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The propagation of a chemical wave front in a nonhomogeneous system
with a model reaction A + B — A + A is simulated using periodically
expanded molecular dynamics technique for reactive hard spheres. It is
shown that for fast reactions the speed of a front does not depend on
the rate constant as the standard, parabolic reaction-diffusion equation
predicts and its value scaled by the square root of the rate constant k
is an increasing function of k. This phenomenon may be explained on
the basis of extended irreversible thermodynamics if separated equations
for the concentration of A and for the associated diffusive flow of A are
considered.

PACS numbers: 47.70.Fw, 82.20.Mj, 82.20.Fd

1. Introduction

The research on spatial- and temporal-selforganization in nonlinear
chemical systems, initiated by the discovery of Beolusov-Zhabotynsky re-
action in ’50s, attracted a lot of scientific attention in the last decade [1].

* Presented at the VII Symposium on Statistical Physics, Zakopane, Poland,
September 22-28, 1994.
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Together with the increasing number of experimental results, one can ob-
serve a continuous progress in theoretical methods aimed at description of
the observed phenomena. The computer simulation methods performed on
a microscopic scale (molecular dynamics, lattice gas automata, direct Monte
Carlo simulations of Boltzmann equation) play an important role as they al-
low one to test the theory using model systems, for which all the elementary
processes are known.

In this paper we are concerned with molecular dynamics simulations of
a chemical wave front propagation. This phenomenon can be regarded as
the simplest manifestation of an organized spatio-temporal behaviour in a
nonhomogeneous chemical system. Here we consider the simplest chemical
wave front which appears in a system with reaction describing quadratic
autocatalysis:

A+BE At 4. (1)

For reaction (1) both states: composed of pure A and composed of pure
B are stationary; the first one is stable and the other is unstable. In a
nonhomogeneous system a front of concentration of A propagates into re-
gions composed of pure B. In our model system described in Chapter 3 the
molecules of both A and B are represented by hard spheres characterized by
the same mass and diameter and in this particular case it is easy to develop
efficient algorithms allowing for simulation at a scale of 107 particles even
on a personal computer. Such scale seems to be sufficient for a compari-
son with the macroscopic theory based on reaction-diffusion equation. Our
results show that a standard parabolic reaction-diffusion equation [2] pre-
sented in Chapter 2 fails to describe correctly the speed of a front created
by a fast reaction. The agreement between theory and simulation can be
improved if one uses separated equations for time evolution of concentration
and its diffusive flow, as suggested by the extended irreversible thermody-
namics [3, 4].

2. Equations describing propagation of a wave front

From the assumed reaction scheme (1) it follows that the sum of densi-
ties of A and B (denoted as a and b respectively) remains constant (a+b =
ng). Therefore the system may be completely described by a single concen-
tration - for example a. The “classical” approach to the problem is based
on a reaction-diffusion equation, which for reaction (1) has the form [2}:

Oa 2 2
—(,;:kab—i—DV a = ka(ng — a) + DV-a, (2)
where k denotes the rate constant. In simulations we set the reaction rate
introducing a steric factor sp which denotes the probability that a collision
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between spheres representing A and B is reactive (k = spko, where kg
is the collision frequency). It is convenient to describe front propagation
using the scaled variables: concentration a = a/ng, rate constant « = ngk
(ko = nokq), time 7 = st and the space variable £ = 4/x/Dr, where D is
the diffusion constant. In these new variables Eq. (2) reads:

%g—za(l—a)+V2a. (3)

The studies on equation (3) (and especially on its one dimensional ver-
sion) have a long history originating from works by Fisher [5] and Kol-
mogorov et al. [6] (for a chronography of research on chemical fronts see
[7]). Let us consider a stationary wave front propagating along the z-axis
with a constant velocity v. A stationary front profile may be described in
the reference frame moving together with it:

a(§,7) = a(éz,7) = a((), (4)

where ( = £; — v7. The front profile as a function of { variable satisfies
equation:
8a 0%a
V8_C+%2—+a(1_a):0' (5)
This equation admits solutions which are stable with respect to local per-
turbations for all velocities, which are greater or equal than the critical one
Vmin = 2 (or in non-scaled variables vmin = 2v'kD). The particular solu-
tion of Eq. (2) which corresponds to vpyjn is very important because it was
shown by Mc Kean [8] that a step-function initial distribution of A evolves
into a wave front propagating with this minimal velocity. This result was
later generalized by Bramson [9] and by Merkin and Needham [10], who
proved that velocity of any front originating from an initial condition, such
that the concentration of A vanishes for all { greater than (o, converges to
the solution propagating with vpyin.
Unfortunately, the analytical solution for the profile corresponding to
the minimum velocity is not known. An analytical solution, which is quite
close to the critical one was given by Kaliappan [11]. It reads:

1

(1+aem($))"

where Q > 0 is a constant related to the initial condition. The velocity, this
solution corresponds to is greater than vy, by a factor 1/25/24.

a(() =




1180 J. G6reckl, J.N. GORECKA

The shape of fronts profile is uniquely related to the scaled velocity.
If one considers the inflection point of a(() than the following relationship
between a and v is hold:

v = vVkD = —VkDa(l - a) (%‘—Z—) :1 . (6)

An alternative description of a wave front propagation comes from the
recently developed methods of extended irreversible thermodynamics [3, 4].
For reaction (1) the coupled equations for the density of A and for the
accompanying diffusion flow read:

9
6—: = ka(no — a) — VJ,,
‘95’: — _I(J. + DVa), (7)

where J, denotes the diffusion flow associated with a. Egs (7) may be
considered as describing processes in two different time scales: a slow one
for the conserved variable a and a fast one for a non conserved variable J,.
If the relaxation of J, is infinitely fast (L — oo) then the second equation
gives:

Jo = —DVa

and the set of equations (7) reduces to Eq. (3). Using the same rules of
scaling as before, defining the scaled diffusion flow as ¢, = Jg/np and
assuming that a front depends only on £ one obtains:

da d ta

a—‘r=a(1—a)—5£ ok
kK d iy 8 ta

LorvaD %" VaD ®)

Finding an analytical equation of this set of equations seems difficult, how-
ever an approximation for fronts velocity can be obtained if one assumes
that /L (reaction-diffusion number) is small. In this case we can assume

that:
o N 9, KO0 (9)
VD & 8¢ L or 8¢
and the equation for wave front is:
Oa o? k 03

— =a(l —a)

or o T TaE (10
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Assuming the stationary form of front solution (Eq. (4)) one obtains the
following equation for the profile:

da 08%a &k B8a
V*(%"r'?a?“{-zlf-é-—c?‘f'a(l—-a)zo. (11)

At the inflexion point of the profile one has the following relationship be-
- - - - 3
tween the derivatives at this point: (—g%)i, %C—%—),' and the front’s velocity:
v=vVkD

o 1
= —VxDa(1 - a)(-g—c)g !

3 -1’
1+ £(5:8):(5%)

(12)

Let us assume that in the case of small x/L the shape of the front,
described in the scaled variables, is the same as the solution obtained for
(k/L) = 0 (and thus it is described by the shape corresponding to the
minimum stable velocity). Using Eq. (6) we obtain the following rule of
velocity scaling with respect to the steric factor sp:

VSF 1
= 1-—-
v 2 r——ICgD( SFY),

(13)

where v denotes —'—‘I{l(%%ﬁ'—)i(g—‘z);} and it is easy to show that v is positive.

The assumption on the independence of shape of profile on sy leads to
the conclusion that the value of 4 is constant for all systems characterized
by the same diffusion constant and collision frequency.

Let us notice that the results given by the classical, parabolic reaction
diffusion equation and by the extended irreversible thermodynamics are
qualitatively different. The first method says that the scaled speed of a
front is constant, in the second this speed is an increasing function of sp.

3. Molecular dynamics simulations of wave front propagation

Molecular dynamics technique [12] seems to be the most appropri-
ate for microscopic simulations of chemical systems. On the other hand,
the method is the most demanding from the computational point of view.
Therefore, alternative techniques, like the Bird method [13] or cellular gas
automata [14] were used to simulate propagation of a chemical wave front
[15]. However, both these techniques involve significant approximations.
In the Bird method the system is divided into subcells, within which the
collisions are unrelated to the actual positions of particles (it means that
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the spheres, which collide are randomly chosen). The lattice gas automaton
introduces an artificial lattice geometry of the system and a particle jumps
to one of the nearest nodes within a single time step. Therefore the speeds
of all particles are the same and the method cannot be applied to ther-
mally activated reactions, in which one may expect significant difference in
velocities of particles corresponding to reactant and product [16].

In this paper we apply a new simulation technique (periodically ex-
panded molecular dynamics) [17], which allows to perform large scale simu-
lations without simplifications mentioned above. The simulations are based
on the model of reactive hard spheres [18]. According to this model all the
particles are represented by identical hard spheres (:.e. characterized by the
same mass and diameter). The chemical identity parameter which describes
the “chemical” properties of a sphere, has no influence on its mechanical
motion. A reaction may occur if spheres representing the appropriate re-
actants collide and after such collision the spheres are marked as products.
Within this model the lifetime of a transient complex is zero as the reac-
tants are instantaneously transformed into products. The infinitely short
time of chemical reactions at a molecular level is clearly separated from the
characteristic time for collective phenomena, which is related to an average
time between collisions.

A significant increase in the efficiency of simulations performed for re-
active hard spheres can be achieved if the periodic expansion of a simulated
system is used. Let us assume that all the collisions (including reactive ones)
are elastic from the mechanical point of view. In this case a trajectory, which
describes the motion of reagents is just an equilibrium trajectory of spheres.
On the other hand a “chemical” evolution may be easily obtained from any
equilibrium trajectory if the chemical identity parameter is assigned to all
particles and if it is updated after every collision regarded as reactive. A
prerecorded trajectory acts as a database containing the information on
times of collisions and on particles involved in a considered system. If the
periodic boundary conditions have been used to generate the equilibrium
trajectory, than the size expansion is possible. The periodic boundary con-
ditions mean that the simulated system is regarded as an elementary cell
in an infinite system, which is invariant with respect to the translations
by the vectors of the side length. The most popular shape of simulated
area are: square in the case of a 2D system and a cube. in 3D. Knowing
the evolution within a single cell one has the information about positions
and velocities for corresponding (by symmetry) particles in all its replicas.
Therefore, using a prerecorded data on the sequence of occurring collisions
one can obtain the evolution of a system which is extended by a number of
cells in each direction. Of course, the original periodic boundary conditions
remain satisfied for the extended system.
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If a chemical identity of molecules is neglected than such expansion
does not bring us any new information, as the evolution in all cells of the
extended system is identical. Moreover, it may lead to wrong conclusions
as the correlations extending over a single cell are affected by artificially
introduced periodicity. However, for a multicomponent chemical system, in
which the translational motion is not related to chemical identity, the situ-
ation is different. First, a different chemical composition may be initialized
in various cells by marking the equivalent (by periodicity) spheres in a dif-
ferent way. Secondly, a steric factor if it is not equal to unity, differentiate
the “chemical” evolution, because a collision between the same objects may
be reactive in one cell and nonreactive in another. Thanks to the periodic
boundary conditions a free flow of molecules, between the neighboring cells
is ensured. Therefore, one obtains the evolution of a system which is much
larger than the original one.

Of course, the simplifications involved introduce unrealistic constrains
in the simulated system treated as a whole. The momentum of all particles
within each single replica of the original cell is equal to zero, whereas one
might expect that this condition should be satisfied for the whole system
only. Moreover, the fluctuations of velocity are related to the size of the
original simulation cell. It can be expected that the appearance of a par-
ticle characterized by a very high velocity is less probable in simulations
performed using periodically expanded molecular dynamics than in a sys-
tem of the same size simulated with the use of the direct method. We believe
that both these disadvantages are not important if the number of particles
in the original cell is sufficiently large and if the processes considered do not
require molecules with a very high energy.

The main advantage of the periodically expanded molecular dynamics
is the fact that the method is extremely efficient from the computer point of
view. In the case of chemically reacting hard spheres only times and identi-
ties of colliding spheres have to be recorded in order to restore a trajectory.
To describe an expanded system one needs only one large array in the com-
puter memory to store the actual chemical identities of all objects, whereas
all the other quantities as velocities, positions and moments of collisions are
periodic in space and they do not require a large memory. A single collision
data obtained from a prerecorded trajectory give us information on a set
of collisions occurring in all the replicas of the original cell. Therefore, the
space required to record a long trajectory is much reduced if compared with
the system of the same number of molecules in which the collisions in dif-
ferent regions of space are uncorrected. The scale of simulations (number of
collisions per particle) is the same in the expanded system as in the original
one.
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- The results of our simulations were obtained by a periodic expansion of
a few equilibrium trajectories, which were recorded for a system composed
of hard spheres characterized by the mass m = 32 a.u. and diameter the
o =5A. The average kinetic energy of spheres corresponded to temperature
300 K, but this value is not very important, as temperature may be easily
changed by rescaling time. Two different densities were considered. The
original simulations at a low density were done for N = 500 spheres placed
in a cubic box with the side length d = 14.70 and thus the packing fraction
was 7) = 0.0824. In order to see which is the statistical error of the method,
we considered two independent trajectories, each 400000 collisions long. The
simulations for a high density system involved N = 1000 spheres moving
in a cube with the side length d = 15.50 and the packing fraction was
n = 0.1406. This trajectory was over 600000 collisions long.

The system was initialized as homogeneous in z and y directions, which
means that the initial average concentrations of A and B in all the cells
characterized by the same range of the z-variable were the same. For an
expanded system the periodic boundary conditions were used in z and y
directions. In order to observe front propagation the initial concentration
of reactants were nonhomogeneous in the z direction. Part of the simula-
tions started form an initial concentrations described by a step-function:
all the spheres, for which z < z; were marked as A4, all the other as B.
In other simulations there was a wide interval of z (usually about 100¢ in
length) within which the initial concentrations of both reactants were dif-
ferent from zero. A modified periodic boundary conditions (the chemical
identity parameter of a sphere crossing the boundary of an expanded sys-
tem was reversed) were used in the z direction. To analyze the results, the
system was divided into slices perpendicular to the z-axis (500 total). The
fraction of particles representing each of reactants is averaged within every
slice.

Most of the simulations for the low density were performed for a sys-
tem expanded by 14 side lengths in 2 and in y directions and by 100 side
lengths in the z direction. Thus, the total number of spheres considered
was 9,800,000. A few simulations were done for a smaller system (expanded
10 times in 2 and y directions) in order to check if the scale of expansion
affects the results.

Fig. 1. shows the time evolution of fronts of concentration which were
initiated by a wide (Fig. 1A) and a sharp (Fig. 1B) profile of A. The steric
factor is sp = 0.22, which means that 22% of collisions between A and B are
reactive. As Fig. 1 shows, a well developed, stationary concentration profile
appears within less than 100 ps. Observing the distance travelled by a front
as a function of time it is easy to obtain the phase velocity as a function of
the rate constant (in practice we focused our attention on the shift of a point
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Fig. 1. The profile of concentration of A for a few selected moments of time for a
system characterized by the low density and s, = 0.223. The dashed line shows the
initial concentration of A. The solid lines from left to right correspond to times:
(A) 104 ps, 208 ps, 416 ps, 519 ps and 622 ps;
(B) 208 ps, 416 ps, 622 ps, 934 ps and 1140 ps.
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corresponding to a = 0.5). For simulations performed at the same packing
fraction, the diffusion constant does not change. For the low density, by
substituting the values of the diffusion constant (D = 0.62 o2 /ps) and of
the collision frequency (ko = 0.766 1715)’ to the expression for the minimum

stable velocity one obtains that:

v

= 2v/koD =1.3718 Z
pS

or

5 Al

v

=0.726 22
[74

The results are shown in Table 1. For the slowest reaction the minimum
stable velocity is a good approximation of the observed speed of a front.
However, the velocity scaled by a square root of the steric factor is an
increasing function of sp. This effect cannot be explained on the basis of a
standard parabolic reaction-diffusion equation (2).

On the other hand we can adjust the modified expression for velocity
(Eq. (13)) to the results of simulations. If one uses the value of 21/k¢ D given
above then for 4y = 1.066 a good approximation for the observed velocities
is observed. The comparison between theory and simulations is presented
in Table I. and in Fig. 3A.
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TABLE I

The speed of a wave front in (o/ps) units; comparison of simulation data with the
theory. The packing density is equal to 7 = 0.0826. According to the standard
reaction-diffusion equation (Eq. (2)) the value of v/ \/E does not depend on s,
and is equal to 1.378 (or (,/35/v) = 0.726 ps/c).

Sp 7“'—' - simulations Jﬂ£ - simulations 3@2 - Eq. (13)

0.02° 1.353 0.739 0.7044
0.05% 1.516 0.660 0.672
0.12 1.719 0.581 0.619
0.1° 1.723 0.580 0.619
0.135 1.861 0.535 0.582
0.135° 1.876 0.533 0.582
0.2232 2.157 0.457 0.488
0.223% 2.224 0.450 0.488
0.368 2.617 0.380 0.334
0.368P 2.655 0.377 0.334

® Runs starting from the sharp initial distribution of concentration.
® Runs starting from a wide (about 100 o) distribution of concentrations.

For the system characterized by the high density most of simulations
were performed for a system expanded by 10 side lengths in # and in y
directions and by 120 side lengths in the 2z direction. The total number of
spheres considered was 12,000,000. For small steric factors we simulated a
system, expanded by 14 side lengths along # and y directions and by 70 side
lengths in z direction (13,720,000 spheres total). Fig. 2. shows a typical
evolution of concentration of 4 in the high density system. In this case steric

factor is s = 0.20. For the high density (D = 0. 35”2) and (ko = 1. 56ps),
so the scaled minimum stable velocity equals:

= 2/koD = 1. 484 s

or

=0.674 22 ps

[ 3l

These values agree with the veloc1t1es of fronts created by slow reactions
(sF < 0.025) (see Table II). Simulations performed at the high density also
show that the velocity is an increasing function of a steric factor. The
change in velocity with respect to vmin corresponding to a given value of
sp is much larger than it was for the low density, as illustrated in Fig. 3B.
A simple numerical fit of velocities observed for small steric factors gives
vy = 7, however the linear approximation (Eq. (13)) fails for sz > 0.1.
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Fig. 2. The profile of concentration of A for a few selected moments of time for a
system characterized by the high density and s, = 0.2. The dashed line shows the
initial concentration of A. The solid lines from left to right correspond to times:
{A) 77 ps, 154 ps and 231 ps;
(B) 77 ps, 154 ps, 231 ps, 461 ps and 692 ps.

$

~ ~ bl
=3 o
-3 8 o
L L Ledaiag

v / sqrt{ steric foctor)

8

velocity / sqrt{ steric factor)

8
o
S
©

5

T T Ter v
%] 03 c4 0.00 0.05 0.10 0.15 0.2¢ 025
steric factor steric factor

(A) (B)

Fig. 3. The front velocity scaled by /s, as a function of steric factor; stars mark
the results of simulations, dashed line shows the minimum stable velocity and the
solid line is a numerical fit based on Eq. (13).

(A) low density system (v = 1.066);

(B) high density system (y = 7.0).
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TABLE II

The speed of a wave front in (o/ps) units for a reaction without thermal activation;
comparison of simulation data with the theory. The packing density is equal to
= 0.1406. According to the standard reaction-diffusion equation (Eq. (2)) the

value of \/—3’= is equal to 1.484 (or 3? = 0.674 ps/o).

sF

8y V—,-”-— - simulations 3/—;—5 - simulations 3@ - Eq. (13)

Ly 4

0.012 1.640 0.610 0.627
0.025P 1.855 0.554 0.556
0.025° 1.847 0.541 0.556
0.05° 2.285 0.438 0.438
0.05 2.350 0.426 0.438
0.1® 3.241 0.306 0.202
0.15% 4.075 0.245 -
0.20P 4.280 0.234 -
0.20* 4.460 0.224 -
0.25° 4.908 0.203 -

® Runs starting from the sharp initial distribution of concentration.
® Runs starting from a wide (about 100 &) distribution of concentrations.

4. Conclusions

Periodically expanded molecular dynamics technique allowed us to per-
form a large scale computer simulations on propagation of chemical fronts.
The results seems to be accurate enough to measure the speed of a front
and to show that in the case of very fast reactions (large reaction-difussion
number) the velocity scaled by the square root of the steric factor is an
increasing function of sp. Therefore, the standard approach based on a
parabolic reaction-diffusion equation (Eq. (2)) fails.

We explained the increase in scaled front velocity using coupled equa-
tions for the concentration of reactant and for its diffusive flow (Egs (7)),
as suggested by the extended irreversible thermodynamics. Introducing
a few approximations, which seem to be justified for small values of the
reaction-diffusion number, we derived a simplified formula for front’s veloc-
ity (Eq. (13)), which predicts that it is inversely proportional to (1 — vsp),
where 7 depends on density only. This approximation gives a fair agreement
with results of simulations.

The research on wave front propagation may be regarded as a build-
ing block for the theory of more complex selforganization phenomena as
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chemical spirals or patterns growth. We believe that the developed numer-
ical algorithms can be applied in future microscopic simulations of their
dynamics.

The authors are grateful to Professor T. Kawakatsu for helpful com-
ments. A part of this work was supported by the grant no. 2 P303 018 05
provided by the Polish National Science Foundation (KBN).
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