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1. Introduction

The following notes summarize lectures held at the Seventh Sympo-
sium on Statistical Physics during the last 10 days of September 1994, in
Zakopane, Poland. The lectures were designed as a crash course on quantum
transport in a mesoscopic two-dimensional electron gas (2DEG), introducing
this fascinating field to an audience with a background mostly in statistical
physics.

Quantum transport in the 2DEG has been a growth industry with in-
tense activity over the last 15 years, when “¢ = 0” is conveniently defined
by von Klitzing’s spectacular discovery of the quantum Hall effect (QHE)
in 1980. An increasingly sofisticated technology with the ability to pro-
duce, in a controlled way, a variety of structures with a linear scale of
100nm or less (“nanostructures”) has opened up a playground full of ex-
citing possibilities for experimentalists and theorists alike. It is conceivable
that a deeper understanding of quantum transport in these small structures
might lead to an era of commercially viable nanoscale electronics. These
speculative prospects have done nothing to dampen the activity in this
branch of physics.

* Presented at the VII Symposium on Statistical Physics, Zakopane, Poland,
September 22-28, 1994.
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Basic understanding of some key features of this mesoscopic world will
be the focus of these lectures. For a much broader introduction, the reader is
referred, for example, to the excellent review by Beenakker and van Houten
[1]. In addition to providing an authorative introduction to the field, that
review also serves as an extensive source of references to the literature prior
to 1991. In keeping with the tutorial slant of the present lectures, the
number of references will be kept close to a minimum.

2. Basics
2.1. The 2DEG

We shall not describe the technicalities involved in producing two-
dimensional electron gases here. Suffice it to say that they live on inter-
faces in semiconductor heterostructures, with the AlGaAs/GaAs interface
as the most popular example. For concreteness we shall confine ourselves
to that system here. In the (2-)direction perpendicular to the interface, the
electrons are trapped in a well of triangular shape, and at low tempera-
tures only the ground state is occupied. Thus, the z-direction is frozen out,
resulting in an electron gas that for most purposes can be considered as
two-dimensional.

In addition, conditions in this 2DEG can be controlled in a number of
ways. Typically, metallic gates in a parallel plane close to the 2DEG can be
custom designed on a linear scale down to a few tens of nanometers. When a
negative voltage is applied, the electron density in the 2DEG underneath the
corresponding gate is depleted. In this way one can control! the potential
energy V(z,y) seen by the electrons in the 2DEG and construct narrow
electron wave guides (“quantum wires”), rings, constrictions, washboards,
regular lattices etc., etc. This flexibility in manufacturing devices has offered
experimentalists and theorists a number of challenging opportunities, with
no end in sight.

At temperatures T < 1K the inelastic mean free path or, more to
the point, the phase coherence length Ay, in these structures can exceed
lpm. Le., transport through the entire structure can be considered as
coherent. Thus, one must expect all kinds of QM interference effects in
these mesoscopic systems. We shall confine ourselves to coherent transport
in the following. In addition to inelastic scattering, also elastic scattering

! As a matter of fact, the control is less than perfect. What one can control
is the voltage on the gates. The potential seen by the electrons in the 2DEG
is the result of Nature’s own self-consistent solution of the Poisson equation,
also involving the 2DEG electrons themselves.
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from random impurities can be reduced to the extent that the elastic mean
free path A can take values up to 1um or more.

Much of the excitement in this area stems from the fascinating effects of
a magnetic field, usually chosen perpendicular to the 2DEG. The integer and
fractional QHE are star examples but they do not, by any means, exhaust
the list.

It is remarkable to what extent the physics of the 2DEG can be un-
derstood in a single electron picture. This may sound discouraging to the
statistical physicist whose bread and butter are interactions and collective
effects. However, there is no cause for despair, many-body effects are lurk-
ing in the background, ready to be taken seriously! (The fractional QHE
providing but one example.) However, it seems wise to exploit the one-
particle picture for what it is worth before embarking upon more complex
ventures. We shall stay strictly within the single electron picture here, and
use the effective mass approximation throughout.

For easy reference, typical GaAs values of some quantities of central
interest are given in Table I.

TABLE I
Typical values of crucial quantities in GaAs
m = 0.067m, effective mass
n, =4-10¥m~2 = (16nm) 2 electron sheet density
Ep = 14meV Fermi energy
AF = 40nm Fermi wavelength
A =102 - 10*nm elastic mean free path
Ay > A phase coherence length

g = \/h/eB = 26(B/T)"/?nm magnetic length

2.2. Densitly of states

In the 2DEG the density of states (DOS) is, in zero magnetic field,
independent of energy,

m m m
Ey=g,——=-— = ny;=—FE 1
p(E) y‘27rh2 h2 Ay Fs ( )
with spin degeneracy g, = 2. As a result, the Fermi energy EF is directly
proportional to the electron sheet density n,.
In a magnetic field (and with negligible disorder) the continuous energy
spectrum collapses into discrete Landau levels,

E,=ho(n+3) ; n=0,1,2.., (2)
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where w = eB/m is the cyclotron frequency. As a result, the DOS becomes
a sum of delta-functions,

o(E) = 0,52 Y 8(E - ), 3)

where we neglected the Zeeman splitting both in (2) and (3).

For transport problems the DOS in a 1D quantum wire is essential. We
consider a perfect wire which gives a separable Schrodinger equatlon, so
that the energy takes the form,

212
E:E;+h2:;

= Eq(k), (4)

where E! is the discrete energy spectrum associated with the transverse
eigenstates. The dispersion relation E,(k) of every subband (corresponding
to a given value of a) has the quadratic form representing free propagation
in the longitudinal direction, The DOS for particles moving to the right in

subband a is : ik 0
+ =2_. = 5
pa (E) 223_ dEQ hUQ(E) 2 ( )

with vy (E) the corresponding group velocity. It is important to realize that
pZ is inversely proportional to v, irrespective of the nature of the transverse
states. Thus, (5) is valid for any type of transverse confinement, with or
without a magnetic field.

2.8. The Einstein relation

The electron current density can be driven by two ‘forces’, gradients in
the electron sheet density and external electric fields,

—0

= - D-Vn,+ -B/(~e). (6)

In equilibrium (under circumstances when persistent currents can be ig-
nored) j vanishes. On the other hand, the general equilibrium condition at
T = 0 says that the (electro-)chemical potential must be the same every-
where,

p = —eV(F) + Ep(ny(7)) = const. (7)

Taking the gradient of (7), using that E = —VV and that the DOS given
by (1) is p(EF) = dn,/dEF, one finds from (6),

7= ezp(EF)B . (8)
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This relation between the conductivity and diffusivity tensors is nothing else
than the familiar Einstein relation, adapted to the situation at hand.
The Einstein relation allows us, in the context of the theory of lin-

ear transport, to replace field-generated conduction by gradient-generated
diffusion.

2.4. The Landauer formula

Consider coherent transport, at T = 0, from one reservoir at chemical
potential p + §u, to another at chemical potential u = Ep. The electrons
are transported through some mesoscopic “device”, coupled to each of the
two reservoirs by ideal quantum wires. We are interested in the conductance
G of the device, as measured from one reservoir to the other. Or, by the
Einstein relation (8), we are interested in its “diffusance” D. This trick
makes it is abundantly clear that we do not have to worry about real current
distributions (which are self-consistently given by the Poisson equation)
when calculating? G. Focusing on the transport in the quantum wires (let
them, for simplicity, be equal), we can think of the right-moving states of
the left wire as being filled up to u + §u, the left-moving states in the right
wire filled up to u. Clearly, transport processes to the right and to the left
cancel one another up to energy 4 = Ep. Net transport, at T = 0, happens
in the narrow energy interval (Ep, Ep + ép). The net current to the right,
in subband (i.e., in transverse mode) «, is given by,

Ep+ép
Ja = / dE p3(E)va( EYTa(E) % b+ 3 Tol Er). (9)
Ep

Here T,(E) is the total transmission probability to the right reservoir from
incoming mode a. In (9) we used (5) and kept the term linear in §u only.
Summation over all modes propagating into the device gives the diffusance:
J=3,Ja= Dén,. Since D is related to G in precisely the same way that
the dﬁ'r'usxvxty tensor is related to the conductivity tensor one has, by the
Einstein relation (8) and the DOS (1),

G = ZT(EF),22_129kQ

a=1

2 This says basically nothing beyond the generally true statement that all coef-
ficients of linear transport are properties of the equilibrium state. Equilibrium
time correlation functions as in the Kubo formulas. Or equilibrium scattering
matrices at the Fermi energy, as in the Landauer formula to be derived here.
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For the case of spin degeneracy equal to 2, this is the (linear®) Landauer
formula [2].

Remarks:

— The Landauer formula reduces the problem of calculating the conduc-
tion to the solution of a standard QM scattering problem. No more,
but also no less.

— When the Kubo formula for the conductance is specialized to the present
circumstances (with or without a magnetic field), it is equivalent to the
Landauer formula.

— A perfect quantum wire sustaining N transverse modes propagating
between the reservoirs has, according to (11), the conductance G =
(2¢2/h)N. This looks paradoxical: How can a perfect conductor have
a finite conductance? Or, put differently: Where does dissipation take
place in this case? The answer is: In the resevoirs. Remember that the
linear Landauer formula (10) gives the conductance from reservoir to
reservoir. Moving an electron from a reservoir at u + du to one at u
increases the total entropy of the system.

— In the derivation of the Landauer formula we added incoming currents,
not incoming amplitudes. In other words, basic to the Landauer for-
mula is the assumption that there are no correlations between modes
incoming from the source reservoir. But correlations will, in general,
develop between the modes during the passage through the device. It
is essential to keep track of the phase relationships caused by scattering
between the modes.

In conjunction with the last remark, we note that it is customary to
write
Toa = |tﬁ~,.‘,l|2 => G= E'I‘r(ttf). (11)
] h
This needs interpretation. With Ag, the amplitude of transmitted mode

(often called ‘channel’) 3 resulting from incoming mode (channel) a, current
conservation implies, for every a, that |e**e®|2y, = ¥ 8 |Agal®vp. Let us

define {3, = 1/vg/vaAgy. We can then write particle conservation in the

convenient form,
1= ltgal?; Va, (12)
B

where « is an incoming mode and Y 3 goes over all outgoing modes, includ-
ing those reflected into the initial reservoir (the source). In the Landauer

3 The formula originally proposed by Landauer was nonlinear. Although aspects
of the nonlinearity are interesting in themselves, it is the linear version that
relates to typical experimental situations.
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expresssion (11) for the conductance on the other hand, these same |t5a|2’s
are summed, not over all 8, but over those 3’s that correspond to transmis-
sion into the final reservoir (the drain).

2.5. The Landauer-Biitttker formalism
The Landauer-Biittiker formalism generalizes the linear Landauer for-

mula to a situation with many ideal leads connecting the central device to
external reservoirs with given chemical potentials (see Fig. 1)

Fig. 1. A “device” of some sort connected by ideal leads to reservoirs with given
chemical potentials.

It is convenient to generalize our previous definition of the modified scat-

tering amplitudes to
tha = |/ g~ Aper s (13)
[+ 4

with AZ7 the scattering amplitude of mode § in lead n originating from the
incoming mode a in lead m. Note that t5 " are the modified amplitudes
for reflection back into lead m.

The full t-matrix, including reflections, and with labels running over all
(a,m), has the following symmetries in a magnetic field B,

t(B)t'(B) = t!(B)t(B) = I; particle conservation
t*(-B)t(B) =I; time reflection invariance
t(—B) =tT(B); (Onsager type symmetry). (14)
Here tT stands for the transposed matrix, t* for the complex conjugate,
tt = tT*, and I is the unit matrix. Note that the third line in (14) is

a consequence of the first two.
Now define T = Y. ]t’g;"‘{z, which sums all the probabilities for trans-
af

mission from every incoming mode in lead m to every outgoing mode in lead
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n. In terms of these quantities, the Landauer formula (11) generalizes to
the Landauer-Biittiker equations (3],

2 2
I, = % (Z "TrnmVem — Z'TmnVn> ym=1,2,..M. (15)
n n

Here I,, is the net current into lead m, V,, the voltage of the reservoir
connected to lead n, M is the number of reservoirs, and the prime on the
sums indicates that the term n = m should be excluded from the suns:
Remarks:

— By particle conservation, one must have ) I, = 0. This requirement
is automatically satisfied. Ie., one of the equations (15) is redundant.

— One of the voltages can arbitrarily be set to zero, since only voltage dif-
ferences count. This is again automatically satisfied: With all voltages
set equal, all currents vanish.

— The symmetry relations (15) imply that Tpm(—B) = Tmn(B).

From the symmetry of the T-matrices, Biittiker deduced [3] the following

Onsager symmetries for multi-terminal resistances,

Rmn,pq(‘B) = qu,mn(B) . (16)

By definition Ry,n,pq is the resistance (i.e., ratio of voltage to current)
when the current flows from lead m to lead n, and the voltage is measured
between the reservoirs connected to leads p and ¢. As a special case it
follows that the two-terminal resistance, where p = m, ¢ = n, is symmetric
under reversal of the magnetic field. The two-terminal resistance must, by
the second law, be positive. When voltage and current probes are crossed in
a 4-terminal measurement there is, in contrast, no fundamental reason why
the corresponding 4-terminal resistance should be positive (the example of
Hall resistances demonstrates this).

As an illustration, the episode almost 10 years ago leading to the deriva-
tion of (16), should be of interest to the statistical physicist. In a series of
clever experiments to uncover Aharonov-Bohm oscillations in mesoscopic
metal rings, Webb et al. [4] considered the configuration shown in Fig. 2.

The resistance of a ring, with diameter ~ 800nm and connecting reser-
voirs 1 and 2, was measured, at T = 0.01K, as a function of the (perpen-
dicular) magnetic field B. The current was measured from 1 to 2, and the
voltage across the ring from a to 5. The resistance R = (V, — V;)/I plot-
ted as a function of B showed characteristic Aharonov-Bohm oscillations
with a period corresponding to the flux quantum h/e. In addition, Webb
et al. found to their surprise that R(—B) # R(B)! What happened to the
Onsager symmetry? Biittiker solved this puzzle by pointing out that the
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Fig. 2. The metal ring configuration of Webb et al.

experimental setup is not a 2-terminal, but a 4-terminal measurement. The
resistance R;3 o5 should have an antisymmetric as well as a symmetric part.
One can disentangle these parts by combining different measurements with
current and voltage probes in different positions. Subsequent experiments
[5] beautifully confirmed Biittiker’s explanation.

3. Point contacts

A generic illustration of mesoscopic transport is provided by the quan-
tum point contact (QPC). A narrow constriction connects two wide regions
in the 2DEG, these regions being sufficiently wide to be considered as reser-
voirs (see Fig. 3).

VAN

7

Fig. 3. A simple point contact between reservoirs 1 and 2.

Clearly the energy spacing of the transverse modes is much larger in the
narrow constriction than elsewhere. With a given energy Er only a small
number N(EF) of transverse modes can be accomodated in the constriction
or, to put it differently, only a small number of channels are open. Neglect-
ing tunneling and internal reflections we find from the Landauer formula
(10) that the conductance through the constriction is the staircase function
G = (2¢2/h)N(Er). Experimentally one finds [6] something qualitatively
similar, as shown in Fig. 4.

This simplest of explanations leaves something to be desired. One would
like to understand what determines the slope between the steps or, equiv-
alently, the width of the conductance steps. The tendency to oscillatory
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Fig. 4. The conductance as a function of gate voltage, or better, as a function of
Ep — Eo, where Ej is linear in the gate voltage, according to van Wees et al.

behavior occasionally found, should also be explained. In short, one would
like to dig underneath the surface of the simple phenomenological treatment
of ‘full transmission or no transmission’. The Landauer formula gives the
recipe: Solve the scattering problem, calculate the transmisson amplitudes.
We shall not pause here to go into this kind of detail [7].

What we would like to do is to emphasize the dual value of the Landauer
formula. On the one hand it gives, essentially without calculations, an
outline of the principle features of the phenomenon at hand. On the other,
it provides the framework within which real calculations can be performed
and more detailed questions addressed.

4. Magnetotransport

In the context of magnetotransport, generalization of the Landauer for-
mula to the Landauer-Biittiker equations becomes essential. The dual func-
tion survives: With transition probabilities estimated as 0 or 1, the formal-
ism provides an overview of the physics. A case in point is the integer quan-
tum Hall effect (IQHE) in mesoscopic systems which, as we shall see, can be
simply understood in this fashion, with direct links between the theoretical
formulation and the experimental setup. On the other hand, the formal-
ism provides a framework within which (now quite complicated) scattering
calculations can be performed from which the widths of the quantization
plateaus etc. can be obtained for the specific case of interest.

Before sketching this, let us consider a simple quantum state from which
some basic features of magnetotransport can be understood.
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4.1. A simple QM magnetotransport state

Take a quantum wire with harmonic confinement in the transverse y-
direction, subject to a magnetic field in the z-direction. The Hamiltonian
reads,

5+ ed)?
(Fted)

H= 2m

mwiy?. (17)

With the Landau gauge for the vector potential A= (-yB,0,0), the prob-
lem is translationally invariant in the z-direction, and the solution of the
Schrodinger equation must have the form

d’k,a(‘cs y) = eikzd’a(y)' (18)

This ansatz gives a harmonic oscillator problem for the transverse eigen-
functions ¢, with the spectrum,

B

wi B?k?
2m ’

Eq(k) = R (a - 2)-1—,,22 a=1,2,3---, (19)
where 2? = w? + w?, and w = eB/m. The corresponding eigenfunctions
are scaled and shifted versions of the standard harmonic oscillator eigen-
functions x(¢), namely

bal¥) = Xa (’-’—"72;25—’9) , (20)

where Ap = (w/#2)lp and where g = y/h/eB is the magnetic length.
The group velocity in subband « is,

v 1dFE (k) hka w_g:;o
*~ % dk .02 m

In (21) k4 is given by the solution of the equation Ep = E,(kq). Note that
without confinement, there is no transport. Without an external potential
the electrons will circulate in states corresponding to cyclotron orbits and
they will get nowhere. The presence of some kind of transverse force, here
from the parabolic confinement, is necessary to get a non-zero group velocity.

From the form (18) and (20) of the state ¥y (=, y) we can, since x2(£)
is symmetric in £ for all a, read off the center of gravity (¥)a,

0. (21)

w
(Yo = Asza = 21 ko = Jz'va‘ (22)
0

n
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These results are illustrated in Fig. 5.

Fig. 5. (a) — The dispersion relations of the Landau subbands. (b) — The
corresponding mean positions of the propagating states at Ep.

With (y) proportional to k4, which in turn follows from Ep = Eq(kq),
the states propagating in the positive z-direction are ordered so that a =1
gives the state with the highest (y)o (i.e., “closest to the upper edge”),
with (y)o smaller the higher a. The states propagating in the negative z-
direction are similarly ordered at the lower edge. The number of these pairs
of propagating states is equal to the number of Landau levels where V' = 0,
i.e., in the bulk.

The Ehrenfest theorem shows that with harmonic potentials the cor-
respondence between quantum and classical physics is particularly close.
It is interesting to check just how close this correspondence is here. For
example, the current density (which has both signs!) associated with a sin-
gle quantum state, mimics the current associated with classical trajectories
corresponding to cyclotron orbits drifting in the z-direction, when these
trajectories, at the same energy, are averaged over initial positions.

The details of the states discussed above are, of course, special to the
idealized model considered. However, many of the qualitative aspects are
representative for magnetotransport in realistic quantum wires: In high
magnetic fields edge states are responsible for the transport, their number
(in each direction) is equal to the number of bulk Landau levels, and they
are ordered in space with the state corresponding to the lowest Landau level
closest to the edge.

4.2. Adiabatic transport in strong B-fields
The lateral extent of the wavefunction in a propagating state is, as

shown in the previous subsection, of the order of the magnetic length,
lp = /h/eB. When this length becomes small on the scale set by the
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geometry of the system (i.e., by V(z,y)), on enters the regime of adiabatic
magnetotransport. Characteristic for this regime is that the overlap between
different propagating states decreases exponentially with increasing B, so
that scattering between states is suppressed. In particular, the probability
for scattering across the the entire device, from a forward to a backward
propagating state, becomes very small. Let us consider some qualitative
consequences of these facts.

Fig. 6. Crossection of a typical quantum wire.

Fig. 6 shows the crossection of a quantum wire? with a transverse con-
finement potential V(y). The idealized version of this potential is approxi-
mately parabolic close to the edges, and flat in the middle. Deviations from
this idealization depend, of course, on the circumstances. Let us now make
the not unreasonable assumption that these deviations can be described by
a random set of low-k Fourier components with small amplitudes. One can
think of this stochastic potential as resulting from the randomly distributed
donors in a layer parallel to the 2DEG, but respectfully removed from it.

The simplest possible picture is then that of Fig. 6: The equally spaced
Landau levels dutifully follow the gently undulating V' (z,y), which locally
defines the zero point of energy. The lateral compression of the Landau
states close to the edges further contributes to raising their energies there.
Thus every Landau level, in this generalized sense, will intersect the Fermi
energy at some point. The lowest subband will intersect closest to the edge.
The number of propagating “edge states” is, in each direction, clearly equal
to the number of bulk Landau levels below Ep.

First think of the two-terminal conductance, as given by the Landauer
formula (10), for such a quantum wire. When the Fermi energy lies in the
gap between two bulk Landau levels, one has a definite number N(Ep)
of states propagating in the positive z-direction, close to the upper edge.
The same number of states, propagating in the opposite direction is found
close to the lower edge. With the width of the device much larger than
the magnetic length, W > Ig, scattering from forward to backward moving
states is highly improbable.

4 A wide wire this time. There is no conceptual distinction between a wire and
a wider bar.
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When, on the other hand, The Fermi level cuts through an undulating
Landau level, the situation is qualitatively different. The last “edge state”
is now all over the volume and, in addition, there are many current car-
rying localized states trapped around local hills or in local valleys in the
landscape V(z,y). Scattering from the forward, via localized states in the
bulk, to the corresponding backward propagating state is now quite likely.
A quantitative treatment of this scenario will provide predictions for the
transition region between two quantized values of G. For a small system
the details of these steps will depend on the particular realization of the
random potential. In mesoscopic systems, therefore, one should expect the
details of G(EF) or G(B) in the transition regions to be non-universal.

4.3. The integer quantum Heall effect

The qualitative features of adiabatic transport in high B-fields are suf-
ficient to provide an explanation [8] of the integer quantum Hall effect

2 3 e N 3

A
i 771 LLLLL L L ld el L, Y

‘1 4 4 &cﬁ d:) IEA
% (; %rff

Fig. 7. A Hall bar with propagating states at the Fermi level (a) when Ep lies
in the gap between Landau levels, and (b) when Ep cuts through an undulating
Landau level.

[ (b) 5

(IQHE). Fig. 7 shows a Hall bar in a 6-terminal configuration typical for
such measurements. The net current enters from reservoir 1 (the source)
and ends up in reservoir 4 (the drain). Le., I; = —I4 = I. The remaining
four “reservoirs” are voltage probes with vanishing net current. At ‘the
high B-fields contemplated here, one should treat the different spin states
as separate channels. With this larger state space explicitly taken into
account, the spin degeneracy factor 2 in the Landauer-Biittiker equations
(15) should be replaced by unity. In Fig. 7(a), EF lies in the gap between
spin split Landau levels, whereas in Fig. 7(b) EF cuts through an undulating
level.

From Fig. 7(a) one can immediately write down excellent approxima-
tions for the T),,, needed in the Landauer—Biittiker equations. With N spin
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split states propagating along the edges of the bar one has,

_ [N if(n,m)=(m+1,m)
Trm = ’ ’ . 23
nm { 0 otherwise (23)

Let us define the Hall conductance as Gy = I/(V2 — Vi) (or any other
combination with one probe along the upper, and one along the lower edge).
Then (15) with 2e%/h replaced by e2/h gives,

2
! EN. (24)

— p-l_ _
Cu=Ry =g—y =3

Similarly, from (15) and (23), the longitudinal resistance R vanishes,

Ve -Va

Ry T

=0.

This simple picture immediately shows that when Ep lies in the gap
between Landau levels, the Hall conductance is quantized and given by the
number of spin-split channels propagating along the edges. It also directly
correlates this quantization with a vanishing longitudinal resistance.

The transition between two levels, say N — N — 1, is caused by Ep
moving through the Landau level no. N from above or, equivalently, by the
Landau level moving through Ef from below. The latter case corresponds
to B being increased. Thus, a simplistic interpretation of (24) yields Gy
as a descending staircase function for increasing B. On can go beyond
this zeroth approximation and study the shape of the steps by detailed
calculations based on the scenario sketched in Fig. 7.

Note that in this mesoscopic setting a random potential with localized
states is not required to explain the finite width of the plateaus. The reason
for this is basically that the chemical potential is fixed, not by the mesoscopic
Hall bar itself, but by the (“infinite”) reservoirs. This is in contrast to
the essentially macroscopic Hall bars on which, for example, von Klitzing’s
original experiments were done.

On the other hand, by reintroducing the gently undulating potential
V(z,y), one can approach the macroscopic limit by considering scattering
across the width W, from forward to backward propagating states. This
leads, in (extremely) high magnetic fields, to an interesting type of percola-
tion problem in which electrons essentially drift along equipotential lines in
the undulating landscape. This percolation problem is, presumably, charac-
terized by universal exponents as W — oo. The correlation length exponent
v has, in fact, been determined experimentally to » = 2.3 £ 0.1, consistent
with v = §+ 1. The exact result for classical percolation in 2D is v = %, s0
the extra contribution of unity must be of quantum origin. What precisely



1174 E.H. HAuGE

does QM do to the percolation problem? Explanations relying on tunneling
alone [9], and on tunneling with crucial contributions from interference [10],
have both been put forward. The final verdict is, in my opinion, not yet in.

5. A classical model

With all the current activity in the field of quantum tramsport, it is
interesting that there are still surprises in store in classical magnetotrans-
port. The good old Lorentz model, in which a single electron moves with
constant speed v in a random array of short range scatterers, can be stud-
ied in 2D and with a perpendicular magnetic field. Amazingly enough,
the Boltzmann equation is not correct in this case, even in the Grad limit,
n — oo,a — 0,4 = (2an)~! = finite, where n is the number density of
hard disk scatterers with radius a, and A is the mean free path. The phys-
ical reason for the failure of the Boltzmann equation is simple, and special
to 2D. In a magnetic field classical electrons move in circular orbits with
the cyclotron radius R. Thus, in 2D, there is finite probability that the
electron will complete the circle without scattering. In the Grad limit this
probability is Py = e~2"R/A_ The recurrence has the effect that some elec-
trons keep circling in a cyclotron orbit forever, whereas others suffer many
recollisions with the same scatterer before hitting a different one. Thus,
non-Markovian effects are introduced and the Stosszahlansatz, basic to the
standard Boltzmann equation, fails.

At first sight the corresponding complications look formidable, but as
the smoke clears [11], the generalized Boltzmann equation appears (for the
spatially homogeneous case) in the form,

A yn
(§+w{i_¢) f(d’)t): "go POB—an(¢9t"’3T)s (26)

with the retarded Boltzmann operator defined by,

B—an(¢’t - ST):V/ d¢g(¢) [f(¢"(3 + 1)¢’ t— 3T)"f(¢"3¢3t_3T)] .

(27)
Here ¢ defines the direction of the velocity, w is the cyclotron frequency,
T = 27 /w the corresponding period, » the collision frequency and g(v) the
dimensionless differential crossection. This generalized Boltzmann equation
is, properly interpreted, ezact in the Grad limit. The corresponding initial
value problem can even be solved exactly, leading to a diffusion tensor D;;
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given by the complex D = Dy + iD,, with Dy = Dz, = Dy, and Dz =
—Dgy = Dy, as
2v’7p(2)(1 - 2%)

= 28
b 1 — iwtp(z) (28)
where z = exp(—3vT) = exp(—wvm/eB) and
-1 1-22 (1-22 1+z
= - - . 2
T (2)=v {1 552 5 In T 1 (29)

Now move away from the Grad limit, but with na? < 1,¢/R < 1.
A new parameter of arbitrary size can then be defined as r = R\/n =
R/v/2Aa. In the Grad limit, » — oo. For finite r a percolation problem
arises. Below the percolation threshold r, = 0.5995 + 0.005, no diffusion
is possible, the electrons are trapped in localized clusters of scatterers. A
numerical study [11] of the corresponding percolation exponents gives results
that are almost consistent with exactly known values for lattice percolation.
More work is needed.

I could not refrain from quoting these tantalizing results here, but do not
give further details since our focus is on quantum transport in the 2DEG.
Whether the classical Lorentz model provides a reasonable caricature of
some remote region in this basically quantum world (a random array of
quantum antidots with judiciously chosen parameters comes to mind) re-
mains to be seen. As a frivolous fling into classical kinetic theory, study of
the Lorentz model certainly has its own rewards!

6. Final remarks

Within the limited scope of these lectures it has been impossible to do
justice to the variety of phenomena and problems encountered in the study
of the 2DEG. A couple of final pointers:

We have stayed strictly within the single-electron picture here. With
interactions basically of Coulomb character, this has its limitations. For ex-
ample, a number of subtle effects from Poisson self-consistency add impor-
tant nuance to the simple one-electron pictures sketched here, the character
of edge states being a case in point. Moreover, the whole vigorous subfield
of Coulomb blockade effects [12] (of both fundamental and (potentially) ap-
plied interest!), hinges on taking the Coulomb interaction seriously. The
crucial point is that, for sufficiently small tunnel junctions, the effective
capacitance C' can be made so small that the charging energy of a single
electron, e? /2C, becomes a dominant energy (for example, e2/2C > kgT).
The charging energy is clearly a nonlinear effect, basically of many-body ori-
gin. However, simple approximate theories based on classical electrostatics
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have been remarkably successful in describing the main features of Coulomb
blockade phenomena. Subtle effects of the environment, on the other hand,
require more elaborate methods.

In the mesoscopic world of coherent transport, described in these lec-
tures, the integer quantum Hall effect is almost reduced to a triviality. How-
ever, the IQHE is also observed outside the realm of mesoscopics. In fact,
von Klitzing’s original measurements were done on an essentially macro-
scopic Hall bar. A whole body of literature on the QHE has macroscopic
systems with incoherent transport in mind. The connections between these
two views are only partly understood. Similar remarks apply to the frac-
tional quantum Hall effect, not covered in these lectures. Ideally, one would
like to start from a unified theory which, from the outset, can encompass
both interactions and edge effects, and from which mesoscopic and macro-
scopic theories on the integer and fractional Hall effects follow as special
cases. Also, current distributions, dissipation, ‘critical’ exponents, and lim-
itations of the linear theory should all follow from this grand unified view-
point. We are not yet there.
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