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Two kinds of stochastic processes are discussed: explicitly non-markov-
ian dichotomic noise with exponential damping of the memory, and im-
plicitly non-markovian composite noise being a (linear and/or nonlinear)
combination of several independent markovian dichotomic noises. The
description of stochastic flows driven by such noises is given. To illustrate
how the non-markovianity changes the behavior of the driven process, the
evolution in time of the probability density P(z,t) describing the flow
X (t) = €(t) (the random telegraph process) driven by the non-markovian
process £(t) is calculated and compared with that driven by markovian
£(t). Among others, in the non-markovian case oscillations in P(z,t) are
found, and the possibility of additional noise-induced transitions is indi-
cated.

PACS numbers: 05.40. +j, 02.50. Ey

1. Introduction

In applications of stochastic theory to various physical, chemical, bio-
logical, etc. problems, there is growing interest in the use of colored noises,
as more realistic than the widely used Gaussian white noise. Of these, more
and more popular [1-15] becomes recently the so-called dichotomic noise
(DN), i.e. the two-state stochastic process (random telegraph signal). Its
main assets are: (i) DN is colored, (i) application of DN results in rela-
tively simple calculations, especially when the noise enters kinetic equations
in a nonlinear fashion [14] or when dealing with linear multidimensional
flows [10, 11], (i) well-defined limiting procedures lead from DN to both
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Gaussian white noise and white shot noise [1-4, 15]. Moreover, existing
formulations can be generalized for composite DN’s, which seem to be still
better representations (models) of real noises and fluctuations.

So far, almost without exception, solely markovian stochastic processes
have been used as driving noises. However, in real systems where the noise
originates (at least partially) from the averaging out of very many fast vari-
ables [16], we may expect that system variables form a kind of hierarchies,
in which the “higher-level” variables are driven by “lower-level” ones, e.g.
according to the (simplified) scheme:

Xn = f(Xn)+g(XnaXn—l), (1'1)

where variable X,,_;(t) acts as a driving stochastic process for the process
X, at the level n. Therefore in many cases the markovianity is but an
idealization. On the other hand, non-markovian stochastic processes are
more difficult to use as the driving forces than markovian ones. This seems
to be one of the reasons why in most of applications so far it is the markovian
noises which have been used as the driving processes. Only very recently
a few papers have been published which deal with non-markovian driving,
either explicitly [13] or implicitly [17]. Besides, non-markovian seems to be
also the composite noise built of markovian DN and markovian Gaussian
white noise [12]. Systematic theory of explicitly non-markovian noises with
exponential damping of the memory has been recently proposed by the
present author [15]. On the other hand, it is well-known that almost any
stochastic flow X (t) driven by a colored markovian noise is a non-markovian
process by itself. In this sense there is a vast literature on non-markovian
stochastic processes, though this fact is mentioned explicitly very rarely (for
the explicit discussion of non-markovian effects in driven processes cf. e.g.
(18, 19] and references therein). What we want to stress here is that, to the
best of author’s knowledge, almost absent from the literature is the use of
non-markovian noises as driving processes.

This lecture will present the general properties of both markovian and
non-markovian DN, the master equations for stochastic flows driven by such
noise, and some techniques which enable the mentioned above simple ap-
plications of markovian DN. The general formulation for markovian DN is
based mainly on Refs. [1-3] (with generalizations for composite DN’s), for
non-markovian DN — on Ref.[15]. The numerical results for non-markovian
random telegraph process (Section 4) and the general results for the com-
posite noise (Section 6) are new.

The text consists of three distinct parts. First lists definitions and
properties of general DN itself, containing both markovian and exponen-
tially damped explicitly non-markovian components (Sections 2-3). Second
part is devoted to the stochastic flows driven by such noise (Section 4) and
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demonstrates, among others, how the non-markovianity of the driving noise
changes the behaviour of the driven process. Third part (Sections 5-6)
presents general formulation for stochastic flows driven by markovian DN,
and by composite noises.

2. Definitions and basic properties

The asymmetric dichotomic noise £(t), called also the random telegraph
signal, is the random two-state process with zero mean:

£(t) € {Ar, Az}, €)= A% + Aok(t), (E()=0, (2.1)

where A2 = A1Az, Ag = Aj — A,. Let A\; and )\ be the probabilities of
switching (per unit time) between states §&; = A; and £ = —Aj;. Therefore,
7; = 1/A; will be mean sojourn times in these states. Denote also 2D =
Ay + Az, A=A+ A

The condition (£(t)) = 0 can be written explicitly in two equivalent
ways as:

Do&mi=0 and 3 Pi(&t)Ei =0, (2:2)

where P;(€;,t) is the probability of finding the process in the state §; at time
interval (¢,t + dt). (2.2) together with the normalization ) ; Py(&;,t) =1
gives that

Ay A
. R Y 2.3
A: s -
Py(&,t) = Pu(€), Pa(€=6&)=Pst,i=1- °2J—Dz‘ =1- 711 = _;7_2 , (2.4)

which means that the zero-mean DN is stationary.

The basic property of DN, viz. £(t)> = A% + A(t), enables the lin-
earization of functions of £(t) (at least of these which can be expanded into
a power series of its arguments):

f&)=fi+&f2. (2.5)

Especially,
1 1+ alg —af (2.62)
1+af (14 alA1)(1-aAy)’

e = e220/2(q 4 BE), B = %sinh(aD) , a= cosh(aD)—-zA—’g— sinh(aD),
(2.6b)
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€

be(e),e; = Por(&i) + woAg(t) s (2.6c)

where ¢; = 1, ¢ = —1. The last identity enables us to write another
identity, which will be useful below:

£(t) = 380 + D[b¢(e),a, — 8e(v),—aa) - (2:6d)

Asymmetric dichotomic noise { can be expressed by symmetric di-
chotomic noise £, of non-zero mean:

€=Ea—<fa>:§a+%A0, &s €{:§:D}. (2'7)

White noises as limits of the dichotomic noise [1-3,15]

White noises are understood here as sequences of §-spikes. The limit
Ay 200, A;—o00, Ay/A;=Az/A2=wo, (2.8)
with wo kept constant defines the so-called white shot noise (WSN), being
the sequence of separated positive §-spikes on negative background. The
limit:

AM=A=A—>00, A=Az = A — 00, A%/2) = D}, (2.9)

defines the Gaussian white noise (GWN) as the dense set of positive and
negative §-spikes, which corresponds to the Stratonovich interpretation of
the Wiener process. GWN can be obtained also from the WSN as the limit:

Az = 00, Ay = 00, wp = Az/Az — 0, AgwZ = D3. (2.9a)

In all calculations based on these limits it is implicitly assumed that

im A™e 2"t = §(t), m,n>0. (2.10)
A—+00

Probabilities

Basic quantities are the n-point (unconditional) probabilities P, and
conditional probabilities Py, |,, defined as follows:

Pn(fl)tl; cveiény tn) = <6£(t1),£1 e '6E(tn),fn> s (2.11)
Ppyn(l;--osm+n
Pmln(l;...;m|m+1;-..;m+n) P (;;’:(_1 ..... m+13), (2.12)
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where (---) denotes the averaging over all realizations of the process £(t),
and n stands for the couple (£,,t5). (2.12) is just the Bayes rule.

These distributions have the following obvious properties, resulting di-
rectly from their definitions:

> Pat1(0;1;--5n) = Po(1;-++n), (2.13)
§o
> Pya(0[1;--5n) =1 (2.14)
§o
(normalization). Definition (2.11) implies that
Pry1(bostiintii- - i€natn) = 8go,60 Prlbas t1o - iénstn) s (2:15)
and (2.12) with (2.15) that
Plln(EO’ tl!fls L5+ ‘;fna tn) = 650,51 . (2.16)

3. Master equations

The specific, non-markovian dichotomic process considered here is de-
fined [15] by the following non-markovian master equation, fulfilled by every
probability P(&,t) = Pni1(€,t; €1,t15 -5 €nstn), t > to = max{ty, ..., tn}:

P(A1,8) = —P(=Dg,t) = — /dt'K(t — YMP(Ag, ) — AgP(~Ag, t')]

(3.1)
(overdot denotes 3/30t), with the kernel K(7) containing both markovian
and non-markovian contributions:

K(t—1t') = v8(t —t') + 71771 | (3.2)

where the parameters 7o and 7; describe the relative contributions of marko-
vian and non-markovian parts, and » the rate of damping of the non-
markovian memory. For y; = 0, 79 = 1 we recover the formulae for marko-
vian DN {20].

It is easy to check that, therefore, the conditional probabilities P,
fulfill the same master equation (3.1).

The solution to these equations, valid for n > 1, ¢t > ty = t1, reads [15]:

Pria(€615. . 5n) = [Pae(€) + A7 9(t ~ t1)vo(£)do(£1)] Pu(; .. -;f(l:))),?))
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and thus

Pyjn(€5]1; 5 m) = Put(€) + A7 0(£)9(t — t1)o(é1) , (3.4)

where

¢0(3) = ¢(t0) = AlﬁAI,z - A26—A3,:c , '%L'O(f) — 6A1,£ _ 6—-A2,5 :
Y(t)y=r-1 [(61 — v)e %t — (9, - y)e~92t] ,

br2=1(v+yALT), I'= \/(7011 _ )2 —dmA. (3.5)

Therefore, the time dependence of probability distributions is described
by the combination of two exponentials. Moreover, for some combinations
of parameters 79, 71, 4 and v, this dependence may become damped os-
cillatory. The physical meaning of these parameters implies that » > 0 and
A > 0. v; can be either positive or negative, with limitations imposed by
the convergence condition #; > 0. Note that for purely markovian process
(2.1), y1 = 0, the time dependence is given by (t) = exp(—voAt). The
“phase diagram” of the types of behaviour of probability distributions in
the parameter space is shown in Fig.1.

- :

+ oscillatory

v

? N
5 )

L4
= 7
2 v
° N/ monotonic
S
Vel¥o A
divergent divergent

Fig. 1. Regions in the parameter space of divergent, monotonically damped, and
damped oscillatory behaviour of P(t)’s.

These distributions have the following property: because
tlim P(t-t)=0 fort; <, (3.6)
—00

then
tl_if]goplln(fa tlfl, t1;... fn’tn) = Pst(f): (3‘73')
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tl-ggo Pn+l(£’ t; €1, 815 .8ns tn) = Pat(f)Pn(El, t15...€n, tn) s (37‘3)

when t; remains finite, or rather, more strictly, when ¢ — t; — oo. This
means that also for the non-markovian process the events separated by very
long times become uncorrelated, and that the considered non-markovian
process is irreversible and its stationary distributions do not remember ini-
tial state. Moreover, the stationary distributions are the same as for marko-
vian process. These properties are the direct consequence of the assumption
of exponential damping of the memory kernel.

The above results give main characteristics of non-markovian dichotomic
noise and are valid for ordered time sequences t > t; > ... > ¢, only. It can
be shown that choosing initial condition at some time ¢y earlier than at least
one of time moments from the set {t1,...t,} leads to results incompatible
with each other. This property is related to the non-markovian character
of the process £(t).

Averages

Any average both of the functions of the process ¢(t), (F(£(t1)) G(£(22)) . . .),
and of the functionals of £(t), (F(...; [£(t)])), by virtue of (2.1), can be ex-
pressed by combinations of averages of the type:

E(t1) .- £y = Y Y G Palfastey b tn). (3.8)
&

én
The latter, in turn, can be calculated from the recurrence formula [15]:
(E(t1) .. .€(tn)) = A%P(ts — t2)Kn_1(t2,. . .tn), (3.9)
with

Kn_l(tz, .. .tn) = (E(t;;) .. f(tn» + Ao‘l,[)(tz - ts)Kn_.z(t:;, .. .tn) . (3.10)
with K7 = (£(t1)) = 0. Especially, the two-point correlation function reads:

K2 = (£(t1)€(t2)) = Ca2(Jt1 — t2]) = A%(|t1 — tal) - (3.11)
This simplifies for symmetric DN, Ag = 0:
(£(t1) .- -E(t2n)) =A%P(t1 — t2)A%P(ts — t4) ... A%P(t2n—1 — t2n)

=(€(t1)€(22))(€(23)E(ta)) - - - (€(t2n—1)€(22n)), (3.12a)
(€(t1) .. .&(t2n41)) =0. (3.12b)

These results are valid only for ordered time sequences £ > {3 > ... 2>
tn. For t; — oo, t2 remaining finite,

Jim (€(t2)E(t2) .. €(ta)) = 0. (313)
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One of corollaries of these results reads:

SEDE) - £(tn) = —x(t — )EDEB) - E(E)),  (314)

where
_ 92(02 ) 91(91 - V)e_rt
X(t) ¢(t)/¢(t) - 2 _ (91 - V)e_['t * (3'15)

In the markovian case x(t) — A, and the result (3.14) leads directly to
the Shapiro-Loginov theorem [21] which states that, for any (markovian)
exponentijally correlated coloured noise £(t) of zero mean

a{€(t)f(2)) _
dt

= —AE)F(1)) + (€ F()). (3.16)

This formula is very useful in practical calculations (it will be used in Sec-
tions 5 and 6 below. Cf. also [10, 11, 14]). Unfortunately, for non-markovian
processes £(t) the Shapiro-Loginov theorem ceases to be true.

Another corollary is the shape of the frequency spectrum (power spec-

trum) of the noise:
+o0

g(w) = /d‘r‘ei“"Cz(r), (3.17)

-0

which reads for the non-markovian DN:

2 zw? — u(w2 -¥y)

3.18
22w? + (w2 — y)2° (3.18)

g(w) =

with 2 = v+ 7,4, y = (v70 +71)A. The shape of g(w) is shown in Fig. 2 for
a few different values of memory parameter v. It is seen that the deviations
from the Lorentzian shape are the more pronounced, the longer is the non-
markovian memory 1/v.

glo}

-8 0 © 5

Fig. 2. The frequency spectrum of mixed markovian and non-markovian DNs.
Curves differ by the values of v; 1: v = 0.1, 2: v = 1.0, 3: v = 2.0, 4: v = 10.0.
Curves 1-3 correspond to oscillating 1(t), curve 4 to monotonically decreasing ¥(2).
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Still another corollary, valid for symmetric DNs (A = 0) reads (details
of calculations are given in the Appendix A):

(‘zJ - Zk) Zj — Zl)

to
=a?A? 23: i e%(tto) (3.19a)
= 7z — 2z - 21) ’
/ 10
(e@emp[a [are)]) = 25 At t0), (3.19b)
to

t’

/dt £(2) exp[ / t"f(t”)]) = é[A(t, to) — 1], (3.19¢)
to
where z; are the solutions of the algebraic equation:

22 4 (01 + 02)2% + (6162 — ®A?)z — a®A%v = 0. (3.20)

4. Processes driven by non—-markovian DN

We shall consider general one-dimensional stochastic flows of the form:
X = f(X) + 9(X)E(). (4.1)

More general forms of the type of X = F(X, £(t)), can be reduced to (4.1) by
virtue of (2.1)!. Generalizations for multidimensional flows will be discussed
below.

Basic quantities describing the flow (4.1). are the probability density
P(z,t) that at time interval (f,¢ + dt) the value of the process X(t) lies
in the interval (z,z + dz) and the joint probability densities p(z, {;,t) that
X(t) € (2,2 + dz) and £(t) = i, defined:

P(t) = P(z,t) = Y _pef(X (5, [€]) — 2) = (6(X(t,[€]) — =),  (4.2)
k

! Note that such more general forms are meaningful, in general, for colored
noises only. Non-linear functions of white noises are ill-defined: the white
noise is equivalent to a series of delta-functions, which means that the square
(and higher powers) of white noise is meaningless.
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pi(t) = P(z, Ei’ t) = (6(X(t’ [6]) - z)‘%(t),fg) . (43)

Note that the (Dirac) §-function §(z — X(¢,[£]) and the (Kronecker)
-function dg(4) ¢, are the corresponding probability distributions for k-th

realization of the stochastic process £(t),? that at time interval (¢,t+ dt) the
value of the process X (t) lies in the interval (z,z + dz), and that £(t) = &;,
Pk being the probability of the k-th realization. The averaging is over all
possible realizations of £(t).

The standard method [1-3] leads to the following master equations for

pi(t) [15]:

2pi(t) = — 2= [£() + Eig()]pi(t) — eivo Papa(2) — Aora(®)]
- &M /dt’e_u(t~t')[)\1h1 (&) — Azha(8;)], (4.4)

to

where ¢; = 1, ¢ = —1, and
hiltit)) = bz, b6, #) = (6(X(616) — 2)ogng)» 20, (45)
Equation for P(z,t) results from the obvious relations:
P(z,t) = p1(t) + p2(t) = ha(t;t') + ha(t;1'). (4.6)

This means that for the non-markovian case the standard procedure
[1-3] does not lead to a closed set of equations describing the probability
densities of interest. Indeed, master equation for functions h;(¢;t') contains
still higher-order functions:

%hi(t, t')=—§£[f(z)+é2ﬂy(z)] hi(t, t')—%%y(z)[zhu(t, t')—2hai(t,1')],
(4.7)
where

2hji(t,t') = 2h(z, &, 85 €3, t') = (6(X (8, [€]) - z)be(t),e,0ee)8) > (4:8)

and so on. To obtain a workable scheme of calculation, such hierarchy of
master equations must be broken by some approximation.

? i.e., given definite series of switches between +A; and —A; at given specific

times 0 <t <3< ... <t <... <t
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In [15] we have shown that a good approximation is given by the ansatz,
based on the shifting of the time dependence of the auxiliary function h by
the function (¢t —¢'):

hi(t;t') =~ AZp(t — t")pi(t') . (4.9)

In this approximation the stationary distribution has the same form as
the stationary distribution for the purely markovian case, Eq. (5.14) below,
with renormalized parameter A in the exponent [15}:

2v1v
(v +61)(v + 62)

Markovian-type approximation k;(t;t') = p;(t) leads to much poorer re-
sults than approximation (4.9), whereas approximation “inverse” to (4.7):
hi(t;t') ~ [A%y(t — t')]"'p;(t) seems to be completely wrong. Another
possible relatively simple approximation — the markovian approximation
to hi(t,t') — can be obtained by neglecting last term on the r.h.s. of
Eq. (4.7), containing higher-order functions 2hj;. For Ag = 0, however,
this approximation becomes identical with the zero-order approximation
hi(t,t') = pi(t') (markovian approximation for h;(t,t') itself), which is
rather poor in comparison with (4.9) {15]. Therefore we shall use the ap-
proximation (4.9) to show how the non-markovianity of the driving noise
influences the driven process.

For this aim let us consider the random telegraph process®:

X(t) = £(¢), (4.11)
i.e. the flow (4.1) with f = 0, g = 1. Such flow has this advantage that the
observed effects (the behaviour of the driven process) are purely stochastic,
and are not obscured by the deterministic part of the flow.

The elimination of functions p;, h; leads eventually to the following
non-markovian telegrapher’s equation for P(z,t):

5 g2, 0 9
(5 * Qo555 = A%z + 1045) P(2:0)
t
= —y1AAZ / @Dyl - o) = 9 pa,ty. (4.12)

to

The evolution in time of P(z,?) is presented in Figs. 3-10 for the case
of symmetric DN (Ag = 0). Figs. 3-7 illustrate the effect of increasing

3 this term is used in literature also to denote the dichotomic noise £(2) itself. To
avoid confusion, the latter is called throughout this paper the random telegraph
signel, and the term random telegraph process is reserved for the flow (4.11)
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Fig. 3. Evolution in time of the probability density P(x,t) for the random telegraph
process (4.11) driven by purely markovian symmetric DN: 45 = 1, 11 = 0, A% = 5,
A =5,

Fig. 4. The same as in Fig. 3, with mixed driving: 7 = 0.5, 7v; = 0.5, A? = 5,
A=5,v=0.05.

non-markovianity, from purely markovian-driven process in Fig. 3 (v = 1,
71 = 0), to purely non-markovian-driven one in Fig. 7 (y0 = 0, 71 = 1),
with three mixed-driven intermediate cases in Figs. 4-6 (0 < 7; < 1).

The temporal characteristics of the noise: noise correlation time 2/4 =
0.4, and memory 1/v = 20 are chosen so as to augment the effects of
non-markovianity. The role of these parameters is shown in Figs. 8



Non-Markovian Dichotomic Noises 1143

Fig. 6. The same as in Fig. 4, with v = 0.1, vy = 0.9, A’ =5, 4 =5, v = 0.05.

(for the markovian case) and 9 (for the non-markovian case). The shape of
P(z,t) for the purely non-markovian case with 2/4 = 40 and 1/v = 0.2 is
very similar to that shown in Fig. 8 for purely markovian driving with the
same A. This implies that the strongly coloured (long correlation time) non-
markovian DN with very short memory differs but little from the markovian
DN (with otherwise the same characteristics) in its effect on the driven
stochastic flow.
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Fig. 7. The same as in Fig. 4, with purely non-markovian driving: 7o = 0.0,
1 =10, A2=5 4=5,v =005

""j

KKK ’0'0?; b
DAY A

"}‘jr e

o7 "Q ()
..;.;c;:;:.:;:o,g,fg. Ay

Fig. 8. The same as in Fig. 3 (purely markovian driving): 7o = 1.0, 7n = 0.0,
A? =5 A=0.05.

Fig. 10 illustrates the effect of the reversal of the sign of the markovian
component (79 = —1, ¥3 = 1). Characteristic in this case is the reap-
pearance of the (diffused) central peak of P(z,t) in the course of evolution.
Here the values of A and v are very close (long both correlation time and
memory ), which is forced by the convergence conditions (cf. Fig. 1 above).
For both these characteristic times short (4 = 5, v = 5.1), P(z,t) becomes
similar to that from Fig. 3.
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tio
Pix,t)

t=0.0

Fig. 9. The same as in Fig. 7 (purely non-markovian driving): o = 0.0, 7, = 1.0,
A? =5 4=0.1,v=0.05

oK

oK """'ﬁ[ )

T
I et

Fig. 10. The same as in Figs. 4-6 (mixed driving), with reversed markovian com-
ponent: v = —1.0, y; = 1.0, A’ =5, A = 0.1, v = 0.11.

All non-markovian cases shown above correspond to oscillating %(t).
For noise parameters resulting in non-oscillating ¥(t), P(z, t) is qualitatively
similar to corresponding markovian distributions.
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Fig. 11. Trace of location of maxima of P(z,t) at the (=, t) plane, for the random
telegraph process (4.11) driven by purely markovian symmetric DN: vo = 1,7, = 0.
Continuous line: A? = 5, A = 5, dotted line: A? = 5, 4 = 0.05, dashed line:
A% =1, A=0.05.

i e i i “ i i i

-~8.0 00 x 80

Fig. 12. The same as in Fig. 11, for mixed driving process: 7o = 1.0, 13 = 1.0,
A?=5,A=1,v=0.05.

The most striking non-markovian effects visible in the above results
are: the presence of oscillations in the time evolution, and the appear-
ance in the course of time of several additional peak splittings (it is well-
known — and well-visible in Figs. 8 and 11 — that strong enough markovian
DN is able to force one such splitting). According to some interpretations
[1, 4], appearance of additional peaks in P(z,t) means the appearance of the
noise-induced transitions between macroscopic states having no determinis-
tic counterpart. Assuming this philosophy to be true, the non-markovianity
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\

[48

e =
Fig. 13. The same as in Fig. 11, for purely non-markovian driving process:
7 =0.0,7 =1.0, A2 =5, A =5, v = 0.05.

may lead to a multitude of such transitions: more and more new transient,
locally stable states (local maxima of probability density) appear in the
course of the random telegraph process driven by non-markovian DN. This
point is illustrated in Figs. 11-13, where the traces of maxima of P(z,t)
are drawn on the (z,t) plane. Fig. 11 illustrates the splitting of P(z,t) by
markovian driving DN, in dependence on the noise strength A% and noise
correlation time 2/A. Figs. 12 and 13 show the effect of non-markovianity
of the driving DN. Fig. 13 corresponds to P(z,t) from Fig. 7.

5. Processes driven by markovian DN

Exact master equations describing the time dependence of probability
densities related to such flows can be obtained only for the markovian DN’s
[1-3]. We have seen that in the non-markovian case one must resort to
approximations [15]. Therefore we shall discuss in this section the markovian
DN. The markovian case is presented below (%) for the sake of completeness,
(#) to introduce a technique of deriving master equations used below for
the flows driven by composite noises.

In addition to probability densities P(z,t) and p(z,§;,t) defined by
Eqgs. (4.2)~(4.3) we introduce the auxiliary density Q(z,t), defined:

Q(t) = Q(=,1) = (6(X (2, [£]) - 2)&(2)) (5.1)
which implies
Q(t) = A1p1(t) — Aapa(t). (5.2)

The standard method [1-3] leads to the master equations (4.4) for p;(t)
which in the markovian case do not contain last term of the r.h.s. (7; = 0)
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(therefore, we shall put y9 = 1 in the remainder of this Section and in
Section 6).

Appropriate linear combinations of these equations lead to master equa-
tions for P(t) and @(t). The latter can be obtained also in a different way,
which is more convenient (in the markovian case), because it can be readily
generalized for the composite DNs (considered in the subsequent section).
Therefore, for the sake of completeness, we present here also this second
method of derivation. Its main elements, none especially new, are: (i) the
basic property of DN, Eq. (2.1), (ii) the Shapiro-Loginov theorem (3.16)
and (711) Haken’s method [22] of derivation of evolution equations for prob-
ability density?. The latter, suitably adjusted for present situation, is as
follows. Differentiation of the definition (4.2) gives:

5P = (Gt (X0 - 2)X(0)
_ —%(6(X(t) — 2)[F(X () + g(X (£)£(2)])
= —%[f(m)P(z,t) + g(z) Q(=,1)], (5.3)

where the well-known properties of §-function have been used. Note that
in the last line of Eq. (5.8) the functions f(z) and g(z) are included in the
action of the differential operator® [22].

The equation for the auxiliary function Q(z,t) is obtained in the same
way, with the use of the Shapiro-Loginov theorem, Eq. (3.14), and the
property (2.1): ,

Q(a,1) = ~AQ(2,1) - 5= [(z)Q(e,0) + A29()P(21)] . (54)

where h(z) = f(z) + Aog(2).

Egs. (5.3) and (5.4) form closed set of two linear partial differential
equations for probability densities P and Q. As we have mentioned, identical
equations result from Eqs. (4.4).

It is easy to find stationary solution of Egs. (5.3)—(5.4) — for time-
independent case they are equivalent to:

f(2)Psi(z) + 9(2)@st(z) = C1,

* constructed in principle there for the derivation of the Fokker—Planck equation

5 This follows from the properties of §-function: it is easy to check that the distri-
bution [ Z8(X (t)—z)f(z)] is equivalent to the distribution £(X (t))[ Z5(X(t)-
z)|: multiply both distributions by a trial function g(z) and integrate (by
parts) over a small finite interval around z = X(t); in both cases the result is
—f(X)[dq(X)/dX] which proves the equivalence of both distributions.
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2 [h=)Qu(z) + A%(2)Pulz)] = - 4Qulz), (5.5)

i.e.,
z

Pu(z) = JE)L_afmizhae' |, _ ¢, / da'k(z')e~ A  m(="d=" | (5.6)
Deﬁ'(z)

where

) = )/ Daate), )= 4 D,

Deg(z) = [A19(z) + f(2)] [B2g(2) ~ f(=)], (5.8)

and where Cy, C; are to be determined from boundary conditions imposed
on probability flow on boundaries of the domain D, of z and from

(5.7)

/P(z,t)dz =1, P(z,t)>0, Vt>0,Vz € D,. (5.9)
D,

The use of the so-called natural boundary conditions (standard assump-
tion for one-dimensional flows, which gives C; = 0) leads to the well-known
formula [1-3]:

Ps (2:) N—l {g(z){ /d f(x) eﬂ'(z)) (5-10)

where N is the normahzatxon constant, and O(z) is the Heaviside step
function, “expressing that the probability is zero in the ‘unstable’ region of
negative D” [3].

The limiting procedures (2.8), (2.9) enable us to obtain corresponding
equations and formulas for stochastic flows driven by (asymmetric) white
shot noise (WSN) with exponentially distributed weights, and for Gaussian
white noise (GWN).

Thus, in WSN limit we have

F.] g
5 P(@,0) = — o~ [£(2)P(z,1) + 9(=)Q(=, )],

Qe,t) = ~wo 2 g(2)[Q(e 1) + wokaPle, )], (5.11)

which, after formal elimination of the auxiliary correlation density Q(z,t)
gives the known [2-3] equation:

5iP(2,0) = — 5o { () + whag(e) o)L+ wazg(e)]  FP(z.).
(5.12)
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The stationary solution of (5.11) reads [2-3]:
N1 f(z)dz

In the GWN limit we get simply the appropriate Fokker-Planck equa-
tion (in Stratonovich interpretation):

P,t(a:) =

2 P(est) = Z[-12) + Dig(e) mg(@)]| Ple,),  (5:14)

together with
Q(z,8) = ~Di 5 9(2)Ple,1) (5.15)

and with well-known stationary solution:

oG )1 { D? gzd)z} (5-16)

Formal generalization of the above formulas for multidimensional stochas-
tic flows is trivial — it is sufficient to substitute the “scalars” X (t), z, f, ¢
by “vectors” (column matrices) X(t), =, f, g, respectively. However, the
multidimensional stationary solution cannot be written down readily. The
stationary N-dimensional equation for P, (=) reads:

9
o=

Pyy(z) =

- [G(2)Py(2)] = AB(2)Pu(2) - C(2), (5.17)

where
G(z) = A?g(z) — B(=)h(=),

C(=z) = AA(=) + % . {A(c)h(z)} R
[H(=)- C1]
[H(=) - g(=)]’

L\ [HE) )
B) = (7))’

C; is the column of integration constants (unfortunately, for multidimen-
sional flows, one usually cannot put all C; ;s equal to zero), and H(=) is
an arbitrary row matrix, whose elements can be, in general, functions of
2. The safest choice is H(2) = g(z), so that the denominators above are
positive-definite.

A=) =
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6. Processes driven by composite DN

The dichotomic noise is but an idealization of the real noises. It seems
that the reality will be better approximated by linear and/or nonlinear
combinations of several such noises, or of DN with other noises. Consider
therefore the flow:

M
X() = f(X)+ Zgj(X)&(i) (6.1)

(generalizations to many-dimensional flows are obvious), with §;(t) — in-
dependent (uncorrelated) DN’s:

(€:(2)€; (2) = 8ij ATtV mes | (eme™) = (EFVET), (6.2)

and with relations (2.1)—(2.4) fulfilled by each {; separately. Note that both
WSN and GWN can be obtained as appropriate limits of some of these DN’s,
therefore the formulae below may serve also for composite noises built of
white noises, as e.g. the “interrupted diffusion processes” of Refs. [12].

In this case we shall need more auxiliary functions. In general, there
are needed 2™ functions (including P). Let

Q... = (6(z — X(£))&; (1) (D)6 (2)---) (6.3)

(Qj,k,1,... are invariant with respect to permutations of indices). The scheme

used in Section 5 leads now to the system of 2M linear partial differential
equations:

) ) il
—P=——[fz)P+ 2 9:(2)Q; ] (6.42)

9 3 =t
5@ ==4;Q; = 5—{ [F(2)+20,0;()] Qs +§ 94(2)Qjx+A2g; (2)P | (6.4)

3 9 8
5,93k =(4j + 4)Qjx — 5-f(2)P~ 5{ [F(2)+ 20,795 (=) + Lo,k 9x(2)] Qs x

M
+ a()Qinit+A2gi(2)Qu+01a(2)Qs (64c)
1£5,k

elc.
In the same way one can handle the flow:

X(t) = F(X) + g(X)er (1) -Em(2), (6-5)
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or flows with linear combinations of such right-hand sides. For the flow
(6.5) one gets:

épP 7]
rrinie E(fp +9Q1..M) ) (6.6a)

d
'B‘_ZQL.n = - (Al +---+ An)Ql..n - "a_f(z)an

- %9(3){(HA )Qn+1, ,M+Z(HA )A,,JQJ ntl, M

J=1 s#j

+ 2 ( fI Af) Do B0k Qskntr, M+ F (H Ao,:)Ql,..,M

ik} ik
(6.6b)

where n < M, and summations over {j, k,...} are over all pairs, triples,
etc. Forn =M, Qny1,., MM — P.

Note that the case (6.5) with symmetric DN’s (all A, ; = 0) is uninter-
esting, as the product of several symmetric DN’s is just another symmetric
DN. However, the product of several asymmetric DN’s is no longer a DN,
and its WSN limit (taken for all DN’s composing it) will be a WSN with non-
exponential weight distribution. Such noises are usually non-markovian.

Most general form of the flow is:

X = £30+ 2 g D60 + 3 074 X)& 080
{r.q}
+ Z Gpgr (X)Ep(8)Eq ()& (8) + -+ (6.7)
{r,q,r}

where X may be either one- or multidimensional. This gives the set of
equations for probability distribution and for auxiliary functions in the form:

2Ph_ 2 [@re D45 80(e) Q{21+ 3 0pa(#) Q00,8
{p.a}
+ Z Bpgr () Qpgr (2, 8)+- - (6.8a)
{r.q.,r}
gt_ij..mn(zy t) = (AJ +-- '+An)ij..mn(z) t)— 58; . Fkan({Q}) s (6-8b)

where Fji mn({Q}) is defined by:
ngmn({Q}) =f(z)ij...mn(zyt)+Z gp(z)ij...mnp(z;t)

+ Z 9p () Qjk..mnpg(2, 1)+ Z Gpgr (2)Qjk..mnpgr+- -
{p.q} {pya,r}
(6.8¢)
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together with the prescription that auxiliary functions Q jk..mnpq..r With
repeating indices are to be substituted by appropriate combinations of lower-
order auxiliary functions, e.g.:

ij..mnpq..r - Aink..mq“r + Ao,ank..mnq..r for n= P (6.8d)

It is possible to glve also the general prescription in the case when
one or more of the noises £,(t) are either GWN or WSN®. To be definite,
assume that £;(t) » GWN or WSN. Dividing Egs. (6.2b) by A;, and using
prescriptions (2.1) or (2.2), we get:

(1 + oy ‘;;gj (3)) ij..nm = "% " Hkan({Q}) s (6‘98')

with

ijmn({Q}) :Uggj(g)Qk..mn(z’ t) + Z gp(z) [ang..mnp(z, t) + UIij..mnp]
p#£]
+ Z gpq(z) [ang,.mnpq(z: t) + Ulek..mnyq(zyt)] +
{p.q}sts
(6.9b)

together with the same prescription as that for Fj. mn({Q}), where o1 =

wo,j, 02 = w0 Az,; for WSN, and 01 = 0, 03 = D2 for GWN. This
enables the ehmma.tlon of all auxiliary functions related to white noise £;
(containing the index j among its indices), i.e., reduction of the number
of independent equations. Instead, GWN produces just second-order par-
tial differential equations; WSN introduces either infinite-order equations
through the inverse operator

(1 + wo,j%gj(z)>_l , (6.10)

or integro-differential equations through the formal solution of Eq. (6.3a).
The latter reads for one-dimensional flows (z— z):

1
9i (=)

‘ T
ij..mn: e—:c/wn,, [Cjk..mn“/dyey/ o Eg;ijmn({Q}) : (611)

8 more than one of £’s can be white only when they enter as linear combinations

with each other: products of two white noises usually make no sense and
cannot be dealt with by methods used in this paper. Of course, white noise
can be multiplied by a colored one, especially by DN
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It is to be noted that auxiliary functions with two or more indices
belonging to white noises do not enter into equations for P and for relevant
remaining auxiliary functions.

So far, we have considered the different noises to be uncorrelated. When
noises are correlated, 7.e., when

(€x(t)¢;(2)) # 0 for k # 3, (6.12)

we may use the following trick [7, 18]: the original correlated noises §x(t)
are written as linear combinations of new, uncorrelated noises x;(t) of oth-
erwise similar characteristics, and the new noises are substituted into the
considered flow. Next the methods described above can be used. In some
situations such substitution may even diminish the number of independent,
now uncorrelated noises, and thus simplify the calculations.

The advantage of the composite noise as a non-markovian one is that
for finite number of component markovian DNs or WNs there is closed
(finite) set of equations for P(z,t) (finite number of auxiliary functions).
Also composite noise seems to be better representation of real noises than
any DN process, be it markovian or non-markovian. The disadvantage is
that its non-markovian characteristics: the type and range of memory, the
amount of markovianity, etc. are not given explicitly by explicit parameters.

Appendix A

The formulae (3.19) can be obtained as follows. For symmetric DN
AO = 0):

t T

A(t, 1) = <exp[a/dt'€(t')]> = <exp [a/dt'{(t' + ‘r)])

to

n=2

::1+Z%/dt1.../dtn<€(t1+T)---£(tn+r))
0 [1]

tnoa

:1+22a“/dt1/dt2... / dtﬂ(ﬁ(h +T)£(ig+7’)...£(t"+‘r)>
n= ] o 0

0 T sy tm—1 Sm
=14+ z az"‘Az"‘/dsl /dtl'qb(.sl —tl) e / dam /dtm¢(3m —'tm) .
m=1 o o 0 to

(A.1)
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Using the Laplace transform and its well-known properties {24]:

f(z) = /dre"" f(r), /dre'" /df’ (e = -:-f(z),
0 0

[o]

/ dre*T [ dr' fu(*) falr — ) = () fal2), (A-2)

we get, subsequently:

oo T t;

- 1 .
¢1(Z) = ‘O/d‘l'e—zr /dﬁ/d‘tg'{p(tl - tz) = ;51/}(2), (A.3)

0 0

oo ty [F]

dre™* [dsx'o/dtn/)(sl —tl)!dsgb/dtz¢(sz —13)
—erl
z

dtyp(r — 1)1 () = [1/;(2)]2 (A.4)

etc., which leads eventually to:

o0

A(z) = ; + —1- Z (e®A?)™ [1/3(z)/z]m = [z ~ a®A%)(z)] -, (A.5)
- zZ+v
¥(z) = GCTro0=16) (A.6)
j(z) _ (Z + 01)(2 + 62) (z -+ 91)(7. + 92) (A7)

2(z +61)(z +63) — a2A2(2+V) (z—2z1)(z — z2)(z — z3) ’

where z; are the solutions of Eq. (3.20).
The inverse Laplace transform of (A.7) gives the formula (3.19a), and
the differentiation and integration of (3.19a) leads to (3.19b) and (3.19c).
In the markovian case, 79 = 1,7, =0, we get 23 = —v, 212 = —A % g,

g =vA? 4+ A2 and

A(t) = e (cosh gt + (A/g) sinh gt) . (A.8)
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In the WN limit,

(atw D}
A’Y(t) — (D3 /7o) [6(t) —pe™ W] Ay(t) — %—('%3%‘)' B="/70,
2 . z+v+p _ z+v+pu 2.2
A(Z) z(z+u+u)—-ﬂ(z+u)-(z—zl}(z—zz)’ ﬂ—Doa /70)
21,2:_’Xi§y x:V"*""_.B’ ’6:\/:\2+4Vﬁ:
Al — e (G + BTG — B) +eH]. (A.9)

In the WN limit 9(t) is not well-defined when 49 = 0. Nevertheless, in
this case A(t) remains well-defined:

n T1
A =
(2) (11 — D2a?)z — vD3a?’
71 VD(:;()‘2
At) = . .
) 11 — Dia? exp(ﬁ — Dia? ) (A.10)
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