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Optimization is a crucial ingredient of many calculation schemes in
science and engineering. In this paper we assess several classes of meth-
ods: heuristic algorithms, methods directly relying on statistical physics
such as the mean-field method and simulated annealing; and Hopfield-
type neural networks and genetic algorithms partly related to statistical
physics. We perform the analysis for three types of problems: (1) the
Travelling Salesman Problem, (2) vector quantization, and (3) traffic con-
trol problem in multistage interconnection network. In general, heuris-
tic algorithms perform better (except for genetic algorithms) and much
faster but have to be specific for every problem. The key to improving the
performance could be to include heuristic features into general purpose
statistical physics methods.

PACS numbers: 02.60.Pn, 05.90.4+m, 42.79.Ta

1. Introduction

Optimization is a basic numerical procedure. In a famous book Numer-
ical Recipes [1] it occupies one chapter. Optimization methods are applied
to mostly two classes of problems: (1) minimization of general functions of
n variables (for testing purposes functions possessing nasty minima land-
scape are used) (2) combinatorial optimization: finding the extremum of
a function given set of explicit constraints. There exist standard methods
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such as quasi-Newton, downhill simplex and conjugate gradient. Gradient
methods suffer from a common problem; they stuck in local minima.

Physicist came up with several methods having statistical physics ori-
gin that claimed to having found a remedy to this problem. One such
method, simulated annealing is very popular among physicists [2—4]. For
example it has been successfully used to design complex integrated circuits.
The arrangement of several hundred thousand circuit elements constitut-
ing an integrated circuit has been optimized (this is the number mentioned
in Ref. [1], however, in the original work [3] a circuit with only 98 ele-
ments was analyzed) more efficiently compared to standard (presumably,
heuristic) methods. Unfortunately, this result does not seem to be general.
There exists a huge consensus gap between physicists, and computer science
and operation research communities, who consider simulated annealing as
painstakingly slow and moreover giving results of lower quality. The authors
have the statistical physics background, but recently undertook information
science problems. Our goal is to give an assessment of statistical physics
methods to optimization problems and operation research, in particular to
three types of problems: (1) the Travelling Salesman Problem (5], (2) vector
quantization [6], and (3) traffic control problem in multistage interconnec-
tion network (7).

Before in the literature there were two excellent works by Rujan (8]
and Lister [9] with extensive comparison of heuristic and statistical physics
optimization results. This review utilizes the results of these works but for
larger class of systems and larger systems.

There exists a huge literature on yet another branch of optimization
(largely ignored by physicists), stochastic approximation (see, the excellent
work by Styblinski and Tang [10]), which will not be discussed in this review.

2. Travelling salesman problem

The Travelling Salesman Problem (TSP) [5] is the Ising model of com-
binatorial optimization. For combinatorial optimization problems both the
configuration states and the constraints are integers. The most impor-
tant problems in this field belong to the class of NP-complete, 7.e. time
of their solution grows exponentially with the number of elements. Let
Kn = (VN, EN) be a complete (having every pair of nodes #j connected
by an edge e;;) undirected graph with N nodes and N(N — 1) edges. The
TSP can be stated as follows: for a Euclidean graph find a Hamiltonian
cycle (tour that visits each city exactly once) such that it is the shortest
for a given distribution of distances between N cities (nodes). Although
the exact solutions are known for certain class of problems up to 2392 cities
(this largest system was solved by Padberg and Rinaldi [11]), for large N
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the computational cost becomes prohibitive. In the need for acceptable al-
though not exact solutions statistical physics methods play a significant role.
Various methods are in use including the neural nets of the Hopfield [12]
or Kohonen [13] type [14], elastic net [15], simulated annealing [2, 3, 16]
or the mean-field. In this work we concentrate on comparison of several
approaches that claimed relative success in optimizing the TSP. We mostly
benchmark the methods with the use of the popular 318-city TSP, 1lin318,
for which the best known cost is 41345 [17-19].

2.1. Heuristics

The simplest heuristic methods are 2-opt and 3-opt. A 2-opt move
consists in cutting 2 links (¢ and k!) and replacing them with links ik and
jl. This takes O(N?) time. The 3-opt move consists of breaking 3 links
and joining the nodes (they are 8 ways to do this). In general k-opt involve
cutting k links and reconnecting them which takes O(N*) time. In the
most recent excellent review by Jiinger et al. [20], on their sample of test
problems, the 2-opt method gives average distance from the exact solution
of 8.3% (9.5% on the pr2392 problem [11] in 0.4 s on SUN SPARCstation
10/20). With a restricted version of the 3-opt Jiinger et al. [20] achieved an
average quality of 3.8% (18 s on pcb442). For the TSP problem the best
heuristic procedure is the Lin-Kernighan rearrangement (LK) [17]. It builds
complicated modifications that are composed of simpler moves, but allowing
that some component moves do not necessarily go only down-hill. There
are very few implementation of the original Lin-Kernighan procedure [17].
Restricted version of the Lin-Kernighan rearrangement (Jiinger et al. [20])
give an average distance from the exact solution of 1.5 — 1.8% on the set of
problems. For the pr2392 problem the result is 2.5 — 2.95% in 61.7-122.3 s
on SUN SPARCstation 10/20. Extending the LK procedure with 4-opt and
reapplying the heuristics brings the result to 1.75% for the pr2392 problem
and increases the time to over 8500 s. The latest procedure is capable of
achieving the global minimum for several standard cases, but none above
227 cities. For the 1in318 case the error is 0.53%.

2.2. Neural networks: analysis of the Hopfield and Tank type
Hamaltonians

Application of neural networks to optimization problems started with
the Hopfield and Tank [12] who proposed the following energy function
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where n.; is a peusdospin (occupation) variable for visiting a city # in the
n-th step, d., is the distance between city z and city y, in the last term
the ¢ variable is modulo N. The first (second) term is zero if there is no
more than one 1 in each row (column). The third term is zero if there are
exactly N 1’s, and the last term is equal to the cost of the tour. A, B, C,
D are positive, but otherwise not precisely defined. Hopfield and Tank used
A =B =500, C =200 and D = 500 in their work. In spite of initial claims
the method generally failed for N > 10. Various remedies were proposed.
Recently Mehta and Fulop [21], proposed the following Lapunov func-
tion that removed some problems inherent in the original Hamiltonian of

Hopfield and Tank [12]
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More precisely, this energy was used to the Hamiltonian cycle problem which
is the special case for TSP. It can be transformed into TSP by completing
the connection graph to fully connected graph and ascribing to the original
edges weights 0 and to new edges weights 1. Problem is defined by specifying
the cost matrix d;, and average connectivity between cities c.

In contrast to the Hopfield and Tank parameterization, Mehta and Fu-
lop also gave relation for coefficients that produce stable solutions. For
G=10,V=H=0.7,5 = 0.6 and D = 0.05 — 0.5 they achieved 100% of
legal solutions.

Among the Hopfield-type Hamiltonians, probably the Potts representa-
tion proposed by Peterson and Sédeberg [22, 23] enjoys the best reputation

Epg = - g—ZZnZ, + %Z(chi)z

d
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The advantage of this approach is that the Potts variable exactly fulfills the
legality condition for the i-th variable

ani =1. (4)

The corresponding mean-field equation reads

(5)

8E[n] 11
=1+ exP('kBT[arl, |
where [ denotes two indices z, ¢, kg is the Boltzmann constant, T tempera-
ture, and #; is an average population at site /.

For d., normalized to unit square, and parameter values a = 1.0 and
B = 0.5 one rarely obtains 100% of legal solutions (for large problem size)
but these solutions are not too far from optimal so hybrid approach with
the use for example of greedy heuristics or the 2-opt does not make the cost
function considerably worse.

Recently, Cieplifiski and Jedrzejek [24] have derived that the Ising-type
Mehta and Fulop Hamiltonian [21] and the Peterson-Sédeberg Hamilto-
nian [22] have effectively the same form if the following equivalences are
used

D—10, H—B, V—>a G—a §—a.

As a consequence one can compare the methods of solutions of the same
effective Hamiltonian.

As for values of coefficients scaling the Mehta and Fulop Hamiltonian
by taking D = 1.0 and multiplying the rest of coefficients by 10/7 we obtain

H=10=28, V=10=a, G=13~a, §=086~a.

The largest difference (by a factor of 2) appears in the first term. The
difference in the third term is less important because it is dropped from the
Potts Hamiltonian, anyway. We have verified that using 8 = 1 for the Potts
Hamiltonian makes the results worse.

We start describing results obtained using various methods by compar-
ing different implementations of the same method. We first compare our re-
sults for the mean field Potts model with the S6deberg and Peterson results
for 50 and 100 cities with a = 1,8 = 0.5, Fig. 1. They are approximately of
the same quality (strictly, they are better than in Sédeberg, Peterson [22]
because of breaking of the symmetry of the direction of a tour and tak-
ing nzy = 1 for one selected city z, but little worse than in the Peterson
work [23], where only one distribution of cities was used). Our calculations
using the mean-field method for the Potts representation for the 318 city
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problem are more effective (average cost 58000, the best 55000) than the
Ising model neural network implementation by Mehta and Fulop [21] (the
cost from 64552 to 61337). However, when we recalculated the Ising scheme
we found that decreasing the rate of annealing, i.e. making the A param-
eter smaller than 0.01 (as used by Mehta and Fulop, see his section 8.1.5)
brought the average cost to roughly 58000 without significant increase of
the computation time. It would be interesting to investigate why the Potts
scheme still ends with illegal matrices using the mean-field approach while
Mehta and Fulop reported 100% of legal matrices verified also by us.

Potts representation
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Fig. 1. Histograms based on 50 experiments for 50 and 100 cities TSP.

The choice of an activation function has still not been systematically in-
vestigated. We have verified (this observation coincides with that of Mehta
and Fulop) that the linear activation function performs much better that
sigmoid. Surprisingly, as we verified, radial basis functions gave worse re-
sults than linear activation function.

Among neural networks approaches, perhaps the best method is derived
from the Kohonen self-organizing feature maps [13] in the Angeniol et al. [14]
implementation. A close net consisting of M nodes is evolved in such a
manner that for a given city i the node closest to the city moves toward
it dragging its neighbors albeit with decreasing intensity. A mechanism is
provided for starting from a single node in a net up to M = N, the number
of cities, by duplicating nodes if they are the closest for more than one city in
a survey and dropping a node if it is closest to no city in three consecutive
iterations. The method is attractive because it is continuous but not in
occupation variables but in positions of nodes. It is fast (requires O(N?)
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operations), moreover its performance together with the performance of the
elastic net [15] rates best among the non-heuristic methods. This can be
indirectly inferred from comparison of the performance of the elastic net [15]
with the Angeniol et al. [14] implementation of self-organizing feature map,
and performance elastic net against several methods including the mean
field and Hopfield neural networks [22].

2.3. Genetic algorithms

Genetic algorithms involve operations on strings of bits with copying
and swapping partial strings as basic operations. A simple genetic algorithm
is composed of three operations: reproduction according to values of objec-
tive function, crossover and mutation. Genetic algorithms are increasingly
popular for solving classical optimization problems [25-28], and different
solutions have been proposed concerning the representation of each individ-
ual, the size of the population, the crossover and mutation operators, and
the initialization strategy. Also hybrid approaches are used with the goal
of including heuristic techniques into the pure genetic algorithm schemes.
The exhaustive investigation of various modifications of a genetic algorithm
in application to the TSP was performed by Prinetto et al. [29]. These re-
searchers compared 4 types of crossovers and found the heuristic one is most
the efficient. (The heuristic crossover (Grefenstette et al., [25]) is as follows.
Starting city for the tour is randomly chosen; then the next visited city is
nearest one along one of the parent tours that has not yet been visited in
the offspring tour.) Prinetto et al. found small effectiveness of mutation op-
erators (purely random changes) and therefore neglected them in presenting
results. The value of the Prinetto et al. work is somewhat decreased by a
large number of misprints in their paper. We therefore, performed our own
simulations.

In the coding strategy we used 2 representations: (1) path represen-
tation for initialization (Grefenstette et al. [25] defined as: the tour is de-
scribed by a vector of N integers, whose i-th element holds the value j if
the city j is reached at the i-th step; (2) adjacency representation after
initialization (Grefenstette et al., [25]) defined as: the tour is described by
a vector of N integers, whose i-th element holds the value j if i precedes
7 in the tour. In most simulations we used modified version of the heuris-
tic operator, in which the choice between the two possibilities is made at
random with weights inversely proportional to the corresponding distances
(Pal, [28]).

We performed some experiments on different forms of mutation. Simi-
larly as done by Pal [28] we used (1) 2-opt mutation or (2) series of 2-opt
mutations until no such mutation can improve the tour. Using the genetic
algorithm with the first mutation scheme it is relatively easy to bring the
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Fig. 2. Optimal trajectory for 318-cities TSP problem of Lin and Kernighan [17].

result to 43000 for the 318 city problem. The second mutation scheme,
as already established by Pal [28] eventually brings the result to the exact
length of 41345 (the library of TSP benchmarks [19]), see Fig. 2. The length
achieved by Prinetto et al. was higher (although they also use 2-opt moves
— they however, called these a hybrid: genetics algorithm plus heuristics
rather than 2-opt mutations as Pal, [28]).

We have studied effect of the type (1) mutation scheme on speed of
convergence implemented using 10000 individuals (with the mutation prob-
ability ranging from 0.1 to 0.9, which is very high). During the beginning
stages of evolution, the crossover is much more effective than mutation. The
2-opt mutations were efficient only for tours not far from optimum.

2.4. Simulated annealing and tunneling

The most transparent presentation of simulated annealing (SA) in ap-
plication to combinatorial optimization can be found in the recent edition
of Numerical Recipes [1] (Chapter 10.9). We follow their presentation. The
method uses analogy with thermodynamics of cooling. When the process
is rapid a liquid metal is quenched in a meta-stable amorphous state. Slow
cooling leads to perfect crystal, the lowest energy state. The expectation
is that all processes of minimization follow a similar way. The standard
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method assumes the Boltzmann probability distribution

Els]
Prob(E) = exp ( - k—BT) , (6)
of states with different cost functions (energies). Following the Metropolis
algorithm the probability of changing energy F; to E; is given by

_ (B2 - E;)] '
kgT

If E; > E; a move is executed, otherwise a random number r is generated
and if r < p(AFE) there can still be a change of configuration. Since the sys-
tem can go uphill one can escape from a local minimum. Implementing the
Metropolis algorithm for a system different from thermodynamic requires
three elements:

P(AE) =exp | (7)

1. definition of a cost function equivalent to energy in physics, constraints
usually are built in the definition of a configuration,

2. specification of possible changes of configuration,

3. control of annealing schedule.

For the TSP problem the configurations are fixed positions of cities on a
plane (typically for testing purpose they are restricted to a square) labeled
1,..., N, together with the order of visiting each city represented by permu-
tations of a sequence 1,..., N. The cost function is taken as the total length
of the trip. The last two factors are very important. In statistical physics
usually simple moves (such as flipping a spin) are considered. An analog
of such procedure for the TSP would be the following. Select cities 7,7 not
connected by the actual path. Change segments i~ 1,6,i+1,...,j —1,7,7+1
into ¢ — 1,7,4 + 1,...,j — 1,4,7 + 1 (this is called a node insertion). As we
will see one gets mediocre results using only this procedure. A change to
a system using this procedure is quite abrupt compared to a change of a
spin, which is a local change, or a change of the path trajectory in the
path integral method. A much better strategy would be to execute a rear-
rangement that is most successful in a heuristic method. Implementation of
Numerical Recipes consist of two moves: (a) a section of a path is removed
then replaced with the same cities running in the opposite order (2-opt), (b)
a section of a path is removed then replaced in between the two cities on
another, randomly chosen part of a path (a part of full 3-opt, coming from
a sequential 2-opts). The annealing schedule also effects the results (this
actually is important in any method with a parameter controlling the con-
vergence, e.g. using the Hopfield neural networks). Geman and Geman [30]
have shown that for the Boltzmann Annealing the system can find a global
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minimum (however in infinite time) if the annealing schedule is lowered at
a rate

or slower. For the classical simulated annealing as a function of iteration i
the temperature reads

In the version called Fast Simulated Annealing [31], the cooling schedule is

T(i) = (10)

24
(1+o0%)°

Typical parameters are a = 25,5 = 100, ¢ = 0.01.
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Fig. 3. Fractal and quasi-fractal energy landscapes.

The changing mechanism (type of moves) together with the annealing
schedule determines an energy landscape. A recursive changing mechanisms
can lead to a quasi-fractal energy landscape (see Fig. 3). It is conjectured
that the concept of a quasi-fractal energy landscape can be formalized in
ultra-metric space [4]. Lister made use of this concept for Ising model [32]
and TSP (32, 33].

Another fruitful concept is to replace the Boltzmann distribution func-
tion for sampling with a function (multi-canonical simulated annealing) that
reads

e [_(ﬁiE-!-ai)]
p(E)= — 2T 1, (1)
where
oS B0 m)

This energy probability distribution does not have clear physical interpre-
tation. It is broader compared to canonical one and therefore two functions
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in different local minima can overlap, and facilitate escape from a local min-
imum. Berg and Neuhaus [34] demonstrated the efficiency of the method to
simulation of systems with first order transitions which led to rapid increase
of convergence. Parameters 3; and a; vary during iteration and are chosen
empirically.

The idea of broadening the distribution (non-Boltzmann weight) is now
universally accepted and was even earlier applied by Rujan [8] by the name
of simulated tunneling where in contrast to simulated annealing the escape
from a local minimum occurs by a transition under the barrier, and not
over it due to thermal fluctuations. Rujan reported that with this method
he achieved presumably the exact solution of length 7.485 on a 100 city
problem with the 2-opt.

Similar broadening appears in the Constrained Global Optimization

(CGO) method by Altschuler et al. [35]. The crucial part of their algorithm
(n+1)
i
equal to the old value zgn) or not. The ratio of probabilities for this spin-flip
like process is

concerns determination whether a new value of a variable z remains

n n
__P_o_l_d_ = exp [_ (g(zi) a )] , (13)
Pnew kT

where g(z) plays the role of a local cost function. We found, however, that
CGO does not give better results than the SA for 2-opt and restricted set
of 3-opt moves (36]. This is little surprising because the results for the
office assignment problem were much in favour of CGO. These results raise
several questions: (1) a given problem may have suitable heuristics, such
as Lin, Kernighan for the TSP. Such heuristics may not work well for other
problems, such as office assignment. (2) The lack of suitable heuristics
increases attractiveness of general methods, such as simulated annealing or
CGO.

The views of physicists and information scientists on SA differ widely.
Physicists tend to think that the SA will be always better than heuristic
approach. This might be true (but it has not been systematically studied)
if heuristic moves contain no up-hill climbing mechanism. However, the
statement is not generally true, because many best heuristic methods con-
tain an up-hill climbing mechanism. In this respect, the moves in the work
by Kirpatrick, Gelatt and Vecchi [3], which originated SA, for the 98 chip
optimization must had probably been exceptionally well selected. Rather as
verified by information scientists, the SA with a general set of moves will in
general give inferior results compared to specialized heuristics. The better
measure of the relative quality of SA would be to compare heuristics with
SA with the same heuristic moves. For the 400 cities in the unit square
Kirkpatrick [3] reported that the SA with 2-opt moves performs better than
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2-opt and 3-opt (also the SA with the 2-opt moves is faster than 3-opt). It is
not known how general is this result, and what is its dependence as a func-
tion of number of cities. Analogy with statistical mechanics implies that the
performance of the SA would be relatively better compared with heuristics
with an increasing number of cities. This may not hold for combinatorial
problems which are not ergodic, particularly near a global minimum. Also
it is not practical to verify performance of SA with the LK moves (that
already use the up-hill mechanism) since it would be prohibitive for large
systems.

An important recent development is the work by Lee and Choi [16] who
applied multi-canonical SA for systems up to 40000 cities. Starting from
2-opt configurations they investigated the scaling relation of the tour length
that for random distribution of cities behaves as I(N) = av/N. For a 31623
city problem they found a tour with a(N) = 0.723 slightly better than
the LK heuristics. Although worse than the iterative LK heuristics giving
a(N) = 0.716 this illustrates the power of multi-canonical SA method.

The results of various methods are shown in Table I for the most thor-
oughly studied lin318 system. Simulated annealing with purely random
move gives the average length around 58000. The result does not seem to
be good. The reason is that random change of a city presents a tremendous
change of a configuration. This is in contrast to simulations in physics,
when a move of a spin causes a local change. The SA with powerful set of
moves by Lin and Kernighan gives the average length around 43000.

TABLE 1
Comparison of resuits for the lin318 city problem

average distance

Method Tour length  from the exact

solution

Lin & Kernighan [17] 41883 1.3%

Hopfield neural network [21} 61337 — 64552 48.4 — 56.1%

Mean field [22] 55000 — 58000 33.0 — 40.3%

Simulated annealing with random moves 55000 33.0%

Simulated annealing + heuristic method [1] 43500 5.2%

Genetic algorithm 43000 4.0%

Genetic algorithm + heuristic method 41345 0.0%
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3. Data clustering

Data clustering is a fundamental procedure in data processing, appli-
cable to vector quantization [6], pattern recognition and self-organization.
Examples include quantization of transmission signals or image compression,
where Vector Quantization (VQ) is a basic compression technique at low bit-
rate, below 1 bit/pixel (bpp) [6]. It consists in mapping of k-dimensional
Euclidean space RF into a finite subset Y of R*. VQ consists of three stages:
code book design, encoding and decoding. In this review we will concentrate
on the encoding stage. The encoding procedure consists in finding for each
input vector (otherwise called data or a training vector) z = (21, 22,...,2%)
the closest code word (reference vector) y; = (y1, y2,. . -, ¥x) that minimizes
the distortion d?(z,y;) = mind?(z,y;) for j = 1,2,...,N (where N is a
number of elements of a codebook) measured by the squared Euclidean

distance
k

dz(z’ yj) = Z(zn - yjn)2 .

n=1

For the whole set of training vectors one minimizes the quantity

E = Z Ai,jd(zi, y]) ’ (14)

iJ

where A;; is a probability of z; to belong to cell C;. One of the most
important techniques is a k-means method (also called the Linde-Buzo-
Gray (LBG) algorithm [38]). The method consists of two parts: (%) given
reference vectors every datum is assigned to the nearest reference point
(regions belonging to different reference vectors form a Voronoi partition)
(ii) every reference point is moved to the gravity center of the data assigned
to it. Iterating these two procedures leads to a local minimum. The Linde-
Buzo—Gray algorithm [38] entails high computational complexity necessary
for searching for the closest codeword. There are several methods that avoid
the exhaustive search [39], and at the same time preserve the relatively high
accuracy of the LBG full search algorithm.

There exists no complete comparison of general optimization methods
with heuristic approaches for vector quantization. We would refer to two
recent works together with our results. Ueda and Nakano [40] found that
among the competitive learning methods, similar to Kohonen neural nets,
the competitive and selective learning, CSL, in average is the best and gives
by far smaller distortion than the k-means method. The quality of SA is
controversial. Vaisey and Gersho [41] analyzed coding a set of 8192 training
vectors with 256 16-dimensional code-vectors. The best result was achieved
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with combination of SA with the LBG method, which however caused 25-
fold increase in computation time compared to LBG. Surprisingly, To = 0,
which means accepting only down-hill moves in the cost function, made
the results worse by a very small factor. Flanagan et al. [42] found for a
set of image vectors similar to that used by Vaisey and Gersho [41], that
they can achieve with the SA the results better and approximately taking
similar computer time compared to the LBG. In their algorithm they moved
training vectors between the Voronoi cells. Relatively very short time of
their calculations was caused by a fast calculation of difference of distortion
between consecutive steps (no information was given whether in LBG any
fast search method was used). Shimoi and Lee [43] compared the entropic
scheduling results (the best) with the k-means method results and simulated
annealing (the worst).

We have undertaken our own SA study in view of conflicting infor-
mation coming from the previous studies. We have tested the Adaptive
Simulated Annealing (ASA) method [37] When simulated annealing is ap-
plied to optimization of functions the method consist of four relationships:
(1) a function to optimize, E(z) (2) g(Az) probability of density function
in a search space of parameters, Gaussian in classical simulated annealing,
N-dimensional Cauchy distribution for fast simulated annealing and

D

1
gr(y) = E 2(|yi| + T:)In(1 + 1/T3)° e

for ASA, where D is dimensionality of the space, (3) probability of accepting
a new value, typically

1
1 +exp(ék%(;2) ’

h(z) =

(4) the annealing temperature schedule. For ASA
T(k) = To exp(—ck*/P), (16)

where c is a constant.

Our results indicate that the simulated annealing method (being 1000
times slower than k-means method) for the Gaussian cluster fares worse
than the k-means for one Gaussian cluster and little better for 3 separate
Gaussian clusters of input data. These results are shown in Table II and
calculation times were achieved on the IBM PowerPC C10 workstation.
Clearly, the fact that heuristics (i.e. the LBG method) gives inferior results
to competitive learning indicates that no algorithm comparable to the Lin—
Kernighan one exists.
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TABLE II

Comparison of results for LBG and ASA, for VQ; a Gaussian training vector set
distribution, size of the codebook=4.

LBG ASA
n?mb,er_ time distortion time distortion
of training [seconds] [seconds]
vectors
300 0.03 0.7228 87.53 0.7185
1000 0.20 0.7266 276.44 0.7182
3000 0.58 0.6981 822.95 0.6988

4. Neural network implementation of a traffic control problem

Multistage interconnection networks have been widely used in ISDN
and parallel computing. For the 3-stage Clos (n,m,r) networks various
routing schemes have been reported in the literature for setting switches of
a permutation network to realize a given permutation, or connection pattern
from the inputs to outputs (see, Carpinelli and Oruc [44]). However, there
is always need for general, although approximate methods of solution of
routing and related optimization problems, and neural networks are quite
used for this purpose [7]. The most extensive study of control problem was
done by Brown and Liu [45]. They investigated performance of the Banyan
controller. However, the optimal heuristic controller was found only for size
of 8 x 8 problem. Hakim and Meadows [46] introduced the cost function to
find optimal routing for a Benes switch.

input switching element output
1 —1
3 — 3
pl— — 2
5 — 5
6 e ¢
[ ge— lb—17
2 — — 8

Fig. 4. The 8 x 8 reverse baseline network.

In the Funabiki, Takefuji, and Lee [47] work the Hopfield neural net [12]
was used. They made a comparison of seven neural network models on traffic
control problems in multistage interconnection networks. They used the
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reverse baseline network. 8 x 8 version of it is shown in Fig. 4. The network
is assumed to buffer incoming demands and be operated synchronously.
However, contrary to more extensive Brown and Lee simulation only one
time slot is considered. Transmission demands through the n X n network
are represented by an n x n traffic matrix.

The cost function used by Funabiki et al. had the following form

EFTL—ZZ<ZV],—1) + = Z(ZVkJ_l)
z N N NN
+B Z Z Z Z 3ijpqViiVpq - (17)

i=1 =1 p#ig#j

This function represents objective of the problem including the con-
straints. The goal of the net is to minimize E(V;,V3,...,V,) by solving
the corresponding motion equation. The first (second) term is zero if there
is no more than one 1 in each row (column). The third term imposes the
constraints for adherence to the reverse baseline architecture, specified by
Sijpq-

The output V;;, = 1 of neuron of number i,p indicates whether the
demand T;, is selected. Their simulation showed that among the seven
versions the hysteresis McCulloch-Pitts neuron model without the decay
term and with two ad-hoc heuristics helping to escape from the local minima
has the best performance. We have verified that using another cost function
Eqj:

Ecy = Z Vszzq-% D VipVip — CZV,,,

1,p#q 2#],})
+DY D siipdVioVig+ 5 Z ip> (18)
ip jFiq#p

in which the first two terms in Ep7y, are replaced by the constraints used
by Mehta and Fulop [21] (which were the best for the Traveling Salesman
Problem) does not improve the result. In conclusion, the Funabiki et al.
approach is close to optimal as far as neural networks are concerned.

In order to assess a quality of performance of the Hopfield neural net-
work it is necessary to compare it to any other method, which has not
been routinely done in the traffic control field. To this end we proposed
a very simple heuristic algorithm [48] which for the sake of brevity will
not be discussed here. The results of the neural network approach and our
heuristic algorithm for the traffic control problem are compared in Table I1I.
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TABLE III

Comparison of performance of Funabiki et al. neural network method [47] with a
simple heuristic algorithm [48].

frequency of convergence to  quality of

Density global local | _a local
minimum minimum minimum
Our 10% 0% 100% 17.81
method [48] 20% 5% 100% 28.36
N =32 30% 56% 100% 31.37
40% 97% 100% 31.97
50% 100% 100% 32.00
80% 100% 100% 32.00
Neural

Network 50% 87% 100% 31.80
Approach 80% 100% 100% 32.00

Funabiki et al. N = 32
Our 10% 0% 100% 47.58
method 20% 16% 100% 62.25
N =64 30% 92% 100% 63.92
40% 99% 100% 63.99
50% 100% 100% 64.00
80% 100% 100% 64.00
Our 10% 0% 100% 113.6
method 20% 73% 100% 127.7
N =128 30% 100% 100% 128.0
40% 100% 100% 128.0
50% 100% 100% 128.0
80% 100% 100% 128.0
QOur 10% 0% 100% 250.5
method 20% 100% 100% 256.0
N = 256 30% 100% 100% 256.0
40% 100% 100% 256.0
50% 100% 106% 256.0
80% 100% 100% 256.0

They are given as a function of traffic density, i.e. percentage of 1’s in
random traffic matrices. The results from the heuristic algorithm approach
represent an average of 100 traffic matrices for N < 256, and an average
of 10 traffic matrices for N = 256. It is seen that already for N = 32 the
best version of the neural network is not capable to find a global minimum
for the traffic density 50%. The heuristic algorithm finds a global minimum



994 C. JEDRZEIEK, L. CIEPLINSKI

(optimal routing) for 50% density up to N = 256, and actually is very close
to optimum even for traffic density 20%.

(=) ®)

Fig. 5. (a) A 32 x 32 traffic matrix with 30% density (b) a global optimal solution.
Black entries correspond to T;p, = 1, while white entries correspond to T;p = 0.

We show an example of traffic matrix for N = 32 (Fig. 5) together with
optimal solutions for these cases.

5. Conclusions

This review presents a comparison of performance of several methods
for various combinatorial problems. Generally the Hopfield type neural net-
works give the worst performance. Their biggest drawback is occurrence of
illegal solutions violating the constraints defining a model. The competitive
learning networks perform much better.

Random move simulated annealing gives poor quality of solutions and
is slow. The multi-canonical SA seems to be the best in this class and de-
serves testing in application to wide spectrum of optimization problems. No
method (genetic algorithms being closest) can outperform the best heuris-
tic algorithm (like the LK one for the Traveling Salesman Problem) when
it exists. The general purpose algorithms achieve the best results when
they incorporate heuristic moves. Understanding why certain moves per-
form better (to what extent they probe longer-ranged correlations) is an
open question. We also conjecture that physics could gain from experience
of information science with heuristic algorithms by incorporating some of
their features into simulations of purely physical systems. Recently two
new algorithms (particularly, the first one) Tabu Search [49] and Ant Al-
gorithm [50] are gaining popularity. In Tabu Search there exists a builtin
mechanism that forbids returning to the same feasible solution. The Tabu
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Search for TSP becomes main competitor of the Lin-Kerninghan strategy
in the class of heuristic algorithms. The Ant Algorithm mimics behavior of
ant and termite colonies to find the shortest path between their living sites
and feeding sources. This algorithm is well suited for calculations using
distributed systems.

The emergence of these algorithms indicates potential for new promising
heuristic strategies.

This work has been partially supported by the US-Polish Sklodowska-
Curie Joint Fund II MEN/NSF/92-116. The authors are grateful to Drs. P.
Rujan (for discussions on the TSP), R. Lister for sending his Ph.D. thesis
with comparison of the simulated annealing and the heuristic methods and
Prof. A. Jajszczyk for introducing them to traffic control problem in mul-
tistage interconnection networks, and numerous discussions and comments.
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