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A simple lattice model with two Ising spins is proved to explain prac-
tically all structural phase transitions observed in almost 40 different
A’A"BX,4 compounds. Ising variables describe four discrete orientational
states of BX4 tetrahedra. Symmetrical nearest-neighbour interactions
between spins stabilize crystallographic structures with up to four for-
mula units per elementary cell. Longer-period, as well as incommensu-
rate modulations of the order parameter, both along the hexagonal axis
and in the perpendicular plane, originate either from symmetrical next-
nearest-neighbour or, competitively, antisymmetrical nearest-neighbour
interactions.

PACS numbers: 05.50. +q, 64.60. Cm, 64.70. Rh

1. Introduction

In this review we discuss long-period, also incommensurate, structural
modulations observed in a large number of compounds of a general chem-
ical formula A'A"BX4 [1-3]. The compounds under consideration form
ionic crystals with A’ and A" being singly charged cations and BXy, dou-
bly charged anions. Apart from compounds composed of cations that are
extremely small when compared to anions (Li;SO4, LiNaSO4, Na;SO4 and
some iodide salts), crystallographic structures of all other known A'A"BX,
compounds can be considered as slight distortions of the prototype a-K2504
structure of P63/mme symmetry (Fig. 1). In the prototype structure the
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Fig. 1. Nonpolar and nondistorted a-K3SO4 structure of P63/mmc symmetry as
projected along the ¢ and a axes. The same notation of the axes is used throughout
the paper. Hexagonal (Z = 2) and orthorhombic (Z = 4) unit cells are shown.
Relative magnitudes of ions apply approximately to A’ = Lit, A” = K*, and
BX, = so}*. Note the impossibility of free rotation of BX4 tetrahedra. The
projection of four different sterically allowed orientations of the tetrahedra is shown.
They are labelled with the help of two Ising variables: ¢ = +1 (position with the

apex up or down, respectively) and 7 = £1 (turn to the right or left, respectively).
After Ref. [4].

BX, tetrahedra are oriented at random. A variety of experimentally ob-
served structural phase transitions result from various orientational order-
ings of BX4 groups accompanied by ionic displacements.

In the prototype crystallographic structure the anions BX4 form a
hexagonal close-packed (hcp) structure of spheres (Fig. 2). The cations
A" occupy octahedral interstitial sites in between the spheres, whereas the
cations A' occupy pairs of tetrahedral interstitial sites combined into single
cages. The cations A’ larger than lithium fit these cages only after an ex-
pansion of the whole structure in a plane perpendicular to to the hexagonal
axis. In consequence, for most A'A"BX, compounds the ¢/a ratio of the
prototype unit cell (compare Fig. 1) is considerably smaller than the value
v/8/3 ~ 1.63 for the ideal hcp structure.

Each BX4 anion is surrounded by five A’ and six A" cations. There are
twelve different equivalent orientations with the minimum potential energy
of BX4 tetrahedron in such a cationic environment. They can be grouped
into four discrete orientational states labeled with the help of two Ising
variables ¢ and 7. The variable ¢ = +1 describes the positions of the
tetrrahedron with the apex up or down, respectively, the c axis, whereas
the variable T = +1 describes the turns of the tetrahedron about the ¢ axis
to the right or to the left (Fig. 1). In a rigid lattice transitions between the
states (o, 7) are sterically forbidden and become possible only after taking
into account the lattice vibrations.
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Fig. 2. Hexagonal close-packed structure of spheres projected onto the hexagonal
plane. Octahedral and tetrahedral interstitial sites are seen.

Three orientations of minimum energy within each of the four states
(o, 7) correspond to slight tiltings of the trigonal axis of the tetrahedron in
three distinct vertical planes rotated mutually by 120° around the ¢ axis.
The energy barrier that has to be overcome while changing the direction of
tilting is not of steric nature and rather low. Since in all but one (phase
transition in LiKSO4 at 190 K) cases studied so far the order in (o, 7) states
automatically distingushes particular tiltings there is no need to consider
the additional substates explicitely.

The statistical model with orientational states of BX4 tetrahedra de-
scribed with the help of two Ising spins was proposed by the author and
his coworker, Mohamed Halawa, in 1986 [4]. The model appeared to be
able to explain practically all the structural phase transitions observed in
A'A"BX4 compounds with the prototype a-K2S04 structure [3]. The aim
of the present paper is to present in some detail the particular interactions
between spins which are responsible for longer-period or incommensurate
structural modulations, both along the hexagonal axis and in the hexagonal
plane.

2. Experimental data

Nowadays, almost 40 different A’A""BX4 compounds occurring in the
prototype a-K2504 (P63/mmc) or $-K2S04 (Pmen) high-temperature
phases are known to undergo various structural phase transitions with falling
temperature. The essential reliable experimental information is collected in
Figs 3 to 5. Seven classes, I to VII, of the compounds are distinguished.



1104 M. KURZYNSKI

Pmen (2 =4) |P6s/mme (2 = 2)
ferroelastic |
K380, 860
Rb3Se04 822

Pmen(2=4) | qalongb* |P6s/mme(Z=2)
ferroelastic | incommens. |

KaMoOy 593 733
KaWO4 643 707
Rb;WO, 681 753

II

Clel (Z=24) | P2en (2=12)] q=(1-6)c"/3 | Pmen (2=4) |P6s/mme(Z =2)

ferroelectr. ¢ | ferroelectr. a | incommens. | ferroelastic |
K35¢04 93 130 745
Rb2CoCly 66 192 295
Rb,ZnCl, 4 192 303
Rb;CoBr, 193 333
Rb2ZnBry * 194 347
K32nCl, 145 403 553
K2CoCly 142
K,ZnBr, 290 561
K2CoBr4 300 555

P2ien (Z2=12)| Pehin(Z2=16)| q=(1+8)c*/4 | Pmen (2 =4)

ferroelectr. a | | incommens.
(NH,)22ZnCly 268 * 364 406
(NH4)2ZnBry 217 395 432

Fig. 3. Phases observed in Classes I and II of A’A”BX4 compounds. Transition
temperatures are in kelvins. Two phase transitions without a change in the mod-
ulation vector are marked by an asterisk. These are a first order transition from
P21cn (Z=12) to Plcl (Z =12) phase in Rb;ZnBr,4 below 76 K, and a first order
transition from Pc2in (Z = 16) to Pcll (Z = 16) or P21/c1 (Z = 16) phase in
(NH4)ganh below 319 K.

Transition temperatures are given in kelvins. Apart from the space symme-
try group and a number Z of formula units per elementary cell or (in the
case of incommensurate structures) a value of the modulation vector g, also
ferroic properties, if present, of each phase are included. References to a
huge experimental literature comprising more than thousand items can be
found in the reviews by Cummins [1] (only compounds with incommensurate
phases), Tomaszewski (2] and Kurzyniski [3].
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T,NiCl, (221 — 275 — 283)

TaMnCl, (172 ~ 267 — 291 — 209)
TaFeCly (240 — 266 — 267 — 270 — 281)
T2ZnCl, (168 — 275 — 280 — 296)
TaCoCly (192 — 276 — 280 — 281~ 293)

: phase P12,/¢1 (Z2=4)
: phase P2y/c1l1 (Z2=8)

1

% T2CdBrq (272), ToHgCly (278),
=g : phase P2;2,2, (Z=28)

i

]

§

TzCOBu (287), TzZnBH (288)

: phase P2;cn (2 =20)
: : phase P112y/n(2=12)

IV

Pbc2,(Z2=8) |P12y/cl (Z=4)| Pmen(Z2=4)
ferroroelectr. ¢| ferroelastic |
T2Znl, 210 254

P121/c1(Z=4)| Pbc2,(Z=8) | gq=(148)b*/2 | Pmen(Z=4)
ferroelastic | ferroroelectr. ¢| incommens. |

T2CuBry 237 242 272

Pbe2) (Z2=8) | Pmen(Z=4)
ferroroelectr. ¢ |
T, Cdly 240

Fig. 4. Phases observed in Classes III and IV, composed of T;BX4 compounds
with T denoting tetramethylammonium, N(CHj),. Transition temperatures are
in kelvins. Data for Class III are presented in the form of experimental “phase
diagram”. For this case, successive transition temperatures are given in brackets,
and the modulation vectors for commensurate phases in units of the reciprocal
lattice constant ¢*. The shaded area corresponds to incommensurate modulations.
The vertical line represents transition to Pmcn (Z =4) phase. Proportions between
particular temperature ranges are not kept. Not shown, but marked by an asterisk
are transitions to the alternative phase with ¢ = 1/3, P2,2,2; (Z =12), observed
in T2ZnCly and T3CoCl, below 155 K and 122 K, respectively. In four compounds
T;CdBry, T2HgCly, T3CoBr4, and T;ZnBry a direct transition from Pmen (Z=4)
to P12;/c1 (Z =4) phase occurs.
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PL2yn (Z=4)|P12y/cl (2=12) ¢=(1 - §)c*/3

Pmen (Z=4)

lastic

-
ier c

T: C“C‘q

PI(Z=4)

263

ferrc

|P112y/n (Z=4)]

202

q=66'

298

Pmen(Z=4)

ferroelastic | ferroelastic | incommens.

Clg HgBu
Cs3CdBry
Cs,Cdl,

165
158
183

LiCs50,

P2cn (Z2=28)

230
231
260

P112y/n(2=4)

243
252
332

Pmen (Z=4)

ferroelastic

g=2(1-8)e"/5

201

Pmen (Z=4)

ferroelastic | ferroelectr. a | ferroelastic

LiRbSO4

VI

438 457

Clcl (Z=16)

472.7

ferroelectr. @

P2,/c11(Z=8)

473.1

incommens.

P2ien (Z2=4)

474.5

Pmen (2 =4)

ferroelastic

ferroelectr. a

LiNH(504 21 283 460

?|_Ce(Z=4) | P31c(Z2=2) | P63(Z=2) |qin a"b°plane]P6;/mme(Z =2)

LiKSO,
LiRbCrO,

VII

| ferroelastic | pyroelectr. ¢ | pyroelectr. ¢ | ferroelastic 1

135 190 hysteresis 205-250 708 943
550 606 843
P3m1(2=2) |

NaKSOq 4537

Fig. 5. Phases observed in Classes V, VI and VII of A’A"’"BX4 compounds. Tran-
sition temperatures are in kelvins. T = N(CHjs)s.
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3. Four-sublattice ordering

In the four-dimensional space spanned by the states (o, 7) of a single
tetrahedron there are four operators I (unit), o, 7 and o7 that are diagonal,
t.e. do not change these states. We are not going to deal with dynamics
of orientational states, so we confine our attention only to these diagonal
operators. The space of orientational states of a pair of BX, tetrahedra
is 4 X 4 = 16-dimensional and the spectrum of values of the interaction
energy in these states is in general determined by a combination of 16 pos-
sible products of operators I, o, 7 and o7 attached to the corresponding
tetrahedra. Such a combination must be invariant with respect to the local
symmetry group of the pair.

There are two inequivalent nearest-neighbour (nn) pairs of sites in the
hcp structure: those that lie in and those that lie out of the plane per-
pendicular to the hexagonal axis (Fig. 6). Symmetry conditions reduce the
most general Hamiltonian of nearest-neighour orientational interactions to
the form (4]

H™ =J Z gio;+ K E 7T+ L Z OiTiOTj

nn in nn in nn in
+J' Z oioj+K' Y mri+ L Z 0iTiO;T;
nn out nn out nn out
1 1 ! N .
+ M Z oioi(r; — 1)+ M Z 1iTi(0i — 05). (1)
nn in nn out

In Eq. (1), “nn in” and “nn out” denote summation over nearest neighbours
lying in and out of the hexagonal planes, respectively. Each pair in the sum
is assumed to be counted singly.

The interaction between spins can be either direct (purely electrostatic,
mainly octupole-octupole interaction between BX, tetrahedra) or indirect
(coupling of orientations through ionic translations, both static and dy-
namic). The latter interaction is responsible for particular orientational
orderings being accompanied by specific lattice distortions. Because of the
number of parameters (note that the Hamiltonian (1) includes only the
nearest-neighbour interaction) any attempt at quantitative fit of the theory
to experimental data is in general methodologically meaningless. Conse-
quently, it is sufficient to study thermodynamics of the model only qualita-
tively, in the simplest molecular-field approximation (MFA).

The nn interaction on the hep structure in, e.g., the o Ising subsystem:

HERO = Z 005 + J' Z 00 (2)

nn in nn out
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(1)
@ }'W @ para, P:
1 m=my=mg=my=0
ferro, F:
3 my=my=mg=my #0
{C) V3> antiferro A:
¢ ™ my=my = —M3 = —my
antiferro B:
my = —my = —m3 = my
a antiferro C:
@ @ m1=—mg=m3=-—m4

Fig. 6. Geometry of the hep structure. Orthorhombic (Z = 4) unit cell is shown.
There are two kinds of nearest neighbours distanced by a and a’, respectively
(a = a' for the ideal hcp structure with ¢ = 4/8/3 = 1.63a), and two kinds of next-
nearest neighbours distanced by a' and &' = c, respectively (a" = o' for the hep
structure shrunk along the hexagonal axis in such a way that ¢/a = 4/3 = 1.33,
which is approximately the case for most A’A"”BX4 compounds). Labelling of four

sublattices is indicated and five possible orderings are listed.

can stabilize at most a four-sublattice structure of ordering (Fig. 6). The
molecular-field theory with the four order parameters

mMe = (‘R)iEa; s=1, 2,3, 4, (3)

(the brackets (. ..) mean the self-consistent canonical ensemble average) pro-
vides five possible orderings: a para (P) phase, m, = 0, a ferro (F) ordering,
m, = 1, and three types of antiferro orderings A, B, and C (Fig. 6). The
molecular-field theory for the entire Hamiltonian (1) with the four additional
order parameters

ng = (Ti)iea; s=1,2,3,4, (4)

considered by the author and Mohamed Halawa [4] determined regions of
stability of 25 generally possible phases: PP, PF, ... BC, BC, where the
first and the second letter correspond to the order of the variable (o) and
(7}, respectively.

Assuming at most four-sublattice ordering and the approximation

(oimi) = (o:)(ms), (5)

antisymmetrical coupling terms with the parameters M and M' in the
Hamiltonian (1) do not contribute to the mean-field energy. However, the
effect of symmetrical coupling terms with the parameters L and L' does not
vanish. In the approximation (5), it consists formally in a replacement of
the parameters J, J' and K, K' of the interaction within, respectively, the
o and the 7 subsystem, by the effective temperature-dependent parameters
[5]):

Jet =J + (riti)L, Jog=J' + ()L, (6)
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and
K.g =K + (0i0;)L, Kl.g=K'+ (oio;)L'. (7)

Only 8 of 25 possible orderings have been observed so far in A'A"BX4
compounds. They are given and identified in Table I. In Table II, all ex-
perimentally observed transitions between phases determined by the four-
sublattice model are listed. The symmetrical o-7 coupling allows various
sequences of successive phase transitions with temperature, and makes some
transitions discontinuous. This is also the origin of a change of sign with
temperature of the effective K' interaction, Eq. (7), which explains a change
of the r-ordering from ferro to antiferro one observed in the Class VI com-
pounds LiKSO4 and LiRbCrO4 (Table II). A discontinuity of 7-para to
T-ordered phase transition originated from the symmetrical o-7 coupling
can explain the lack of T-ordering, observed down to the very low tempera-
tures in the Class I compounds, Fig. 3, as a consequence of a possible large
hysteresis.

TABLE I

Experimentally observed crystallographic phases with up to four formula units per
elementary cell.

hexagonal P63/mmec(Z=2) PP prototype observed only in Classes I, II, VI

hexagonal P63(Z=2) FF Class VI
trigonal R31c(Z=2) FA Class VI
trigonal R3ml(Z=2) AP Class VII (NaKSO,)

orthorhombic Pmen(Z=4) BP all compounds except Classes VI and VII
orthorhombic P2;en(Z=4) BA LiNH4SO4 and Rb;BeF,

monoclinic P112;/n(Z=4) BF Class V except LiNH4SO4 and Rb;BeF4
monoclinic P12,/c1(Z=4) BC Classes Il and IV (T;BX4 compounds)

TABLE II

Experimentally observed transitions (with falling temperature) between phases de-
termined by the four-sublattice model.

PP — BP Classes I and 1I
BP — BC Classes III and IV
BP — BF or BA Class V

PP —- FF — FA Class VI

? — AP Class VII
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4. Longer-period modulations along the hexagonal axis.
The ANNNI model and its derivatives

Longer-period, also incommensurate modulations of the structure along
the hexagonal ¢ axis have been observed in the Classes II, III and V of
A'A"BX,4 compounds (Figs 3 to 5). Two mechanisms responsible for sta-
bilizing such modulations are possible. The first, proposed by Yamada and
Hamaya in 1983 [6], is a competition of interactions between nearest and
further distanced 7 (in our notation) spins.

On distinguishing explicitely the nearest- and the next-nearest-neighbour
7-7 interactions along the c¢ axis at distances denoted in Fig. 6 as a' and

a', respectively, one obtains an orientational Hamiltonian

HANNNL _ gt N© o+ K 7;T; + remaining interactions, (8
3 J g

nn’ nan’/’

of the form of the well-known ANNNI (axial next-nearest-neighbour Ising)
model [7, 8]. Assuming that interactions not explicitely mentioned in Eq. (8)
secure ferro or antiferro r-ordering in hexagonal planes, and that each plane
can form a separate sublattice, labelled with an index [/, the MFA free energy
for the Hamiltonian (8) is of the form

FANNNL Z (Kon? + Kininipy + Kannyys)
l
+ 1kT > [(1 4 ) In(1 + ny) + (1 — ny) In(1 - n) — 21n2].
{

(9)

In Egs (9), N is the number of sites in each plane. The parameters K,
and K, depend not only on the parameters K' and K'', but also (self-
consistently) on parameters of the remaining interactions and on temper-
ature. We are not, however, going to deal with a particular form of this
dependence here. An additional Ky term controls the degree of 7-spin or-
dering in hexagonal planes. Its value is determined mainly by the value of
parameter K characterizing the in-plane nn interaction between 7 spins.

Minimization of the free energy (9) leads to a set of self-consistent equa-
tions

2Kon; + Ki(ni—1 + niq1) + Ko(ni—2 + nyy2)
+ 1T [In(1 + ;) — In(1 — ny)] = 0. (10)

It is easy to show that Eqs (10) have solutions describing long-range modu-
lations of the order parameter n;. Indeed, for small values of n;’s (i.e., in the
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vicinity of a continuous phase transition) these equations can be linearized,
In(1 £ n;) = £n;, and, after introducing the Fourier transforms:

ng = Ze”iq‘n,, (11)
l

one gets, for n, # 0, the equation:
kT = —2K¢ — 2Ky cosq — 2K, cos2q. (12)

This determines the temperature of a continuous phase transition of the
order-disorder type. For positive (antiferro) K2, within the range of pa-
rameters —4K; < K; < 4K, a value of the modulation vector ¢ that
maximizes the temperature (12) varies continuously from 0 to = according
to the equation

cosg = —K,/4K,, (13)

and only outside this region is ¢ constant, taking the value either 0 or =.
The latter means that points K3 = +4K5, corresponding to the transition
temperature kT = 6K, — 2K, are Lifshitz points [7].

Eq. (10) can be considered as a recurrence relation describing a discrete
4-dimensional mapping:

(ni—2,ni—1, 7, ny41) = (Mi—1, N N1, Pp2) - (14)

Numerical solutions with boundary conditions n;;; = n; for finite, not
very large values of L, and the soliton approximation in regions close to the
order-disorder continuous transition lead, comparing corresponding values
of the free energy, to the phase diagram given in Fig. 7 [7, 8]. In Fig. 8 it is
shown that the model describes qualitatively all, except for the few marked
in Figs 3 and 4 with an asterisk, sequences of transitions between phases
modulated along the ¢ axis observed in compounds of the Classes II, III and
V. Slopes of the lines determining successive transitions can be explained
as being due to a temperature dependence of the effective parameters Ky
and K;. We are not going to study any particular form of this dependence
but let us point out that it originates mainly from a coupling to the o spin
subsystem (determined by the parameter L', see Eq. (7)).

Stabilization of the phase ¢ = Z (in units ¢*) at T = 0 observed in the
Class II compounds and destabilization of that phase observed in LiRbSO4
can be considered as resulting from the third-neighbour interaction or a
coupling to a static strain [6]. There are, however, also other ways to change
the phase diagram in Fig. 7.

The free energy (9) can be rewritten in terms of a generalized “action
integral” [9]:

FANNNL /7 Z [-3K1(ni41 — mp)? — 1K2(nig2 — mi)? + V(ng)] (15)
l
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kT/K,

104

2 K/K, 4

Fig. 7. Phase diagram of the ANNNI model in the MFA, Eq. 9, for Ko = —2|K;|.
Values of the modulation vector of main commensurate phases are given in units
of the reciprocal lattice vector 2x. The shaded area corresponds to longer-period
commensurate as well as incommensurate phases. Only the half-plane Ky > 0 is
shown. The half-plane K; < 0 is a mirror image of the former with respect to the
axis K; = 0; in this range the modulation vectors ¢ should be replaced by % -q.
The vector g = 1 describes the antiferro ordering whereas the vector ¢ = 0, the
ferro one. After Ref. [7], redrawn in dimensionless coordinates referred to the nnn
interaction parameter K; > 0.

with the index ! having the meaning of discrete time and, for K¢ = 0, the
“potential energy”
V(n) = (K1 + Kz)n? + 2kT [(1+ n)In(1 + n) + (1 — n)In(1 — n)] . (16)
Taylor expansion of Eq. (16) up to the forth power:
kT kT
V(n):(K1+K2+—§—)n2+§n4+~--, ()

reconstructs the model considered by Janssen and Tjon [10] and called by
them the DIFFOUR (discrete frustrated ¢*) model. In the original notation
of these authors:

2, =4%/kT/3n;, A=+V3kT, B=K;\/3/kT, D=K;\/3/kT, (18)

the free energy (15), (17) reads

FPIFFOUR /y _ Z [%z% + iz} + Bejzga + Dz,z,“] . (19)
]
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CuyHgBry ete.

4 2

=
N
_5
=
'S

Fig. 8. The ANNNI model. Qualitative fitting of sequences of transitions between
phases modulated along the ¢ axis observed in the Class II, III and V compounds.
Slopes of the lines connecting the successive transitions are due to temperature
dependence of the effective parameters Ky and K3. This dependence originates
mainly from a symmetrical coupling to the o spin subsystem. Values of the mod-
ulation vector are referred to the reciprocal lattice vector ¢* of the prototype hcp
structure (Figs 1 or 6; since there are two haxagonal layers of BX4 tetrahedra per
the unit cell constant ¢, the dimensionless reciprocal lattice vector 2« corresponds
to 2¢*). We assume that the modulation vector ¢ belongs to the extended Bril-
louin zone rather than to the reduced one as in Figs 3 to 5. For acoustic modes
of modulation (Class III compounds) both vectors coincide, gext = gred, Whereas
for optical modes of modulation (Class II and V compounds), they are related by
equation g.xt = ¢* — ¢req. The phase with ¢ = %c* is stable down to the very low
temperatures in the Class II compounds whereas in LiRbSOj, it does not occur at

all.

The corresponding phase diagram in the coordinates B/D = K;/K, and
A/D = kT/K, [11] is given in Fig. 9. Jannsen [12] showed that the semimi-
croscopic DIFFOUR model describes modulated phases in A'A"BX4 com-
pounds as well as the generalized ANNNI model proposed by Yamada and
Hamaya [6].

Still another model that could be interpreted as a derivative of the
ANNNI model was considered by Villain and Gordon [13], and Axel and
Aubry [14]. In appriopriately normalized variables u; o n; one can rewrite
and approximate the double-well potential (17) according to the formula

V(u) = 2(uw? - 1) - 2eou? =~ 1(u-0)? - 1cou?, (20)
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2 B/D 4
Fig. 9. Phase diagram of the DIFFOUR model, Eq. (19). The modulation vectors
of main commensurate phases are given in units of 2r. The shaded area corresponds
to longer-period commensurate as well as incommensurate phases. Dimensionless
coordinates B/D and A/D correspond, respectively, to dimensionless coordinates
K;/K, and kT/K, in Fig. 7. The half-plane B/D < 0 is a mirror image of the
half-plane B/D > 0. Redrawn after Ref. [11].

where cg is a parameter and ¢ denotes the sign of u,
o = sign(u) = £1. (21)

The total free energy (15) than takes the form

FELRIL /)y _ %Z [—cou? + ea(uppy — w)? + ca(uggz — w)? + (u - az)z] ’
l

(22)
where cg, ¢; and c; are three independent parameters. The trick of Villain
and Gordon [13] and Axel and Aubry [14] was to consider o as a variable
completely independent of u. On minimizing Eq. (22) with respect to u; and
performing the Fourier transformation as in Eq. (11), one gets a linear rela-
tion ug o og which, when put back after the inverse Fourier transformation
into Eq. (22), results in an expression having the meaning of a Hamiltonian
of some long-range interaction between Ising spins ;. The so obtained EL-
RII (effective long-range interaction Ising) model was studied numerically
for finite temperatures in the MFA by Mashiyama [15] and, later on, applied
for description of modulated phases of A'A""BX4 compounds by Kawamura
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et al. [16]. Fig. 10 presents the phase diagram of the ELRII model for
cop = % It is seen that also this model describes qualitatively all sequences
of transitions between modulated phases observed in the Classes II, III and
V of A'A"BXy4 compounds, except those few marked in Figs 3 and 4 with

an asterisk.

kT/c,

2 4

:ll /¢, 4

Fig. 10. Phase diagram of the ELRII model, Eq. (22), for co = 1. The modulation
vectors of main commensurate phases are given in units of 2x. The shaded area
corresponds to longer-period commensurate as well as incommensurate phases. The
half-plane ¢; < 0is a mirror image of the half-plane ¢; > 0. After Ref. [15], redrawn
after Ref. [16].

5. Longer-period modulations along the hexagonal axis.
The AANNDI model

The second, alternative mechanism of stabilizing longer-period modu-
lations of structure along the hexagonal axis in A’A"”"BX4 compounds was
proposed by the author of the present review and his coworkers [5, 17, 18].
The essential role in this mechanism is played by the nearest-neighbour out-
of-plane antisymmetrical M' interaction in the Hamiltonian (1). Formally,
the existence of this as well as the in-plane antisymmetrical M interaction
result from the lack of the centre of symmetry for nn pairs on the hcp struc-
ture. The strengths of both interactions can be evaluated by comparing
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LoAD DA

-8

Fig. 11. Two configurations of nn pairs of BX, tetrahedra in (a) and out (b) of
hexagonal plane (b). Their energies differ by the term of antisymmetrical interac-
tion %MO’IO'Q(‘H — 72) {a) and %M'nrg(al — 032) (b). After Ref. [18].

electrostatic energies of different configurations of nn pairs of BX4 tetrahe-
dra drawn schematically in Figs 11 (a) and (b).

Both antisymmetrical terms in the Hamiltonian (1) contribute to the
MFA free energy only when the assumed ordering is more complex than the
four-sublattice one (compare Section 3). Like the models of longer-period
modulations considered in Section 4, also the models with antisymmetrical
interactions can be named with the help of several-letter abbreviations.
Thus, we have proposed [18] to call a statistical model involving the out-
of-plane M’ term, the AANNDI (axial antisymmetrical nearest-neignbour
double Ising) model, and that involving the in-plane M term, the PANNDI
(planar antisymmetrical nearest-neighbour double Ising) model.

The simplest non-trivial version of AANNDI model distinguishes ex-
plicitely two terms and is described by the Hamiltonian

HAANNDIL _ gt Z TiTj + %M ! Z 7;7j(0; — 0;) + remaining interactions,
nn’ nn’

(23)
where “nn’ ” denotes the same as “nn out” in Eq. (1), i.e. summation over
the nearest neighbours lying out of the hexagonal plane (distanced by a' in
Fig. 6). Also in this case we assume at first that interactions not explicitely
mentioned in Eq. (23) secure appropriate ferro or antiferro orderings in
hexagonal planes. Under such an assumption and denoting

wi = 03T, s = (Wi)ics, (24)

we find the most general MFA free energy for the Hamiltonian (23) to be
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FAANNDL/N =K1y " mimgyy + $My ) (rimugn — mirigs)
l l

+ 3T D [(1+4 m)In(1 + ny) + (1 — ny) In(1 — ny) — 21n 2]
)

+ 36T Y (14 m)In(1+ 7)) + (1 - r)In(1 — 7)) — 2In2]
1

(25)

where N is the number of sites in each plane. The free energy (25) does not
vanish only if 7- and w-orderings in the hexagonal planes are both of ferro
or antiferro type. The parameters K1 and M; depend on the parameters K'
and M’ and (selfconsistently) on parameters of the remaining interactions as
well as temperature. We shall not study any specific form of this dependence
here.

Minimization of the free energy (25) with respect to n;’s and r;’s leads
to a set of self-consistent equations

Ki(ni_y + niyq) + 3Mi(ri_y — 7i41) + 3T In(1 + n)) — In(1 — ;)] = 0,
— 3 Ma(ri_1 — rig1) + 3AT In(1 + 7)) — In(1 — ;)] = 0.
(26)

Eqgs (26), like Eqs (10), have solutions describing long-range modulations
of the order parameter n; (as well as r;). Indeed, after linearization and
introducing the Fourier transforms n, and r4 one gets, from the condition
of a non-zero solution, an equation for the continuous phase transition tem-
perature:

kT = —Kycosq + \/Klzcoszq-{»Mfsinzq. (27)

The sign of M; has no physical meaning; we assume it as positive. To
maximize expression (27), the modulation vector has to be ¢ = 0 for K; <
—Ml/\/§ and ¢ = 7 for K; > Ml/\/§ Within the range —-Ml/\/§ <Ky <
M/ V2 the maximizing value of ¢ varies continuously from 0 to 7 according
to the equation

cosg=—K;/y/M? - K2. (28)
Points K; = £+ M,/ \/5, corresponding to the temperature kT = V2Mjy, are
Lifshitz points.

In general, Eqs (26) can be considered as a recurrence relation describing
a discrete 4-dimensional nonlinear mapping:

(nl—-lsrl—lanl, 1‘[) - (nl’rl,nl+larl+l)' (29)
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They have been solved numerically by Bartkowiak [18] for periodic boundary
conditions n;4 7 = ny, ri4 7 = r; with L from 1 up to 13. The phase diagram
resulting from the comparison of the corresponding free energy values and
the (assumptive) soliton approximation is given in Fig. 12. The MFA result
is exact for the ground state. This is suggested by the coincidence, at
T = 0, of the minimized MFA free energy with that obtained exactly with
the aid of the transfer-matrix method for the corresponding one-dimensional
counterpart [17].

1.5 1

kT/M;

1.0 1

0.5 1

05  K/M, 10

Fig. 12. Phase diagram of the AANNDI model in the MFA, Eq. (25). The
modulation vectors of main commensurate phases are given in units of 2r. The
shaded area corresponds to longer-period commensurate as well as incommensu-
rate phases. The half-plane K; < 0 is a mirror image of the half-plane K; > 0;
modulation vectors q should be there replaced by modulation vectors % — q. After
Refs. [3] and [18].

The phase diagram of AANNDI model, Fig. 12, is topologically equiv-
alent to the phase diagram of ANNNI model, Fig. 7. However, physical
contents of the free energies (9) and (25) are slightly different. The free
energy (9) describes only behaviour of the order parameters n;; the order
parameters m; are quite independent and can be chosen to behave arbitrar-
ily, e.g., in agreement with experiment. On the contrary, in the free energy
(25) the parameters n; are coupled to the parameters r; and, through the
relations

O; = w;iTi, My = (WiTi)ica, (30)
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to the parameters m;. The first of Eqs (30) stems from the first of Eqs (24),
regarding the fact that squares of the Ising variables are equal to the unity.
Note that from a comparison of relations (24) and (30) it follows that in
general r; # mn;, unless the approximation (5) is assumed.

For stable solutions of Eqs (26) with ¢ = 0 and ¢ = % (in units 27},
as well as for the 7-para solution, there is always r; = 0 and m; = 0
[18]. As a consequence, the phase diagram of AANNDI model, Fig. 12,
cannot be applied directly for a qualitative explanation of sequences of phase
transitions observed in the Classes II, III and V of A’A"BX4 compounds
gthe phases BF, BA and BC that should correspond to the ¢ = 0 or ¢ =
5 phases, and the BP phase that should correspond to the T-para phase
evidently have non-zero o-orderings). To stabilize non-zero o-orderings,

additional terms

J' 2 005 + r Z OiTi0;T; (31)

nn’ nn’

can be introduced explicitely into the Hamiltonian (23). The Hamiltonian
(23) together with the terms (31) have been analyzed in MFA by the au-
thor and Bartkowiak [18] and by Pleimling and Siems [19]. The first term
in Equation (31) appeared not nonly to stabilize the o-orderings but, si-
multaneously, to expand the region of stability of ¢ = % phase in the phase
diagram, Fig. 12, at the expense of other modulated phases [18]. Fortu-
nately, the latter effect is compensated by the second term in Eq. (31) [19].

6. Two degrees of freedom per layer

In the previous MFA analysis of the AANNDI model we have assumed
either ferro or antiferro orderings of the spins in the hexagonal planes. We
reject this assumption now, but to avoid introducing too many variables, we
assume a rigidly fixed order of the o spins of the B type (compare Fig. 6):

Gic1 = —0ic2 = —0ig3 = Oiga = 1. (32)
Under such an assumption and on introducing new variables:
= _1 —_1
v = —3(n11—n2), wi=-—35(nii+n2),
=1 -1
Vipr = 3(na41 —m3a41)y wipn = 3(nge1 +n3041), (33)

the most general MFA free energy for the Hamiltonian (23) extended by the
additional terms (31) takes the form

an 1
FAANNDLYN = N (Kyvpupgy + Liwpwigy + $ My (viwigg - wivrg)]
1

+ 3ET (1 + v + w) In(1 + vy + wy) + (1 = v + w;) In(1 - vy + wy)

+ (1 + v —w)In(1 4 vy — w) + (1 = vy — wy) In(1 - v; — wy)], (34)
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where N is the number of sites in each hexagonal plane. The parameters

Ky, Ly and M; depend in general not only on the parameters K', L' and

M', but also on parameters of the remaining interactions as well as on

temperature. The fact that neither v; nor w; from Eq. (33) vanishes means

that we have now two degrees of freedom per each layer of the 7 spins.
Taylor expansion of Eq. (34) up to the forth power:

1
FAANNDY N N [ Kyvporgs + Liwpwigy + My (viw g1 —wivrr)]
;

+ 16T Y [(vF +wd) + L(of+wh) + vfw?] , (35)
l

can be compared with semimicroscopic free energies proposed, on the basis
of symmetry analysis, by Chen and Walker [20, 21]:

FOW/N = Z[%Jvzvlﬂ + 3T wiwig g + F(viwipr — wivigy))
1
+ ) o] + a'wf + 3(of +ul) + Fyofui],  (36)
1

and by Janssen [22, 23]:

FUN =3 [LA(z}+9]) (et +uf) + By
l

+ %K:v;"y? + Cziy141 + Dyle_]] . (37)

The only difference between Eq. (35) and Eqs (36) and (37) is the number
of parameters. Both in Eq. (36) and Eq. (37) there are five parameters
whereas in Eq. (35) there are, in fact, only three (one can always renormalize
variables, as in Eqs (18)).

The absence of the other two parameters follows from disregarding the
coupling of the order parameters v; and w; to a possible static distortion of
the lattice. The symmetry allowed distortion free energy, including purely
elastic quadratic terms, is of the form

FOBT /N = Z(quz,zvz + Vags jw; + Vaqq,1vwy)
1

+3Y (3W2gd, + tWsdd  + IWadd ). (38)
l

Normal modes ¢, 1, g3, and g4 of lattice distortion are labelled by one-
dimensional irreversible representations I';, I's and I, respectively, of the
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little cogroup C3, for the zone-center wave vector of the layer ! [21]. Mini-
mization of the distortion free energy with respect to the distortions ¢., ;:

FPST /9¢ 1 =0, (39)
leads to the relations
Vs V- V4
Q1= g 3= —-W—%wz, 94,1 = -Wt‘vlwta (40)

which, when put back to Eq. (38), make the terms vzz, wlz and vlzwl2 oceur

with independent coefficients in the expression for the total free energy
FAANNDI' | EDIST,

é 4 J+J

Fig. 13. Phase diagram for the free energy of Chen and Walker, Eq. (36), approxi-
mating the AANNDI model free energy in the MFA with two degrees of freedom per
layer. It is assumed that J = J', ¥y = 0 and a—a’ = 0.8. The modulation vectors of
main commensurate phases are given in units of 2r. The shaded area corresponds
to longer-period commensurate as well as incommensurate phases. The half-plane
J+J' < 0 is a mirror image of the half-plane J + J' > 0; the modulation vectors ¢
should be there replaced by %—q. The dotted lines represent continuous transitions
between phases with the same modulation vector distinguished, respectively, by an
additional index a or b. The space groups corresponding to particular values of the
modulation vector and additional indexes a, b or ¢ (the latter characterizes phases
stable in another parameter range) are listed in Table III. Redrawn after Ref. [21].

In Fig. 13 a phase diagram is given, constructed by Chen and Walker
[21] after numerical minimization of the free energy (36) for J = J',y =0
and a — a’' = 0.8. It differs from the phase diagram of the oversimplified
version of AANNDI model, Fig. 12, in two respects. First, in the phases
with ¢ = 0, ¢ = % (in units 27) and in the para phase we have now,



1122 M. KURZYNSKI

by assumption (Eq. (32)), a non-vanishing o-order. And secondly, there
are additional continuous phase transitions within phases with the same
modulation vector g, represented in Fig. 13 by dotted lines. In order to
distinguish different phases with the same modulation vector ¢, additional
labels a, b and ¢ are introduced (in the original paper by Chen and Walker
[21] they are denoted as I, IT and III, respectively). Table III gives the space
groups corresponding to particular commensurate values of the modulation
vector and particular additional labels.

TABLE III

Space groups of commensurate phases described by the free energy (36) (after
Ref. [21])

Modulation vector/2xr (Additional label) and space group
g=(2s+1)/2(2t +1) (a) P1121/n, (b) P21212:, (c) P112;
g=s/(2t +1) (a) Pc23n, (b) P2,/cll, (c) Pecll
g=(2s+1)/4t (a) P12, /c1, (b) P2icn

Note: s and ¢ are arbitrary integers

The free energy (36) not only describes the same observed sequences of
changes of the modulation vector with temperature as the ANNNI model
does, Figure 8, but also determines the space groups of the corresponding
phases. Moreover, it can explain transitions between different phases of the
same modulation vectors, marked in Figures 3 and 4 with an asterisk. The
low-temperature transition to the ferri ordered P1 (Z = 4) phase observed
in caesium compounds, Fig. 5, also has such a character. All observed
transitions of that type are listed in Table IV.

TABLE IV
Experimentally observed transitions between phases with the same vector of mod-
ulation along the hexagonal c-axis.

Gred/¢*  Qext/2¢* Z Transition Compounds
1/3 1/3 12 P2yecn — Plel Rb,ZnBry
1/4 3/8 16 P21n — Pcll (NH4)2ZDCI4
1/3 1/6 12 P1121/n---P212121 TanCh, TzCOCl4
0 1/2 4 P1121/n — PT CSgHgBI4, CSszBI4, CSszI4

Note: for relation between the reduced and the extended zone modulation vectors,
Qred and gext, respectively, see Fig. 8 caption.
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We conclude this section with a statement that both the ANNNI model,
Eq. (8), and the AANNDI model, Eq. (23) and (31), can describe all the
observed phase transitions in A'A""BX,4 compounds involving longer-period
or incommensurate modulations of structure along the hexagonal c-axis.
However, in order for the description be adequate, one has to assume that
interactions not explicitely considered in the models allow ferri-type order-
ings in hexagonal planes. This means that in the corresponding MFA free
energies two degrees of freedom per layer for the order parameter must be
taken into account. Chen and Walker [21] performed an analysis of the free
energy corresponding, under these additional assumptions, to the AANNDI
model. The same can be done for the ANNNI model. Both models de-
scribe to some degree the actual situation in A’A""BX4 compounds, though
the AANNDI model seems to be more close to reality, as interactions be-
tween nearest neighbours are usually much stronger than those between
next-nearest ones. Anyway, a general theory offers such a large number of
parameters than any attempt at its quantitative adjustment to the experi-
mental data is, at present, ambiguous, and so without any methodological
significance.

7. Longer-period modulations in the hexagonal plane

Apart from many cases of long-period modulations of the structure
along the hexagonal axis, a group (though less numerous) of longer-period
modulations in the hexagonal plane were also observed in A'A"BX,4 com-
pounds (Classes I, I, IV and VI, and LiNH4SOy4 in Class V, Figs 3 to 5).
The simplest example of such modulations are ferri and partially disordered
antiferro structures corresponding to triple-q and double-g modulations of
the order parameter in the hexagonal plane with the modulation vector value
|g| = = (Fig. 14; the antiferro ordering in the hexagonal plane considered in
Section 3 correspons to a single-g modulaton).

One obvious mechanism of longer-period modulations in the hexagonal
plane is a competition between the nearest- and the next-nearest-neighbour
interactions between spins in these planes (note that the nnn pairs in the
hexagonal planes are the fourth-neighbour pairs from the point of view of
the whole hcp structure, see Fig. 6). Restricting our considerations to the
single o Ising subsystem and denoting by J; and J2 the parameters of the
nn and the nnn interactions, respectively, in the triangular lattice of sites
in each hexagonal plane (J; = J), we consider the Hamiltonian:

HPNNNL _ 1N o0+ 02 Y oioi —HY 0. (41)
nn nnn i
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Fig. 14. Single-g, double-g and triple-q modulations of the order parameter on
the triangular lattice with |g] = x. Resultant orderings are antiferro, partially
disordered antiferro, and ferri ones, respectively. The corresponding elementary
cells are marked with bold lines.

In analogy to the ANNNI model, Eq. (8), we refer to Eq. (41) as the
PNNNI (planar next-nearest-neighbour Ising) model, though this terminol-
ogy is not commonly used. Nontrivial effects in the PNNNI model can be
due to the external field H term. No additional interactions outside the
plane are necessary.

Thermodynamics of the PNNNI model on the triangular lattice was
studied by a number of authors, among which we mention Kaburagi and
Kanamori [24], Nakanishi and Shiba [25, 26], Saito, Furata and Hojou [27],
and Matsubara and Inawashiro [28]. All the orderings stable at T = 0 are
shown in Fig. 15, and in Fig. 16 the groud-state MFA phase diagram for
the Hamiltonian (41), found by Kaburagi and Kanamori [24], is given. The
partially disordered antiferro structures, denoted as PD1, PD2 and PD3,
are stable only marginally. However, for finite temperatures the region of
stability of these phases expands [26—28].

Table V presents five experimentally observed cases of longer period
modulations in the hexagonal plane. Four cases of commensurate modula-
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~ |

Ix2

PD2

/\/!\

S 1\‘

N T\

Fig. 15. Possible ground-state orderings for the PNNNI model, Eq. (41), on the
triangular lattice. Boundaries of elementary cells are marked with bold lines; thin
lines join the neighbouring spins. Three types of partially disordered antiferro
structures are also shown.

@ gy, ferro
2x2 1x3
- PD3 —
Ix\3 PD2
1x2
PDI1

-

1 0 1 J 10,
®)
0 1x4
ferro
4 1x3
4/, 2 1 0

Fig. 16. Ground-state MFA phase diagram of the PNNNI model, Eq. (41), on the
triangular lattice for positive (a) and negative (b) nn interaction parameter J,. All
transitions are discontinuous. Notation of phases is explained in Figure 15. After
Ref. [24], modified. The partially disordered antiferro phases PD1 [28], PD2 [27]
and PD3 [26] are stable along the border of fully ordered antiferro 1 x 2 phase.
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tions, when restricted to a single layer and a single kind of spins, can be
interpreted in terms of three types of orderings provided by the PNNNI
model. These are the PD2, the 2 x 2 and the 1 x 4 orderings. In all three
cases the elementary cell contains four sites per layer. Note that the PD2
and the 2 x 2 orderings are stable only in non-zero external fields.

TABLE V

Experimentally observed crystallographic phases with longer period modulation in
the hexagonal plane.

Phase Modulation vector Compounds
incommens. g along b" KaMoOy4, KaWO4, Rb; WO,
Clcl (Z = 24) qg=(a"+b")/2 RbyBCly and K3;BCly, B = Zn, Co
Pbc2, (Z = 8) g="5"/2 Class IV
Clcl (Z = 16) g={a*+b"}/2 LiNH,S04
? g=(a"+¥V")/27 Class VI

The C1cl phases with the modulation vector ¢ = (a* + b*)/2, observed
in LiNH4504 and the Class II compounds, can be considered as the PD2
phase of the PNNNI model, assuming that the spins o in Eq. (41) are
replaced by the spins w = o7. An effective external field can be considered
as originating from o;0; = w;T;w;T; or T;7; = w;o;w;o; interactions.

The high-temperature intermediate phase observed in the Class VI com-
pounds (LiKSO4 and LiRbCrOy4, Fig. 5), also probably with the modula-
tion vector ¢ = (a* + b*)/2, was interpreted either as the 2 x 2 phase of the
PNNNI model with a triple-q modulation, or the phase PD2 with a double-q
modulation, but the correct interpretation seems to be the latter one [29].
In this case the spins of the PNNNI model coincide with our o spins; an
effective external field can origin from o;7;0;7; interactions.

The Pbc2; (Z = 8) phase with the modulation vector ¢ = b*/2 observed
in the Class IV compounds can be considered as the 1 x 4 phase of the
PNNNI model assuming that the spins o; are replaced by the spins w; =
o;7;. Here no effective external field is necessary.

Incommensurate structural modulations in the hexagonal plane were
observed in K2MoQy4 and tungstates, Class I of compounds, and in K2 ZnCly
(Fig. 3). The PNNNI model provides such incommensurate modulations for
finite temperatures [26].

An alternative model to the PNNNI one is the PANNDI (planar anti-
symmetrical nearest-neighbour Ising) model (5, 18] with the Hamiltonian in
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the simplest version consisting of the two terms:

HPANNDI =7 z 0i0; + %M Z a,;a'j(‘r,; - Tj) . (42)
nn nn

This seems to give a more realistic mechanism of longer period modulations
in the plane than that offerred by the PNNNI model as the nn interactions
are certainly stronger than the nnn ones. Unfortunately, no detailed analysis
of the PANNDI model has been performed yet. As for long-period mod-
ulations along the hexagonal axis, also for long-period modulations in the
hexagonal plane we refrain from any attempt at quantitative adjustment
of models to the experimental data. Both the PNNNI and the PANNDI
models are, however, worth studying from the theoretical point of view.

8. Summary

A simple statistical model being a subject of this review explains practi-
cally all structural phase transitions observed in a large group of crystalline
compounds of a general chemical formula A’A"”"BXy . Phase transitions in
these compounds result from various orientational orderings of BXy4 groups.
There are four discrete orientational states of each BX4 tetrahedron in the
cationic environment. The model labels them with the help of two Ising
variables: ¢ = £1 (positions of the tetrahedron with one of the apices up or
down the distinguished hexagonal axis) and 7 = +1 (turns of the tetrahe-
dron to the right or left about this axis). Experimental structural data for
A'A"BX4 compounds are reviewed in Figs 3 to 5. Interpretation of these
data in terms of the presented model is given in Tables I to V and in Fig. 8.

Symmetrical nearest-neighbour interactions between spins on the pro-
totype hcp structure can stabilize 25 various, at most four-sublattice, or-
derings. Eight of them were found in A'A""BX4 compounds (Table I).

Longer-period or incommensurate structural modulations along the hex-
agonal c-axis result from the next-nearest-neighbour 7-7 interactions or,
competitively, antisymmetrical nearest-neighbour 7o-r interactions. The
phase diagrams of the corresponding ANNNI (axial next-nearest-neighbour
Ising) and AANNDI (axial antisymmetrical nearest-neighbour double Ising)
models are given in Figs 7 and 12, respectively. In Fig. 8 a quantitative fit-
ting of most sequences of transitions is shown on the example of ANNNI
model. Stabilization or destabilization of the phase with ¢ =§c* observed
in several compounds are probably due to an effective field originating from
the symmetrical o-7 coupling. An alternative explanation is offered by the
model with further distance interactions or two derivatives of the ANNNI
model: the DIFFOUR (discrete frustrated ¢*) model, Fig. 9, and the ELRII
(effective long-range interaction Ising) model, Fig. 10.
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To determine the space groups of the modulated phases, two degrees of
freedom per each plane of spins have to be assumed in all models. Analysis
of a derivative of the AANNDI model under such an assumption (Fig. 13
and Table ITT) enabled one to explain also transitions between phases with
the same modulation vector (Table IV).

Longer-period modulations of the structure in the hexagonal plane can
be explained as resulting from the next-nearest-neighbour o-o interactions
in the hexagonal planes being, from the point of view of the whole hcp
lattice, only the fourth-neighbourhood interactions. The corresponding
PNNNI (planar next-nearest-neighbour Ising) model describes two main
kinds of the observed commensurate modulations identified as a double-g
modulation with |g] = x and a single-q modulation with |g| = 7/2 (Table V
and Figs 14 to 16). Preasumably a mechanism of longer-period modulations
in plane more realistic than that offerred by the PNNNI model can give the
PANNDI (planar antisymmetric nearest-neighbour double Ising) model, but
no detailed analysis of it has been performed yet.

My thanks for discussions and cooperation go to Mirostaw Bartkowiak,
Robert Farhi, Michael Glaser, Mohamed Halawa, Teodor Krajewski, Phi-
lippe Moch, Michel Pleimling, Marguerite Quilichini and Rolf Siems. The
study has been supported in part by the Alexander von Humboldt Founda-
tion and the Polish State Commitee for Scientific Research (Project 2 0062
91 01).
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