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1. Introduction

The theory of self organized criticality (SOC) is rather new. Its concept
was for the first time introduced in the classical work of Bak, Tang and
Wiesenfeld [1] where the final statistically stable state (which they called
the self organized critical state) of one special type of cellular automaton
was described. Now, the concept of SOC attracts a great attention and
provokes a development of a new branch of nonlinear dynamics.

The most interesting was the observation of the above mentioned au-
thors that the self organized critical state is accompanied by the self similar
(scale invariant) time and space structures, exhibiting themselves as 1/f
noise and as fractal space structures. The understanding of the behaviour
of the systems with self organized criticality promised therefore to bring
more light into the creation of the 1/ f-type noise signals and fractal struc-
tures in nature. In the SOC theory this self similar events are explained
as a natural consequence of the self organized critical state of a dynamical
system.

* Presented at the VII Symposium on Statistical Physics, Zakopane, Poland,
September 22-28, 1994.
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The systems which are able to evolve to the SOC state from wide range
of the initial conditions are usually spatially extended, consisting of huge
amount of elements or particles. These elements “know” only about their
nearest neighbours. Such properties are ubiquitous in natural dynamical
systems, such as ecosystems, social systems, earth crust etc. It is also
known from the natural events (such as earthquakes or phase transitions
e.g.) that a local instability can be propagated through the system by the
short range interactions, and often leads to a global effect.

The most familiar dynamical system having all of the above mentioned
properties is a pile of sand. It consists of many particles and in accordance
with the sand grain size it is spatially extended. A single local instability
can cause a global effect (an avalanche). If the pile is in a state with the
critical slope (analogous to the SOC state), the simple addition of one grain
can cause an avalanche of unpredictable size. One can observe a very small
avalanche, hitting only the nearest neighbour grains, as well as a great one,
touching the whole system. This fact assures existence of the relaxation
effects on all space scales. The pile of sand became a paradigmatic system
in the theory of self organized criticality and the basic principles of the
theory were formulated in the “sandpile” terminology. A special kind of
cellular automata, called sandpile like cellular automata, serves as a model
system. In this lecture I shall follow the classical “sandpile” line and I shall
present some analytical calculations which were done recently. In Section 2
the model cellular automaton of Bak, Tang and Wiesenfeld (BTW) and
its dynamical rules are defined. In Sections 3 and 4 I show the analytical
calculations of the properties of the SOC state. In Section 5 one open
problem is mentioned.

2. BTW model

One of the most elaborated sandpile models is the critical height undi-
rected sandpile of Bak et al. [1]. It is usually defined on two dimensional
square lattice and has two step dynamics with two different time scales:
input process, which is extremely slow, and relaxation, which is considered
to be an instantaneous effect in comparison with the input. These two steps
resemble to some extent the dynamics of a pile of sand. Input process is
analogous to a slow and careful addition of grains to the pile, which can
violate local stability conditions (expressed as a local subcritical slope in
realistic sandpile e.g.). This starts a quick relaxation process, manifesting
itself as an avalanche.

The two dimensional Bak, Tang and Wiesenfeld (BTW) sandpile cellu-
lar automaton has N3 = N x N sites. In the input process randomly chosen
sites on the lattice are seeded by “sand grains” of the unit size. This is
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described by the equation

zi!j - zilj + 1 ?
z;5 < Ze, (1a)

where 4, j are the integer coordinates of the randomly chosen site and z; ;
denotes the height of a sand column at the site (7,7), and z. is a critical
height.

When the local height z; ; reaches a given critical value z, the relax-
ation process starts. That means that from the site (, j), four grains are
distributed to the nearest neighbours, possibly causing some of them to be
supercritical too, and so avalanche can spread further and further according
to the rules

zij = zij—4,
Zi 41 > zi 541 + 1,
Zit1,; — Zit1,; + 1. (1b)

Boundary conditions are open; that means, the grains leave the pile at the
boundary.

This model evolves to the SOC state from all initial sandgrain distri-
butions on a square lattice. In this statistically stable state the system is
conservative in a sense that the average number of grains on the lattice is
conserved in time. The landmark of the SOC state is a power law avalanche
size distribution [1, 2, 8]:

P(s) = ¢~(0+D), (2)

In (2) s denotes the size of the avalanche and b is the scaling exponent.
Moreover, also the single site and pair probabilities are constant in the
SOC state. That means, the probability to find a certain amount of grains
on a randomly chosen site, or a certain combination of grains on two sites
deep in a lattice (not at the boundaries) is constant.

The initial studies of the dynamics of BTW model, and other models
as well, were done numerically (1, 3, 8, 12-14]. But if one defines the BTW
mode] on the Bethe lattice, the avalanches do not make loops, and the model
can be solved analytically [2].

It is possible to simplify BTW model significantly and to make it com-
pletely deterministic by choosing only one input site, for example the central
one (N should be odd, of course, in this case). Such sandpile automaton was
discussed by Wiesenfeld et al. [3]. This automaton behaves fully determin-
istically, but in spite of that, the statistical distributions of the avalanche
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sizes still maintain a power law character (2) in the self organized critical
state [3]. Thanks to its deterministic nature, the dynamics of the finite size
cellular automaton is (after some initial transients) fully periodic in the self
organized critical state . In the phase space the system is quickly attracted
to the periodic attractor. The periodicity makes thus a reliable criterion for
indication of the SOC state in this type of models. Period T strongly de-
pends on the lattice size, but doesn’t depend at all on the initial sandgrain
distribution. Numerically the period was evaluated in Ref. [3] for the square
lattices with small number of sites N2 = N x N, where N < 11. Analyti-
cally the period was calculated in [4, 5] for a common situation, where the
central site is not the only input site, for n-dimensional system and different
boundary conditions.

3. Analytical calculations on the Bethe lattice

The major analytical work in the SOC theory was done by Dhar et
others and published in a series of beautiful papers [2, 6, 7]. The most com-
plete analytical calculations concerns critical heigh BTW model defined on a
Bethe lattice with coordination number 3. The critical sand column height,
which starts the relaxation process (avalanche) equals z; = 4 . The dynam-
ical rules of the model are similar to that described in the previous Section.
The only difference is that during an avalanche, relaxing site distributes
only three grains to its nearest neighbours. That is why the SOC state on
the Bethe lattice is characterized by the two following conditions:

1) Only the configurations with 3, 2 or 1 grains per site are possible.
2) One grain per site configurations can arise only as a rest after the toppling
process. The sites with one grain toppled therefore one step before.

If the number of sites in Bethe lattice equals N, the number of possible
configurations in the SOC state is 3V. But not all of them are allowed, some
of them are excluded by the conditions 1) and 2). Examples of disallowed
configurations are shown in Fig. 1.

el

Fig. 1. Some examples of disallowed configuration on the Bethe lattice.
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In order to get some insight into the analytical calculations on the Bethe
lattice, I shall repeat some Dhar’s results here, namely the calculation of
the single site probabilities [2].

First, let us derive some useful recursion relations. Let us have a tree
T rooted on the vertex a. If we delete this vertex, the tree T breaks into
two subtrees T and T, with vertices a; and a;. Two types of allowed
configurations are defined on the tree T':

1. strongly allowed
2. weakly allowed

Let us imagine that the configuration C on T is allowed and that we
connect the vertex a with another site b on which there is only one grain.
A new configuration C arises. If C is still allowed, the old configuration
C was strongly allowed. If our new configuration C is disallowed, the old
configuration C was weekly allowed.

The number of weekly allowed configurations N, (7) on the tree T is
given as a sum of weekly allowed configurations in a case with one, two and
three grains on the root site a, namely

3
Nw(T) = z Ny(T,w). (3a)

In the same way the number of all strongly allowed configuration N,(T) is
given as

3
No(T) = E No(T,w). (3b)

In order to evaluate equations (3a), (3b), we need to know N (T,w) and
N,(T,w). Taking into account the definitions of the strongly and weekly
allowed configurations, one immediately recognizes that

Nw(T,1) = Ny(T1)N4(T2), (4a)
Nuw(T,2) = Ny(T1)Nw(T2) + Nu(T1)N4(T2), (4b)
Nw(T,3) = Ny(T1)Nw(T2), (4¢)
N,(T,1)=0, (4d)
Na(T’ 2) = Ns(Tl )Na(T2) ’ (43)

No(T,3) = No(T1)No(T2) + Nu(T1)No(T2) + No(T1)Nw(T2)  (4f)
and the sums (3a), (3b) are therefore given as

Nuw(T) = [No(T1) + Nu(T1)|[Nuw(T2) + No(T2)], (5a)
N,(T) = 2N,(T1)N,(T2) + Nw(Tl)N,(Tz) + N,(T])Nw(Tz) . (5b)
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Let us also define X(T), the ratio of the number of strongly and weekly
allowed configurations on the tree 7'

N(T)

No(T) (6)

X(T) =

When the number of sites goes to infinity, the trees Ty and T, are equivalent
and can be taken as a trees of the n — 15 generation, while the tree T is
considered to be a tree of the nt® generation. From equations (5a), (5b) it

is clear that
—

Whether this sequence tends to some fixed point one can find by solving
the fixed point equation

X(Tn) =

1+ X
X=—=
2

which gives the fixed point 7
X=1. (8)

Deep in a lattice, for n — oo the ratio of strongly and weekly allowed
configuration tends to 1.

Let us now imagine a point O somewhere deep in a Bethe lattice with
a large amount of sites. This point is connected to three trees Ty, T,, and
T3. Let us calculate the total number of allowed configurations N(w) if w
grains are on the point O. From the condition 2) and the Equation (8) one
can derive the following expressions

3
N = [T V.(T), (9a)
3 3
N(2)= (1+ZX1')HN.-(T£), (9b)
=1 i=1
3 3
N@)Y=(1+Y Xi+ ) XiXi) [[ N.(T5), (9¢)
t=1 i<k =1

which means that the total number of the allowed configurations is

3
Niotal = Z N(w) (10)
w=1
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and the probability P(w) of having sand column of height w at site O is
then given for w = 1,2,3 as
N(w)

P = .
(w) Ntotal

(11)

If the site O lies deep in the lattice as we assumed, X; — 1 and from the
equations (9a — c), (10) and (11) we get the numerical estimates of P(w) for
all values of w; the single site probabilities:

Pl)=4, PR =4, PB)=3. (12)

By the similar but more sophisticated calculations, which are beyond
the scope of this lecture, it is also possible to find the numerical estimates
of the probabilities P(w,v) of having w sandgrains on the site Oy and v
grains on the site Oz, in the case that both sites are far from the lattice
boundaries. The sites can be nearest neighbours or they can be distant.
The important expression (2), together with the scaling exponent b (which
equals 1/, for the Bethe lattice) was also analytically derived [2].

4. Analytical calculations of the deterministic BTW model

For the square lattice, I shall present our analytical method of the
attractor period calculations done for the most simple deterministic version
of the BTW automaton. In this model only one site serves as a sandgrain
input place. Its coordinates are (i*,j*). Let us first define the spilling
number z; j(7) as a number of topplings of the site %,j during the time
interval 7. Then the change of the height of column z; ; at an arbitrary site
(%,7) is expressed as:

z;,j(t) —zi j(t+ )
=2;,j(t) + 2i—1,5(T) + Zit1,5(7) + i j41(7) + 24 j—1(7) — 424,5(7)
+ Tﬁi’itﬁj,j‘ . (13)

(One must of course take into account that some terms at the right hand
side are zero if the site ,;j lies on the boundary: zg ;j(7) = zio(7) =
EN+1,i(7) = zi,N41(7) = 0.)

In the SOC state this deterministic BTW model has a periodical dy-
namics [3], which means that the configurations {2; ;} repeat themselves
after T time units:

z; j(t) = 2;,;(t+T) forall 4,j,t. (14)
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Substituting 7 = T into the equation (13) we get the following system of
N? equations (z; j(T) = zi,;), where all z; ; together with T' are integers:

2i-1,j t Zit1,j + ij+1 + Tijo1 — 42 = T . (15)

Thus, the problem of the period calculation is simplified. One needs only to
find the smallest integer T', such that the system (15) is solvable in integers.
The matrix representation of the system (15) is

(Hz - E):Bz = t2 . (168.)

The matrix H> is well known in the solid state theory [9] as a Hamiltonian
describing nearest neighbour hopping on a two dimensional lattice

Hy 1[I 0 ... O
I H, I ... O

H, = (16b)

0 o ... I H,
It has the dimension N2. E in (16a) represents the “energy” and equals 4
for the two dimensional BTW model defined in Section 2. Hy has dimension

N and is a Hamiltonian of nearest neighbour hopping on a one dimensional

lattice
01 0 ... 0

10 1 ... 0

H, , (16¢)

00 ... 1 0
@2 stands for a spilling vector to be determined. All components of #; are
zero except the (j* + (i* — 1)N)-th for which equals (-T). Both 2, and ¢;

are of the dimension N2, and I is the identity matrix of the dimension N.
The eigenvalues of H; are given as

‘Kk)
N+1

and the matrix Q; which diagonalizes H; has the elements

Ej, = 2 cos( k=1,2,..,.N (17)

Q,(r,5) = Uy(r) = Ni - sin (;:’1) : (18)

A diagonalization matrix of the Hamiltonian H is easily determined by
rewriting the Hamiltonian H in terms of tensor multiplications:

Ho=H,QQI+I®@H,;. (19)
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From (19), one immediately realizes that H; is diagonalized by a matrix
Q, which has a simple form

Q=Q;:,%Q,. (20)

The solution of the equations (15,16) is written with a help of the Green
function as
o = Gg(E)tz N (21)

where
G = Q471Q;", (22)

is the Green function and
A=Q;'(H; - E)Q,

is a diagonal matrix.
With a help of tensor algebra, H is easily diagonalized

Q;'H3Q,=(Q,0Q,) (IS Hi + H1®I)(Q,®Q;). (23)

The solutions zj in (21), £ = j + (i — 1) X N, are easily calculated from
the expressions (21 — 23), and the final decomposed formula connecting the
period T and the spilling number of the site (%, j) has the form:

N N
a=TY Y B 55 BG4
p=1g=1 4 7

As the elements of H; and ¢ in (16) are integers, the right hand side of the
equatijon (24) must have the following form

_ P
Qk

with P, Q4 being incommensurable integers. Evaluating the double sum
in (24) for all sites and keeping its rational character, a series of integer
numbers T} is easily found. We simply put T, = @ which guarantees that
z, is also integer, as needed. The period (T') is associated with the smallest
integer divisible by all denominators Q.

The n-dimensional problem is just a direct generalization of the two
dimensional case. All we need are a n-dimensional versions of (19) and
(20), which we get with a help of one dimensional Hamiltonian H; and
its diagonalization matrix @, using the tensor multiplication rules [4]. The
generalization of the period calculations to the periodic boundary conditions
in n-dimensional sandpile cellular automaton is also straightforward [5].

Tk T, (25)
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5. Nonconservative models and self organized criticality

In this Section we discuss one of the main problems of the SOC the-
ory, namely whether the SOC state is a consequence of the conservative
dynamics of the system. In 1991 Feder and Feder [10] introduced a noncon-
servative sandpile automaton as a model system for the stick—slip processes.
Their motivation was to model the dynamics leading to the earthquakes. It
is known from seismological studies [11], that the stick—slip processes are
decisive for the dynamics of the earth crust and prepare the conditions for
future earthquakes.

The Feders’ model describes the propagation of stress across the square
lattice, but I will stay in the sandpile terminology. The basic property
of the Feders’ model lies in a fact that during an avalanche process not all
“material” is distributed to the nearest neighbours. Some amount of matter
disappears (dissipates). Thus the model is not conservative anymore in the
previously defined sense. The second significant property is that the model
is driven continuously. The insufficiency of the Feders’ model is given by
the fact that the amount of dissipated material cannot be controlled. This
disadvantage was removed in a model of Christiansen and Olami [12]. The
dynamics of the model was studied numerically by Janosi and Kertész [13]
and Grassberger [13].

The nonconservative continuously driven sandpile model of Christiansen
and Olami is defined on the square lattice and exhibits the two step dynam-
ics:

Input process — continuous drive:

zi(t + 6t) = z;(t) + vét. (26a)

z; < Z¢,
ze=v=1.

Avalanche process:
Zitnn —* Zitnn T OZi,

2; — 0. (26Db)

In Equations (26) nn denotes all nearest neighbours, a controlls the amount
of material which is distributed to the other sites, and v is the velocity. The
other variables denotes the same as in the BTW model. During the second
step (an avalanche) the time is kept fixed, so again we have two different
time scales: the input time scale is long as compared to the relaxation time.

The main and the most important result achieved by the numerical
simulations of the nonconservative model of Christiansen and Olami is that
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in a case of nonperiodic boundary conditions, the scale invariant avalanches
were observed and thus SOC numerically proved.

This was very surprising, because there exists theoretical arguments
that SOC state and scale invariancy connected with it, are connected to
the conservativeness of the model. Hwa and Kardar [15] together with
Grinstein [16] studied the steady states of the dissipative systems with local
interactions in a presence of uncorrelated external noise. Such systems have
a coarse grained description given by the Langevine equation

PABY) - rh() 4@ ). (27)

In (27) z is the one component order parameter (analogous to the sand col-
umn height), I is a kinetic coefficient which sets the scale for the relaxation,
and f, represents an analytical function of z(Z, t) and its spatial derivatives.
The external noise n(Z,t) is uncorrelated and Gaussian with the strength
D and (n(Z,t)) = 0

(n(Z,1),n(",)) = D§(& - 2")6(¢ - 1'). (28)

If the deterministic part of the Langevine equation is conservative, the power
series expansionof f, must start with the gradient term. In the simplest case
I'f. is given as VZz(Z,t). Then the deterministic part of the equation (27)
is nothing but the continuity equation

0z(Z,t)
ot

7=V2z(Z,1t).

If the function f, has terms proportional to z(Z,t), the solution has terms
proportional to e~¢t, They incorporate the characteristic time scale ¢ into
the dynamics. It was shown in [15] by renormalization group calculations
that if f; in (27) has only gradient (conservative) terms, no characteristic
time scale appears. Thus the time scale invariancy is a direct consequence
of a conservative dynamics of the system.

The space scale invariancy is also a consequence of the conservativeness.
Indeed, the zero component of the Fourier transform z(k = 0,t) is given by
the random walk equation

dxk=0,t)
— 5 = n(k = 0,t),

= d-ivj.a (29)

and thus
z(k = 0,t) ~ t1/2, (30)
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for large t. That means that z(k = 0,t) diverges for ¢t going to infinity and
also the static wave number susceptibility

x(k) = lim (| 2%(k, 1) |) (31)

diverges for ¢ — o0o. This can only be the case if the correlation func-
tion G(r) falls off more slowly than z~¢ in a d-dimensional system [15,
16]. This way the algebraic decay of the space correlations is guaranteed
for the conservative systems and fluctuations of z on all scales are possi-
ble. The existance of a SOC state in conservative systems is thus quite a
natural property. In contrast to the results of numerical simulations, there
is no theoretical reason to suppose this for nonconservative systems. This
discrepancy was not completely explained up to now.

6. Conclusion

In this lecture I showed some recent results and hot problems in the
theory of self organized criticality. The main trend in this branch of the
nonlinear theory is to explain or support a great amount of numerical re-
sults by reasonable analytical arguments. This trend follows the analytical
studies of Dhar and others [2, 4-7]. For the nonconservative models, the
most pronounced question is to find a relation between nonconservative
sandpile-like systems and dissipative noisy systems with local interactions,
described by the Langevine equation.
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