

cosf = 1, (2.14)
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which is the so-called Young-Dupré equation. Invoking the dielectric po-
larizability per unit volume P, and assuming (to a first approximation)
Wup x PoPp (Israelachvili 1985), one obtains

cosf=2,/2 1, (2.15)
v

where 7. « P2, which indeed depends only on the solid. We emphasize that
these arguments are crude and are only meant to provide some theoretical
basis for the purely empirical parameter ..

Zisman’s criterion immediately leads us to expect partial wetting of wa-
ter on teflon, for example, since v, ~ 18 ergs/cm? for teflon (1 erg = 10~7 J)
and 1y =~ 73 ergs/cm? at room temperature. On the other hand, for liquid
CO2 on teflon, for example, complete wetting should be expected. Indeed,
the surface tension vy of CO; is only about 15 ergs/cm? at the triple point
(pt = 5 atm, Ty ~ —56°C), and decreases with increasing T' to zero at the
critical point (p. ~ 73 atm, T, ~ 31°C). At 20°C, 7y = 1.16 ergs/cm? (Gas
Encyclopaedia 1976). We conclude vy < 9., and thus § = 0 according to
the criterion. In order to make simple and qualitative observations of the
wetting behaviour in these systems, for didactical purposes, one may use a
pressure-cell and a rotatable substrate (Indekeu 1990).

Close to the bulk critical point of the fluid the liquid-vapour interface
is only weakly curved near a vertical wall, so that it appears to the eye
that the contact angle approaches 90° when the critical point is neared.
The usual explanation for this is the vanishing of the capillary length ao,
defined in (2.1). Invoking the critical exponents of surface tension and bulk
order parameter, u = 1.26 and 8 = 0.33, respectively, we obtain from (2.1)

ap o (T. - T)#=A)/2, (2.16)

and (g — B)/2 = 0.47. Therefore, the length scale over which the interface
is curved goes to zero at T¢.. So, to the eye § — 90°, whereas actually § = 0
up to T, (complete wetting).

Observations of CO2 on teflon, at room temperature and p =~ HT7atm,
during condensation, show the formation of a liquid film underneath a (hor-
izontal) substrate. The planar projection of a suspended droplet (Fig. 6)
appears to meet the substrate tangentially (6 = 0, that is, complete wet-
ting). Its shape is strikingly similar to that of the analogous object in the
liquid mixture (Fig. 5). On the other hand, during evaporation, one sees
vapour bubbles clinging under an immersed substrate. Experiments mak-
ing use of hanging drops or sessile bubbles have been discussed by Adamson
(1982). Bubbles tend to settle near irregularities or grooves in the sub-
strate surface, and appear round (Fig. 7). (The vapour bubble spans the
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supplement of the contact angle, 180° — 6, which equals 180° at complete
wetting.) The size (and lifetime) of sessile bubbles can be controlled by
delicately changing the pressure. After a suitable increase in pressure they
shrink away.

Fig. 6. Complete wetting of a teflon substrate by suspended liquid CO,, at liquid-
vapour coexistence. Note the similarity with the shape in Fig. 5.

Fig. 7. Spherical vapour bubble of CO; under a teflon substrate immersed in liquid
CO3: complete wetting by liquid.

For water on teflon one observes the qualitatively different case of partial
wetting (featuring hemispherical liquid droplets and hemispherical vapour
bubbles). Note that the equilibrium contact angle, g, corresponding to
6 as defined by (2.5), is seldom observed in practice, due to contact angle
hysteresis. Under static conditions, the observed 6 lies between two limiting
values, the advancing contact angle (6 4 ) and the receding one (6g) (Zisman
1964, de Gennes 1985). If one goes beyond these limits, the contact line



Introduction to Wetting Phenomena 1077

starts to move with a certain velocity and interacts with defects on the
substrate surface, as studied in the dynamics of wetting (Raphaél and de
Gennes 1989). Both 64 and fg can be observed, for example, with the
tilting plate method, using a rotatable substrate (Adamson 1982, Adam
and Jessop 1925, Fowkes and Harkins 1940, Speece et al. 1957). Apparent
contact angles are easily read with a precision of one degree. However,
as surface tension and contact angle are very sensitive to impurities and
substrate roughness, reproducible experiments require great care.
The surface roughness parameter is defined as

L
Ra = % / Ih(z) — Rldz, (2.17)
0

where h(z) denotes the height function describing the surface along a straight
path of length L (of the order of 1 mm in practice), and h is the average
height along the path. For teflon, fairly smooth surfaces [for example, with
R, ~ 0.04pum (Indekeu 1990)] can be obtained by abrading and polishing,
using a sequence of powders with grains down to less than a micron in size,
or by other techniques (Fox and Zisman 1950, Neumann et al. 1971). To a
first approximation contact angles on rough and smooth surfaces can be re-
lated by a simple geometrical argument (Zisman 1964). For a rough surface
the actual area A is larger than its planar projection 4 by a factor b > 1,
and Young’s law reads

bysv = bysy, + v cos 4, (2.18)

so that
€08 Orough = b cosbsmooth - (2.19)

This suggests that contact angles are decreased (assuming ¢ < 90°) and
wetting is promoted by roughness.

In order to get a notion of measured contact angles and contact an-
gle hysteresis, let us examine published results for the teflon-water-air sys-
tem. For sessile water drops on clean and smooth (heat-pressed) teflon,
Fox and Zisman (1950) reported 84 = 108°. According to Zisman (1964)
04 = 6p = O in these measurements, owing to the extreme purity and
substrate smoothness. Employing Fox and Zisman’s technique, Schwartz
et al. (1964) reproduced the value §g = 108°30' for water on clean and
smooth teflon. With a different method and using rougher teflon surfaces
they investigated contact angle hysteresis. From a determination of the
critical line force necessary to initiate the motion of the three-phase contact
line, they deduced 84 = 118°47' and fg = 95°17', for water-air menisci
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inside a clean teflon capillary. Dann (1970) reported the advancing an-
gle for water on teflon using sessile-drop (or captive-bubble) methods as
64 = 112°, a value generally reproducible within about +3°. For water
on flow-smoothed (heat-pressed) teflon, using a captive-bubble method, Hu
and Adamson (1977) reported 6,4 = 98° (see also Adamson 1982). This
value is significantly smaller than those reported by Fox and Zisman (1950)
and Dann (1970). Hu and Adamson suggested that this discrepancy may
be due to a roughness effect or to the creation of polar sites on the surface
by flow-smoothing. They added that they could reproduce the more usual
value 6§ = 109° for unpolished teflon. Clearly, unequivocal contact-angle
determinations are difficult.

Let us again consider a pure one-component adsorbate at its vapour
pressure, and in contact with a solid substrate, and let us assume that
there is preferential adsorption of vapour (that is, § > 90°). A ques-
tion which has led to lively discussions among experts, is whether or not
complete drying by vapour (that is, # = 180°) is possible. Apparently, the
experimental results on (multi-component) solid-liquid-air systems at am-
bient pressure all indicate that there is a maximum contact angle fpax
associated with liquid droplets, and that 6,5 < 180° (Shafrin and Zisman
1964). Our present question, however, is different in the important respect
that we can bring the liquid and vapour phases close together in density by
approaching the bulk critical point of the one-component adsorbate. Then,
according to Cahn (1977), we should expect one of the two adsorbed phases
to exclude the other from contact with the substrate. That is, we should
expect either complete wetting by liquid or complete drying by vapour.
Apparently, while the former commonly occurs (presupposing the liquid is
preferentially adsorbed), the latter is elusive in real experiments. Why?

This question can be answered in terms of effective forces between sur-
faces (or interfaces). In terms of the work of adhesion (Zisman 1964, Is-
raelachvili 1985) of liquid on solid, using the Young-Dupré equation (2.14),
we have

Wsvt = 7LV(1 4+ cOos 9) , (2.20)

where we write Wgyy, rather than Ws;, to emphasize the presence of the
third medium, the vapour phase. Complete drying results when, in equi-
librium, Wsyy, = 0, implying the spontaneous separation of solid and liquid
phases by a vapour layer of macroscopic thickness. We will now argue that
(i) this phenomenon is theoretically possible and has been observed in com-
puter simulations, but (%) it is unlikely to occur in real systems with van
der Waals forces.

Theoretically, in systems with interparticle interactions of finite range
complete drying results when the attraction between a molecule of the fluid
and a molecule of the solid is sufficiently weak compared with the mutual
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attraction of molecules in the fluid. Computer simulations using truncated
Lennard-Jones potentials confirm this (see Indekeu and Nijmeijer 1993, and
references therein). However, in real systems with van der Waals forces the
long-range tail of the intermolecular attraction leads to an effective long-
range interaction between the interfaces that bound the adsorbed layer.
Consequently, the surface free energy acquires an important dependence on
the thickness ! of the adsorbed layer, which, to a good approximation, is
described by

Ysu(l) = Ysv + v + Asvi 172, for large 1, (2.21)

assuming non-retarded van der Waals forces. Since the equilibrium state
corresponds to the minimum of vs,(1), a macroscopic vapour layer (I = o0)
will be stable only if Agyr, > 0. This amplitude A is proportional to the
so-called Hamaker constant, which is expressed in terms of the frequency-
dependent dielectric functions of the media (Dzyaloshinskii et al. 1961,
Visser 1972, Israelachvili 1985). To a first approximation (de Gennes 1981),
Agyy, can be expressed in terms of the static polarizabilities per unit volume,
P, in the different phases,

Asvy & C('Ps - 'Pv)('Pv - PL) ) (2-22)

where ¢ > 0. Now, since the liquid is denser than the vapour, P, > Pvy.
Furthermore, in general, and certainly for dilute vapour phases, Ps > Py is
to be expected. Indeed, not only is the vapour normally (much) less dense
than the solid, but also the polarizability per molecule tends to be lower
in the adsorbate, since the latter is still in the fluid state at a temperature
and pressure for which the substrate material is already in the solid state.
(The polarizability (squared) per molecule is roughly proportional to the
triple point temperature, since kpT} /¢ is typically of order 1. Here, € is the
well-depth of the intermolecular potential, and, to a first approximation,
€ is proportional to the product of the polarizabilities of the interacting
particles.)

In conclusion, Agyy < 0, as a rule. Consequently, at most a finite
vapour film, of thickness /., may be adsorbed from a liquid approaching
liquid-vapour coexistence. The Dupré equation now becomes

Wsvr = v + Tsv — Ysille) = —Asvy, 172 > 0, (2.23)

so that, recalling (2.20), the contact angle can never quite reach 180°. The
presupposed tendency towards drying in this system is thus counteracted
by the net effect of the tails of the long-range van der Waals forces. This
competition is referred to as the antagonistic case by de Gennes (1983).
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In systems of this type, neither complete drying, nor complete wetting can
develop (Nightingale and Indekeu 1985).

In sum, to a first approximation, a necessary condition for complete
drying appears to be that the polarizability per unit volume in the vapour
phase exceeds the polarizability per unit volume in the substrate. This
seems impossible to realize, unless, perhaps, exceptional solids and very
dense vapour phases are contemplated. The latter may be achieved, but
only in the close neighbourhood of the liquid-vapour critical point, T,. So,
whereas complete wetting is common and often occurs in the whole range
T < T < T., complete drying poses an extraordinary experimental chal-
lenge.

3. Critical-point wetting

In this Chapter we will be interested in wetting transitions in model sys-
tems with short-range interactions. The paradigm is the nearest-neighbour
Ising model. We will focus primarily on what happens in the vicinity of the
bulk critical point T,, and scrutinize Cahn’s argument, which states that
complete wetting (or drying) is necessary near T.: critical-point wetting
(Cahn 1977). We will ask if Cahn’s argument is supported by scaling the-
ory, and if it is valid in the Landau theory that Cahn used (1977). Next,
we will address model systems with special symmetries that lead to qual-
itatively different wetting behaviour near T,. These models are physically
relevant to a specific variety of grain boundaries. Finally, we will conclude
with a classification scheme relating wetting behaviour near T, to univer-
sality classes of surface critical phenomena at 7.

Let us first deal with ordinary wetting problems and consider the usual
setting in which an adsorbate is in contact with a substrate or, more gen-
erally, a spectator phase. These problems belong to the category “wetting
at walls”, where the term “wall” is to be understood in a very broad sense.
Forgetting about short-range forces for a moment, the examples we have in
mind are a liquid-vapour system at a solid substrate, a two-phase binary
liquid mixture in contact with its vapour, a three-phase liquid mixture in
which one of the phases serves as spectator phase, a ferromagnet with a
surface against air or vacuum, etc. In all these examples, the important
characteristic is that one of the phases plays a passive role and can be ef-
fectively replaced by a surface field that acts at the interface against the
other two phases. The latter define the adsorbate and we will generally as-
sume that these phases are close to their critical point, where they become
identical in bulk.

Most realistic systems feature forces that decay algebraically with the
distance between the particles. A familiar example is the 76 decay of in-
termolecular potentials in systems of van der Waals type, such as ordinary
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liquids. In order to obtain the potential energy that a single particle expe-
riences at a distance z from a wall or spectator phase, one essentially has
to integrate, over d dimensions, the r~¢ potential. This gives z73 in d = 3.
Because this represents a fairly slow decay, van der Waals forces are termed
long-range forces from the viewpoint of surface and wetting phenomena. In
general, we will therefore consider all algebraically decaying potentials to
be of long range. In contrast, strictly local interactions, as in a nearest-
neighbour Ising model, or interactions that decay exponentially fast, will be
termed short-range forces. In nature, short-range forces in this sense arise
when algebraic potentials are screened by some sufficiently short screening
length (de Gennes 1985).

Systems with surfaces or interfaces are, of course, inhomogeneous, and
as a result, the order parameter m (density, concentration, magnetiza-
tion, ...) becomes a function of position. This function is called the order
parameter profile m(z), where 2z measures the distance from the substrate
or spectator phase, into the adsorbate. (To a first approximation, we will
ignore fluctuations in the directions parallel to the substrate surface.) In
systems with short-range forces, the problem category “wetting at walls” is
characterized by a semi-infinite adsorbate and a surface field H, (Nakanishi
and Fisher 1982). In the language of the Ising model (Abraham 1986) the
relevant Hamiltonian (with spins s; = 1) reads

H({s})=—TB > sis;—J) Y sisj—H1 ) si, (3.1)
(3} (ij)er iel
where Jg is the bulk nearest-neighbour coupling, J) the surface nearest-

neighbour coupling (the surface is denoted by I'), and H; the surface field.
The corresponding spin lattice is shown in Fig. 8.

=
r———

R —
oy

Jg

Fig. 8. Spin lattice for a semi-infinite system with a surface (dashed bonds), suitable
for modelling wetting at walls.

A concise discussion of critical-point wetting at walls runs as follows.
Consider a wall with surface field H; > 0. The adsorbate is at two-phase
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coexistence, and we denote the phases by + and —. The wall favours the
+ phase (because H; > 0), and thus the preferred state is one in which
the bulk adsorbate is in the + phase. It is characterized by a surface free
energy v+. I, however, we impose the disfavoured state, in which the bulk
adsorbate is in the — phase, the surface free energy is denoted by 4* , where
the star indicates that this state need not be an equilibrium state. Clearly,
Ay* = 4* — 44 > 0. We say that there is preferential adsorption of the
+ phase. Besides 74 and 7* there is a third actor in the play, namely the
surface tension of a +— interface infinitely far from any wall, 7,.

Now there are two important cases. The first is Ay* < <, implying
partial wetting. The second corresponds to all possible alternatives to the
inequality Ay* < 7¢. These are (i) the disfavoured state is unstable (in
which case y* is not well defined), (i) the disfavoured state is metastable
(in which case Ay* > 7, along the well-defined metastable continuation of
the disfavoured state in a theory of mean-field type), and (%ii) we are right
at the wetting transition, so that Ay* = 7. For all these alternatives, in
thermodynamic equilibrium, Ay = v¢. Indeed, the disfavoured state yields
to the combination of the preferred state and a +— interface far from the
wall, with surface free energy v+ + 4o. Equilibration thus leads to complete
wetting.

What happens when the temperature T approaches T.? The critical
behaviour of vy is given by

Y0 o« (Te — T)*, (3:2)

with z# ~ 1.26. What can we say about the critical behaviour of Ay*? In
thermodynamic equilibrium, we must have Ay < v9. This does not tell us
if, at some temperature, there is going to be a wetting transition. However,
if we have recourse to a mean-field approximation we can follow metastable
continuations of stable states, and ask what the critical behaviour of the
metastable continuation Ay* is. This is what Cahn’s argument is all about
(Cahn 1977). Explicit calculations in Landau theory (a theory of the mean-
-field type) show that

A~* does not vanish at T.. (3.3)

This result differs from earlier speculations (Av* o (T. — T)P, or Ay* «
(T. — T)P1), but the previously proposed conclusion (Cahn 1977) is not
changed. Approaching T, partial wetting must yield to complete wetting,
in view of (3.2) and (3.3). For wetting at walls, critical-point wetting is
thus the rule, at least as far as the predictions of the Landau theory can be
trusted.
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After this concise discussion, we will have a more detailed look at the
Landau theory, and at pertinent scaling arguments. We begin with the lat-
ter. From the very beginning an appealing “scaling” argument for critical-
point wetting has been proposed (Cahn 1977). However, it is not a genuine
scaling argument, and a proper discussion within scaling theory has been
given by Pandit et al. (1982). What does scaling theory predict? Near
bulk criticality, t.e., for small ¢t = (T, — T')/T., and, furthermore, for small
hq (> 0), with h; = H; /kBTc,

v(t, hy) = =@y (1¥7¢, Vi hy), (3.4)

where [ is a positive length-rescaling factor. This generalized homogeneity
relation applies to y4+ as well as to 7—, but only for the thermodynamic
equilibrium values. Thus, 7* is to be replaced by y— = min{y*, v+ +ve}.
The exponent d — 1 is the surface dimensionality. The positive exponent yr
is the thermal critical exponent, and equals the inverse correlation length
exponent (yr = 1/v). The positive exponent y; is the surface ordering
field (or “magnetic”) exponent. The surface tension ¢ obeys an analogous
relation,

7o0(t) = 174D 47y, (3.5)

Now we choose I = t~1/¥T, Note that p = (d—-1)/yT, by hyperscaling.
Furthermore, the critical behaviour of the surface order parameter m; (o
07/0h1) in zero surface field is described by the critical exponent 8; =
(d—1-1yy)/yr. Note that 81 < u. It follows that

‘Yo = At“ Py (3-6)
Ay = AtPX(hyt—21), (3.7)

where Ay = p— ;1 > 0, and Ay = min{Av*, 4¢}. The scaling function &,
which is by Young’s law the cosine of the contact angle 8, satisfies | X'(z) |<
1 (equilibrium), and X(z) « 2, for z — 0. Therefore,

Ay « hitPt, provided hy < tA1. (3.8)

This result (Pandit et al. 1982) is very different from what was assumed in
Cahn’s argument (1977), namely Ay « t?. Firstly, 8 ~ 0.3 (for d = 3) is
to be replaced by $;. This is a minor point, because both are smaller than
# =~ 1.3. Secondly, we are not allowed to take t — 0 at fixed h; in (3.8). This
restriction is very important, and was clearly stated by Pandit et al. (1982),
but appears to have been largely ignored in later works. Finally, (3.8)
concerns A<y and not the metastable continuation Ay* assumed in Cahn’s
argument. (For accurate values of bulk critical exponents, see Le Guillou
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and Zinn-Justin (1989), and for values of surface critical exponents, see the
reviews by Binder (1983) and Diehl (1986). For example, 4 = 1.260+0.0015
for d = 3.)

Clearly, from scaling theory alone a wetting transition cannot be pre-
dicted, and critical-point wetting cannot be argued. Indeed, a simple coun-
terexample that satisfies all the pertinent scaling relations but produces no
wetting transition, is the choice X(z) = tanhz. This gives Ay < o for all
T < T, (no wetting transition). Scaling theory does not give X(z). Explicit
model calculations or approximation schemes (e.g., Landau theory) are re-
quired. A wetting transition is then seen to correspond to a singularity in
X(z) at some point zg, with X(z) < 1, for 2 < 29, and X(z) = 1, for
z > zo (Pandit et al. 1982). If a wetting transition is known to occur at
some point (T, hy), scaling theory predicts how the wetting phase bound-
ary, given by ¢ = zy, behaves near T., in terms of the critical exponent
Aj. Assuming A; > 0 (since the surface field is a relevant perturbation),
we obtain critical-point wetting. That is, (h1)w — 0 for Tw — T, where
the subscript W refers to the wetting phase boundary.

We now turn to the Landau theory, which provides an explicit approxi-
mation for the scaling function X(z), and serves as an ideal testing ground
for arguments a la Cahn. In the phenomenological Landau theory, wetting
at walls is represented by the surface free-energy functional (Cahn 1977,
Nakanishi and Fisher 1982)

= [ {z (& f(m(-z))} tnim),  (39)

1

of the order-parameter profile m(z), for z > 1. The substrate is at z = 1.
The value of m at the substrate is denoted by m; = m(z = 1). For the
reduced (i.e., divided by kgT,.) bulk free-energy densxty the usual quartic
polynomial is assumed,

f(m) = ap + a2 m? + agm?. (3.10)

(An external field is not included and liquid-vapour symmetry is assumed,
so that aj = a3 = 0.) The usual procedure is to take ay = 1, a3 =
24%(T-T.) /T,_., and ag such that min[f(m)] = 0. At two-phase coexistence
(T < T.), the bulk order parameter mp = m(z = oo) is then given by

my, = £myg, where
7\ 1/2
mg = A (1 - —) . (8.11)
T,

For the substrate-adsorbate energy the usual form

2

m
‘7,(m1) = — h1 my— g 71 (3.12)
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is chosen, with h; the surface field and g the surface-coupling enhancement
(9 < 0 is typical for fluids at walls, whereas also g > 0 is possible for
magnets). The Landau theory can be derived starting from the Ising model
and performing approximations of the mean-field type (Maritan et al. 1991).
In particular, g > 0 corresponds to the case of J being significantly stronger
than Jg. A physical example of this is surface ferromagnetism above the
bulk Curie temperature (Weller et al. 1985).

In the Landau theory one calculates the m(z) that minimizes y[m]. This
leads to the “Euler-Lagrange equation” (in the language of mechanics)

¢
———— 2 . .1
2 dz2  dm’ (3.13)
and the boundary conditions
2 dm
2 = —hy — .14
2 dz . hl gmy, (3 )
m(o0) = mp = £tmg . (3.15)

The sign in (3.15) depends on which phase is imposed in bulk. Note that
integration of (3.13) gives the “constant of the motion”

dm

52 () som =o. 510

where the constant E is indeed zero in view of (3.15). When this is substi-
tuted in (3.9), one obtains

my

y[m] = ¢ / dm f(m)'/? — hym, —

™h

2
gmy

5 (3.17)
where m; > my is assumed. Otherwise, the integration limits must be
interchanged. From (3.16) and (3.17) it is easy to see that 7[m] can be
calculated in terms of integrals or areas in the phase-portrait plane (that is,
in the plane of dm/dz versus m). This naturally leads to equal-areas rules
for obtaining the location of the surface phase transitions (Cahn 1977, de
Gennes 1985).

The surface free energies 74 and 4* are well defined as long as they
correspond to profiles that represent (local) minima of y[m]. An explicit
calculation of Ay* and 4¢ gives
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Ay
Yo

= &{(® + 41+ ¢)PP/% - [ +4(1 - )%} + ¢,  (3.18)

70 = demd, (3.19)

where ¢ = hy/cmi, and & = g/cmy.

The basic phase diagrams have been obtained in the well-known paper
by Nakanishi and Fisher (1982), and have often been reviewed. Since they
provide an important reference frame, we repeat them here, but restrict our-
selves to two-phase coexistence in bulk (i.e., omitting the prewetting phe-
nomena and the surface transitions above T,.). The wetting phase boundary
is given by Ay*/v9 = 1, and the drying phase boundary by Ay*/y = —1.
The two are related by trivial symmetry (h; — —h;). Typical results are
shown in Fig. 9.

- (0 ()] -05r )] [

050 b—t—t

1-4%2(1-T/T.)

Fig. 9. Wetting (and drying) phase boundaries in the (hy,T)-plane, separating
partial wetting (PW) from complete wetting (CW). (a) g < 0 (e.g., g/c = —1
for the present calculation). At the tricritical point TCP first-order wetting (solid
line) changes to critical wetting (dashed line). At h; = 0 and T = T, the Ordinary
transition (O) takes place. (b) g = 0. First-order transitions. At h; = 0 and
T = T.: Special transition (S). (c) g¢ > 0 (e.g., g/c = 1). First-order transitions.
At hy = 0 and T = T.: Extraordinary transition (E). (Thin horizontal dashed
lines are relevant to Fig. 10.)

It is interesting at this point to present Av* and «¢ versus temperature,
for typical cases. This is done in Fig. 10. Note that Ay* does not approach
zero, for T' — T.. To the contrary, for ¢ — 0,

either A~v* ceases to exist, (3.20)
or A« — constant #0. (3.21)
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Fig. 10. A«v* and ¢ versus temperature for fixed h; and g. (a) g/c = 0 and
hi/c = 0.5 (see Fig. 9b). A«v* can be continued beyond first-order wetting (W)
but ceases to exist at the metastability limit (M L). Similar behaviour is found for,
e.g., 9/c = —1 (Fig. 9a) and hy/c = 1, and, e.g., g/c = 1 (Fig. 9¢). (b) g/c = -1
and hy/c = 0.45 (Fig. 9a). Ay* merges with v in a cusp (i.e., with coincident
tangents) and ceases to exist, right at critical wetting (CW). (c) g/c = 1 and
hy/c = 0.1 (Fig. 9c). Av* is nonzero at T,.

Furthermore, for the equilibrium states we find, in all cases,

Ay=9yoxtt, for 0<t<tw, (3.22)
where tw = (T, — Tw)/T. > 0. A “global” wetting phase diagram is shown
in Fig. 11. It is a convolution of the standard phase diagrams of Fig. 9,
using the scaling variables instead of the thermodynamic ones. If we let
T approach T,, at fixed h; and g, we move away from the origin along a
parabola

| ¢ 1= (1 h1 | e/g*)s" . (3.23)
We always encounter a wetting transition, the character of which can be
critical, tricritical (at TC P in Fig. 11), or first-order. The phase boundary
for critical wetting is given by | ¢ |= —« and & < —2. The tricritical point is
at | ¢ |= 2 and k = —2. The disfavoured profile ceases to exist beyond the
critical wetting transition, and beyond the metastability limit associated
with first-order wetting. This metastability limit is found by inspection of
(3.18) and is given by
il

T (3.24)

|d|=1+ with &> -2.

At this limit a local minimum of 4[m], the (metastable) disfavoured profile,
is annihilated by a local maximum of y[m]. Therefore, beyond this limit y*
and hence A+* no longer exist (in fact, they are undetermined). Note that
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for
for

Fig
ary

g>0and | hy|c/g% <1/4, we can continue v* to T, and in that case,
t— 0,

3 3/2 3/2 oh
Ay - {[1 + 4:;6] - [1 - 4:;6] + 192""} #£0. (3.25)

5 T T T T T
== w
el \% i
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. 11.  Global phase diagram of wetting at walls. The wetting phase bound-
(first-order or critical) separates partial wetting (PW) from complete wetting

(CW).

fiel
(a)

(b)

(¢)

In order to make contact with (3.7) and (3.8), and to identify the mean-
d values for 8; and A;, we distinguish the following cases.

g = 0. We obtain from (3.18), with k = 0, that Ay*/vp is a function of
¢ alone. Comparison with (3.7) implies A; = 1, in view of (3.11). Fur-
thermore, for small ¢, Ay ~ 2hymyg, implying 81 = 1/2, by comparison
with (3.8). This case corresponds to the “Special” surface transition
(see further).

g < 0. The critical point is then approached in the limit x — —c0. We
obtain

Ay [y =50/ | x| +O( &|7%). (3.26)

Rewriting this as Ay* ~ 2¢(hy/ | g |)m2, we find A; = 1/2 and 5 = 1.
This corresponds to the “Ordinary” surface transition.

g > 0. In this case we let kK — oo, and obtain
A *
77 =3¢k + O(x71), (3.27)
0

so that A; = 3/2 and 8; = 0. This corresponds to the “Extraordinary”
transition. We remark that in this case the exponent 3, is in fact better
defined in a different way, namely so that it describes the vanishing of
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the singular part of the surface order parameter, relative to a regular
and finite background contribution. This gives 81 = 2 (Bray and Moore
1977, Binder 1983).

As an aside, we note that for small ¢ and arbitrary «,
Ay* = himo(x + ( +4)'/%) + O(¢%), (3.28)

In general, and especially for ¢ > 0, Ay* is well approximated by the first
term in this expansion, as far as the location of the wetting transition is
concerned. However, the transition always comes out first-order in this
approximation. For the phase boundary, see Indekeu (1991).

Concerning the different surface transitions that are possible at 7., we
remind the reader about the basic notions in the Ising model context. For
reviews, see Binder (1983) and Diehl (1986). For the semi-infinite Ising
model described by the Hamiltonian (3.1) and illustrated in Fig. 8, we dis-
tinguish two main cases: Hy = 0 and Hy; # 0. For H; = 0 we further
distinguish the Ordinary, Special, and Extraordinary transitions. The case
Hy # 0 is similar to the Extraordinary transition, and is therefore some-
times given the same name (Bray and Moore 1977), although nowadays the
term “Normal transition” is preferred. The reason for this is that most real
systems lack the special symmetry that corresponds to H; = 0. The surface
phase diagram for H; = 0 is shown schematically in Fig. 12 .

bulk
disorder
and
surface
order

surface bulk
crificality and
S

surface

KS = J///keT

(s
4

bulk order

and
surface
disorder

(=)

(8)
0 Ke Kp=Jg [kgT
Fig. 12. Surface phase diagram of the semi-infinite Ising model in zero surface
field (and zero bulk field). The bulk is ordered for Kp > K,SB‘), and is critical
at Kp = K®). The surface is critical on the line extending from Kg = K at
Kp = 0 (criticality of an isolated surface) to the Special transition point S.
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Note that varying the temperature T corresponds to moving along a
straight line through the origin. For fixed and small J;;/Jp, the surface is
disordered at the bulk critical point (segment O: Ordinary transition). On
the other hand, for fixed and large J i/JB, We encounter surface criticality
(the onset of spontaneous surface order) at a temperature above bulk crit-
icality. Bulk criticality is then achieved in the presence of a spontaneously
ordered surface (segment E: Extraordinary transition). For one particu-
lar choice of Jy /Jp(> 1), surface and bulk become critical simultaneously.
This happens at the multicritical point § (Special transition).

Finally, for H; # 0, as is the case in standard wetting problems (fluids
at walls, liquid mixtures at walls, or magnets at surfaces, ...), the surface is
“ordered” at the bulk critical point, because of the presence of the symmetry
breaking surface field. However, this is field-induced or imposed order,
whereas true long-range or spontaneous surface order is only possible for
Hy = 0 (for critical remarks about proper terminology, see Fisher [1986b]).
One must be careful here, because some experts consider imposed order to
be a form of disorder.

Before coming to the conclusions of this Chapter we comment briefly
on the status of the Landau theory in the research on wetting phenomena.
The Landau theory is of mean-field type and consequently misses effects of
fluctuations which may lead to quantitative and even qualitative changes in
phase diagrams, the order of phase transitions (first-order or continuous),
critical exponents, etc. An important parameter in this respect is the upper
critical dimension d,.. This is the dimension above which the mean-field
theory can be trusted, even quantitatively. For bulk critical phenomena
(in the Ising universality class, for example) d,. = 4, implying that bulk
critical phenomena in real systems (d < 3) are not correctly described by
mean-field theory.

For wetting and other interfacial phenomena the mean-field theory is
in a better position than for bulk phenomena. To begin with, d,. = 3 for
complete wetting and critical wetting in the presence of short-range forces
(as in Ising models, or in continuum fluids with a potential cutoff as in most
computer simulations, or in real metals where the screening effect of the
electrons can significantly reduce the amplitude of the Van der Waals inter-
action [Maggs and Ashcroft 1987]). By complete wetting we mean here the
continuous phase transition associated with the divergence of the wetting
layer thickness upon approach of two-phase coexistence from the one-phase
region (Lipowsky 1985). By critical wetting we mean, as before, a continu-
ous wetting transition along two-phase coexistence. By analogy with bulk
phenomena, one would expect that right at d,. the pertinent critical ex-
ponents are still correctly given by mean-field theory. Interestingly, this is
not the case. In d = 3 important and complicated (non-universal) correc-
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tions to the mean-field exponents have been predicted by renormalization
group methods (Brézin et al. 1983). Although these corrections have ap-
parently not yet been seen in simulations of the Ising model (Binder and
Landau 1988, Binder et al. 1989), they show up in simulations of interface-
displacement models (Gompper and Kroll 1988), and of the Solid-on-Solid
limit of the Ising model (Gompper et al. 1990), and should definitely be
there according to a recent scrutiny of renormalization group predictions
(Fisher and Jin 1991, 1992).

The physical explanation for the breakdown of mean-field theory in
three and less dimensions lies in the thermal roughness of the (liquid-vapour)
interface that arises from divergent capillary wave fluctuations at long wave-
lengths. The roughness is described by the length L | , perpendicular to the

interface, which is found to behave as Lf|3—d)/ 2, for d < 3, where L is the

in-plane or parallel length of the interface. Ind =3, L; o (In L")l/ 2. Thus,
the interface is rough in d < 3. Mean-field theory corresponds to setting L |
equal to a finite length, imposing a smooth interface. For a comprehensive
review, see Fisher (1986a).

Next, dy. < 3 for complete and critical wetting in the presence of
long-range intermolecular forces (with power-law decay as in Van der Waals
systems). The physical origin for this is that intermolecular forces that de-
cay as r—(d+o) (e.g., o = 3 for non-retarded Van der Waals forces in d = 3)
produce a long-ranged surface free energy contribution I=(°~1) for a wetting
layer of thickness [ (in the approach to complete wetting). This must be
compared with the fluctuation-induced entropic repulsion of the interface
by the wall. This repulsion arises because the capillary waves “collide” with
the wall at large wavelengths. In a simple interface displacement model,
this contribution is of order gradient squared, i.e., (L _L/L”)2. On a per-

pendicular length scale L of order I, this gives 172(¢-1)/(3-d) for 4 < 3.
If this term is of shorter range than the intermolecular term, we can ignore
roughness and use mean-field theory. Thus, d,. = 3 — 4/(o + 1), which is
less than 3. For d > d,. (mean-field regime) the critical exponents depend
on the range of the intermolecular forces; for d < dy. (fluctuation regime)
they depend on the dimensionality. Analogous arguments apply for critical
wetting. See Fisher (1986a) for a review.

The great merit and predictive power of mean-field theories for wetting
phenomena, and in particular the Landau theory, even when applied to
the (short-range) Ising model, is strikingly demonstrated in the extensive
Monte Carlo simulations of d = 3 Ising models (Binder and Landau 1988,
Binder et al. 1989). These studies confirm in detail the wealth of first-order,
critical and tricritical wetting transitions, as well as prewetting phenomena,
predicted by the Landau theory.
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Discussion

(1) What is the role of the bulk critical point in wetting phenomena at
walls?

In general, wetting phenomena and wetting phase transitions depend
sensitively on non-universal characteristics (such as details of the intermolec-
ular forces), and the principal role of the bulk critical point is nothing more
than to delimit the range of thermodynamic variables (temperature, ...)
over which wetting phenomena can be defined. (A possible exception to
this is complete drying by vapour, a phenomenon which, if it exists at all,
is expected to occur in the immediate vicinity of the bulk critical point, as
argued in the Introduction.) However, near bulk criticality wetting phenom-
ena acquire universal characteristics. Cahn’s discovery of complete wetting
near critical points exemplifies a universality of this kind. It is of inter-
est to investigate which is the pertinent universality class. Cahn (1977)
implicitly suggested the universality class of bulk critical phenomena. (In-
deed, he invoked the bulk 8 exponent for describing the critical behaviour of
the difference of surface free energies Ay. Furthermore, the surface tension
exponent p is determined by the dimension d and the bulk correlation expo-
nent »: u = (d—1)r.) We will propose a different universality class, namely
that of the Normal surface transition (which is, for all practical purposes,
the same as the Extraordinary surface transition).

(2) Is complete wetting necessary near bulk criticality?

For wetting at walls as described by the Ising model with a surface field
H,, or, more phenomenologically, by the Landau theory with h; # 0, we
have found no exceptions to complete wetting near the bulk critical point
(Tc). We tend to conclude that complete wetting is necessary near bulk
criticality for wetting at walls or other spectator phases with short-range
substrate-adsorbate forces that can effectively be characterized by hy # 0.
(3) Is Cahn’s argument (or a later version thereof) supported by scaling

theory?

The argument assumes that a difference of surface free energies, Avy,
vanishes as a positive power of the temperature distance from the bulk
critical point. An exponent is assumed (8, B1, or 1, ...) which is smaller
in magnitude than the critical exponent u of the surface tension. This
cannot be supported by scaling theory. Firstly, as Pandit et al. (1982)
remarked, scaling theory deals with thermodynamic equilibrium and not
with the metastable states (of a mean-field theory). Secondly, these authors
showed that 81 does play a role, but in the limit of zero surface field (h; —
0), and not in the limit of bulk criticality (I’ — 7T.). Scaling theory does
not make a prediction in this latter limit, unless the occurrence of a wetting
transition is given a priori.

(4) Is the argument valid in the Landau theory?
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In the Landau theory for wetting (Cahn 1977, Nakanishi and Fisher
1982), we checked explicitly that the difference of surface free energies Ay*
does not vanish at the critical point. Although this is in fact opposite
to what the usual argument assumes, Cahn’s conclusion of critical-point
wetting is a fortiori true! Indeed, in hindsight one could make the argument
stronger: “Since ¢ vanishes at T,, but Ay* does not, critical-point wetting
is necessary.”

Concerning questions (3) and (4), specialists may wonder why we have
bothered to scrutinize this “old” burden. The reason will become clear when
we study critical-point wetting in other categories of wetting problems, e.g.,
special varieties of grain boundaries (and where we shall meet important
cases for which Ay* — 0). But besides that, a scrutiny of Cahn’s pioneering
conjectures is far from a waste of time if one realizes that it is difficult to
think of a paper on wetting phenomena that has been as stimulating and
influential as his one of 1977.

4. Wetting at neutral grain boundaries

Our second category of wetting problems, after wetting at walls, is
“wetting at grain boundaries”. A physical example is the pinning of an
antiphase boundary at a grain boundary in a binary alloy crystal (Cénédese
et al. 1988). This is illustrated in Fig. 13. Basically, problems in this
category concern two semi-infinite adsorbates that meet at a defect plane
with defect coupling H,. .

At the level of an Ising model description, the problem is that of the
pinning of an interface at a defect plane (Abraham 1981). In general, there
may be a surface field H; at the location of the defect plane. If H; # 0 the
defect plane prefers one of the two phases, and the preferred state consists
of the presence of that preferred phase on both sides of the defect plane.
For a large variety of real grain boundaries H; will be present and the
discussion of wetting phenomena then closely resembles that of wetting at
walls, at least as far as the universal properties near the bulk critical point
are concerned (Ebner et al. 1990). Our purpose here is to study a system
with a different symmetry, and therefore we restrict attention to what we
will call neutral grain boundaries, i.e., those with H; = 0. Wetting at
neutral grain boundaries is characterized by the Hamiltonian

H({s})=-Jg ZsiSj - J"_ Z 8i8; — J; zsisj - JIT Z 8;8;
(25) (ij)er- (i5) (ijyert

ier-jert
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SYMMETRIC(S) BOUNDARY

ANTISYMMETRIC (A)BOUNDARY

Fig. 13. A grain boundary between two ordered grains in a lattice gas model. An
antiphase boundary (APB) in the right-hand grain joins the grain boundary at an
angle (i.e., the contact angle as determined by the generalized Young equation [de
Coninck and Dunlop 1987)]) and changes it from symmetric to antisymmetric. The
underlying lattice is shown along the top. (Reproduced from Cénédése et al. 1988)

where Jp is the bulk nearest-neighbour coupling, J| | the surface nearest-
neighbour coupling (the defect plane or “surface” is denoted by I'), and
H; = Jp the nearest-neighbour defect coupling. The corresponding spin
lattice is shown in Fig. 14. Note that the defect plane I" is composed of two
surfaces I'~ and I't. For the moment, we assume J B = Jg. (The more
general case will be studied later.) Furthermore, we assume J"— = JlT .

Concerning the symmetry, we remark that the Hamiltonian of the Ising
model for wetting at walls (see the preceding chapter) is not invariant under
sign reversal of all spins, because a surface field H; is present. In contrast,
the Hamiltonian (4.1) is invariant under this transformation.

A concise discussion of critical-point wetting at grain boundaries runs as
follows. Consider a defect plane with defect coupling H, > 0. The adsorbate
is at two-phase coexistence, and we denote the phases by + and —. The
preferred state is one in which the bulk adsorbate is in the + phase on
both sides of the defect plane, or, equivalently, in the — phase on both sides
(because Ha > 0). It is characterized by a surface free energy 74 +(= 7--).
If, however, we impose the disfavoured state, in which the bulk adsorbate
is in the — phase on one side, and in the + phase on the other, the surface
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Fig. 14. Spin lattice for two semi-infinite systems meeting at a defect plane (with
defect bonds (wiggly) and surface bonds (dashed)), suitable for modelling wetting
at neutral grain boundaries.

free energy is denoted by v} _(= 72,), where, as before, the star denotes
the possibility of a metastable state. Clearly, Ay* = v1_ — 744+ > 0. We
say that there is preferential adsorption of equal phases on both sides of
the defect plane. Besides v44 and v} _ we must, like for wetting at walls,
consider the surface tension of a +— interface infinitely far from any defect
plane, 7.

Just like for wetting at walls, there are two important cases. The first
is Ay* = Av < 79, corresponding to partial wetting. The second corres-
ponds to all possible alternatives to the just mentioned inequality, which
all imply Ay = 79 in thermodynamic equilibrium. Indeed, the disfavoured
state yields to the combination of the preferred state and a +— interface far
from the defect plane, with surface free energy vy4+4 + vo. This corresponds
to complete wetting. Note that the transition can occur on either side of
the defect plane, with equal probability.

What happens when the temperature T approaches 7.7 The critical
behaviour of v is given by

Yo x (Tc — T)*, (4.2)

as before. What can we say about the critical behaviour of Ay*? Explicit
calculations in Landau theory, supplemented with scaling arguments that
invoke the correct critical exponents, show that (Sevrin and Indekeu 1989)

Av* = Ay « (T, — T)*A, (4.3)
We have 28; ~ 1.5 > u =~ 1.3, in d = 3. (In Landau theory, 26; = 2 and

# = 3/2.) Consequently, if there is partial wetting to begin with at some
T < T., partial wetting persists until T.. There is no critical-point wetting.
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This conclusion was also reached in earlier works (Abraham 1981, Cénédese
et al. 1988).

However, this is only half of the story. Explicit calculations in Landau
theory (Sevrin and Indekeu 1989) show that (4.3) is only valid provided
the surface order parameter m; vanishes at T.. In other words, it holds
only if the defect plane disorders at the bulk critical point. This is not
always the case. Indeed, if the interactions parallel to the defect plane, J,
are sufficiently strongly enhanced relative to Jp, the defect plane remains
spontaneously ordered at 7., so that m; does not vanish. This is called
the Extraordinary transition. (We assume here that the dimensionality of
the bulk adsorbate is not too low. The surface dimensionality d — 1 should
namely exceed the lower critical dimension dj., which equals 1. For d = 3,
there is no problem.) Then,

A~* does not vanish at T, (4.4)

implying critical-point wetting!

5. Universality of critical-point wetting

It is well-known that wetting phenomena do not possess the degree of
universality that is characteristic of bulk critical phenomena. Since wetting
phenomena are essentially surface phenomena, perhaps they can possess the
degree of universality that is characteristic of surface critical phenomena.
This is seen in several situations indeed. An excellent example is the equiv-
alence of pure surface criticality (in the bulk one-phase region above the
bulk critical point) and prewetting criticality, proposed by Nakanishi and
Fisher (1982) and checked by Nicolaides and Evans (1989). Sometimes wet-
ting transitions constitute a novel universality class themselves. This is the
case, for example, for critical wetting as studied by Sullivan (1979, 1981),
and by Brézin et al. (1983). In other cases simple wetting phenomena are
genuine critical phenomena but had not been recognized as such. Impor-
tant work in this respect is Lipowsky’s study (1985) of complete wetting as
a critical phenomenon with a diverging correlation length. A quite different
universal property of wetting phenomena was revealed already at an early
stage, when Cahn (1977) discovered that complete wetting is “necessary”
near bulk criticality. The precise kind of universality that plays a role there
has remained controversial until quite recently. The calculations reviewed
in the topics “wetting at walls”, “wetting at neutral grain boundaries”, and
“wetting at triple junctions” (a topic which is not covered in these lectures,
but which can be found in Indekeu and Nikas 1991) suggest the following

answer.
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Consider a wetting problem that can be formulated in terms of a suitable
Ising model. This is possible in many cases. For example, in the case of
the liquid mixtures of Moldover and Cahn (1980), one may represent the
binary system methanol-cyclohexane by a semi-infinite Ising model, and the
spectator vapour phase by a short-range surface field hy plus a long-range
field k., acting on the semi-infinite system. Varying the concentration
of an additional component, in this case water, is equivalent to varying
the temperature in the Ising model, and so on. The generic situation in
these systems is that the effective surface field h;, which is responsible for
preferential adsorption of one of the phases, varies in some smooth fashion
with, e.g., temperature, and assumes a finite nonzero value at the bulk
critical point of the adsorbate, T.. Note that h; may at some temperature
pass through zero, thereby reversing the preferential adsorption (Durian
and Franck 1987), but there is in general no reason whatsoever for that
temperature to coincide with 7,. Thus, the generic situation is that a
nonzero surface field is present, below, at (and above) T,. As a result
the Ising model will have a nonzero surface order parameter m; (a surface
magnetization, or density or concentration excess), also at T.. This property
shows up experimentally in the form of critical adsorption (Liu and Fisher
1989), or, for ferromagnets, in the form of surface magnetization at the
Curie point. The calculations indicate that this feature (m; # 0 at T¢)
is systematically associated with complete wetting in the two-phase region
near (typically below) T..

In Ising model language, if m; # 0, the surface is often said to be
“ordered”. Unfortunately, this nomenclature is confusing, because many
physicists have specific ideas about surface order in the context of which it
would be quite contrary to say that the interface between a liquid mixture
and its vapour is “ordered”. In order to reduce and hopefully eliminate con-
fusion, one should specify the kind of order that applies. In the presence of
an ordering “field” (in the general sense) the order is “imposed”. In absence
of such fields, true long-range or “spontaneous” order is possible (and can
be measured by examining the decay of a suitable net correlation function).
The calculations now show that both “imposed” and “spontaneous” surface
order, at T, are associated with complete wetting below 7. Imposed order
is generic for the standard wetting problems (fluids and magnets at surfaces
or interfaces), whereas spontaneous order is possible in wetting problems
in systems with internal defect planes like neutral grain boundaries, for
example.

Conversely, if my — 0 for T — T, the surface is said to be disordered
at T¢, again in Ising model language. While this is highly exceptional (if
not impossible) for standard systems, it is likely to occur in grain boundary
wetting, at least for neutral grain boundaries. The calculations show that
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surface disorder at T (i.e., the total absence of field-induced or spontaneous
order) is associated with partial wetting below 7.

The conclusion, as formulated in the language of surface critical phe-
nomena, is that the Ordinary transition is strongly associated with partial
wetting, and the Extraordinary transition with complete wetting. For con-
venience we have, following Bray and Moore (1977), generalized the term
Extraordinary transition to the case of “imposed” order, although nowadays
the term “Normal transition” is preferred for systems with H; # 0. In con-
clusion, we can classify wetting behaviour (partial or complete wetting) near
T according to the surface transition that the system undergoes at T.. The
main universality classes of surface critical phenomena thus have a clear and
strong association with wetting phenomena. In our opinion this connection
illuminates the universality of wetting near critical points, and represents
new progress on the important issue pioneered by Cahn (1977, 1979).
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