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For the classical Volkov-Akulov Model the energy-momentum ten-
sor, the supercurrent as well as the equations of motion are given. The

quantal approach based on these quantities is preliminarily discussed with
emphasis upon the phenomenon of spontaneously broken supersymmetry.
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1. Introduction

It is a puzzling fact that the spontaneous breaking of symmetry can
occur only for scalar and spinor fields [1, 2]. For massless, free, real, scalar
quantum field ¢°(z) the locally conserved translationally covariant current

Ju(2) = 0u0°(2)
is related to the mapping
d)o(;c) — ¢°(a:) +a,

where a is a real constant, which can not be unitarily implemented in the
Hilbert space. For the massless, free, Majorana spinor quantum field A%(z)
the translationally covariant current [2]

I = (1uA%a a=1,2,3,4 p=0,1,2,3 (1.1)
corresponds to the supertransformation
A(z) = M(z)+na a=1,2,3,4, (1.2)

(1223)
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where 7, are anticommuting constants. This will be shown in Section 5.
Notice that the current 9,A% does not give rise to any symmetry. As we
shall see in case (1.1) the formal supercharge

@2 = /7gad3:n = -//\gdsm

satisfies

{quag} = “(70)aﬂvs (1'3)

where V = infinite constant, representing the volume corresponding to the 3-
dimensional space. It is evident from (1.3) that in this case the supercharge
is not at all related to the energy-momentum operator. Both fields, ¢°(z)
as well as A%(z), are Goldstone fields. It is obvious that the supersymmetry
induced by (1.1) must be degenerate as the theory consists of only one free
spinor field, free of any scalar boundstates. It is easy to see that for a
massless, free, real tensor quantum field ¥ 3,, = F? ., neither the current

0 _ g0
];“/—F‘“/’

nor

-0 — 0
Jurxe = a#FAu ’

give rise to a symmetry; the latter could be related to the mapping Fg,, -
F2, + My, where 7, are constants, were it not that O*F,, =0 as we
keep the assumption that the metric in the Hilbert space has to be positive
definite. There exist, however, translationally non-covariant currents giving
rise to such symmetries (D. Buchholz — private information).

Let us return to the observation that the anticommutator of a would-be
spinor charge in a theory of one free spinor field does not yield the energy-
momentum operator. To prove or disprove this assertion for the case of
quantum interacting fields is difficult as one does not know in general the
quantization and renormalization procedure. There are several papers [3]
concerning this subject, all of them unsatisfactory or inconclusive in my
opinion. We shall exhibit the difficulties looking at the model of Volkov and
Akulov [4, 5]. This model consists of one Majorana field and displays su-
persymmetric covariance. We shall follow the ideas presented in my earlier
papers [2]; to be frank the way of presentation there in is intricate; neverthe-
less the main ideas seem to be suitable for application to the Volkov—Akulov
model.
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2. General

Any supersymmetric local, locally conserved current can be uniquely
decomposed in two local components,

Jap, = Sap + [(7u)t}a s (2'1)

where
(7““‘#)& =0, (2-2)

and g = 0,1,2,3 is a vector index. It can be shown [2] that s, regarded
as a quantum field does not break the supersymmetry. The necessary con-
dition for the spontaneous breaking is t, # 0. The sufficient condition is
that ¢, /2, where 2 is the unique vacuum, carries a massless one particle
contribution. Thus there must exist massless one-particle states and we
may apply the results due to Buchholz [6] concerning the collision theory of
massless particles according to which ¢, can be represented as follows

to =15 + 1S ex = either ”in” or "out”, (2.3)

where t¢X is either an incoming or outgoing free field of zero mass and 7
does not contribute to the massless one particle states. The fields £ or
t2" (of course, tif2 = t9" () are linked to the Goldstone massless field.
Although X is local, but it is not local with respect to tn; however, for
any 10cahzed polynomlal P in the fields local with respect to J,, or t, the
amplitude (¢(k) P§2), where 1/)(k) is a one particle state of momentum k
and vanishing mass, is smooth in k therefore, the integral

3 I ﬁe k% ex i %
/ Pz fa(2) / i ¢ @) (), Pa)

always exists. Here fgr(Z) is the standard smearing function concentrated
in a ball of radius R.
Notice that
Yu0Ht = 0. (2.4)

The part responsible for the spontaneous breaking of supersymmetry reads
o = (14 Tap) - (2.5)

Notice that although the supercharge

Qe = Jim [ joalo)frl@)alz0)d's
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does not exist as an operator, the expressions

{QB”\W} = Fgoy, (2.6)

as well as
[Qa,Fﬁy] = Ga’g.y, (2.7)

are well defined fields (anti)local with respect to j,o as well as Ag. Here
a(z) is the standard smearing function and Ag any spinor field, antilocal
with respect to j,o. Also

[{Qas GB}’ ’\‘Y] = _(70 )36(Ga67 + Géaw) (2'8)

is a well defined field. It is, however, not obvious that {Qa,ag} behaves
like a global, conserved charge and that

{QF, Q5 1A% = {Qa» @} A = —(70)5s(GC%, + Giny) - (2.9)

Should it be so the r.h.s. has to vanish according to (1.3).

3. Model of Volkov and Akulov and its
supersymmetric invariance

The Lagrangean is

L= —-;15 det W L] = cm™* (3.1)

with _
W, =g, —ia?(M,0"2) = g, +T.". (3.2)
Here A\y(2) a = 1,2,3,4 is a Majorana spinor field, whose components

anticommute with each other 1, a is a coupling constant of dimension cm?.

LA =A%, X = Mo, {Xa(2), As(y)} = 0, A*-complex conjugate of A.

{7;&;711}:29;411 g“.,:diag(l,—l,—l,wl)
T _ .0 T _ . i_1923 {0 1 {0 10y
70 = -7 1] - 7] ] — Ly &y €.g. Yo = ~11 0 7] et “7] 0
Hence
Yora = (o12)T, MyuA =0, 90Xy, 8\ = —8* Ay, 82

A

Further relations are collected in Appendix C.
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The Lagrangean, written in extension reads
L=-2%(1+A+ 347 - B+ 31C - $AB + 3 A3
—~ID + 3AC + 1B% - 1A?B + 57 A%), (3.3)
where
A=Te(T) B=Tr(T? C=Tc(T® D=Tc(T, (3.4)

(see Appendix A).
This Lagrangean is invariant under the following supersymmetric trans-
formation (see e.g. [T])

e = €q — 102 (EY )AL, (3.5)

where €, @ = 1,2, 3,4 are anticommutating constants and A\, * = §#\,.
This amounts in quantum language to

{Qor A} = (10)ap — 1a® *(7uA)arp"” (3.6)

with
Eﬁ{Qﬁ, )\a} = 0y,

where €g is a constant spinor and Q4 a spinorial charge. Notice that the
expression in quotation marks on the r.h.s. of (3.6) is not well defined.
Examining (3.6) in the tree approximation we conclude that the supersym-
Ietry is spontaneously broken and, therefore, in quantum theory, @, can
not exist as an operator. After some formal manipulations (see e.g. [7]) one

gets from (3.6) _
[{Qas @}, M) = 2ia®(7,4)apd” Ay - (3.7)

The latter relation shows that in the classical case or in the naive quan-
tum approach the action of {Qa,sz} upon the field is equivalent to that
of (~2a%(y,)apP*), where P#, u =0,1,2,3, is the energy-momentum op-
erator. This sounds reasonable as in supersymmetric theories one expects
{Qa, —Qﬁ} to be proportional to (7,)sgP* with the proviso that proportion-
ality factor is negative. What in our case is peculiar is that the right hand
side of (3.7) depends quadratically upon a; this dependence on a could be
removed by replacing ‘

. 1
Qa by Qo= —Qu;
a
then )
6da = J€a ia(ey M) AL! . (3.8)



1228 J. LOPUSZANSKI

Notice, however, that if we agree to keep the correspondence with the case
of free fields, which results when we let the coupling constant a tend to
zero then the definition (3.5), not (3.8), is the proper one. For a — 0 the
Lagrangean reduces to

1
lim (L + ) = i(Xy,0%2%). (3.9)
a-—+ a

For such a field the spontaneously broken supersymmetric transformation

amounts to
X% = ¢,

which coincides with (3.5) for @ — 0. In this limit the right hand of (3.7)
vanishes which would coincide with the action of (1.3). Should we treat (3.7)
seriously as an relation valid for the quantal case we would face a difficulty
in reconciling the asymptotic limit of (3.7) with (1.3). Obviously, the r.h.s.
of (3.7) tends in asymptotic limit towards

210’ (14)apd* AT = —20% (1) ap[P*, A5

As far as the Lh.s. is concerned a careful investigation is needed (see Sec-
tion 2) as it does not necessarily tend towards

({Qaa Q_ﬂ}, A?yx]

in spite of that it is well defined. There is, however, no good reason to
accept (3.7) as a relation valid in quantum field theory as it was obtained
without taking into account the quantal structure of the theory and as well
as renormalization effects.

4. Energy—momentum tensor

From (3.1) follows (see Appendix B)

aL oL aL oL v
v —— V- —————A’ . 4.1
Lov” = et o™ = arE T g e (4-1)
We define oL oL
Oﬂu = —Lgul’ + 5./\._,;,.;)\; = m—é?f;—ﬂ— . (4.2)
This quantity is locally conserved, viz.
L L
049," = -0"L + 0 AL+ OL yivu _ _gvp, +0"L=0. (4.3)

Ao AL R
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Here we used the formal equations of motion

u OL oL
CONE T aa. (44)
as well as the relation
14 — 8L 1y aL tpv
0'L = W AL d)\g“ OAL” .
Consequently
oL
Pl e ) = .
g (3T,,“) 0. (4.5)

The quantity (4.2) can be viewed as nonsymmetrized energy-momentum
tensor. The symmetrized tensor reads

L] 2 Ky a2 K/ Kiy 1
o3 “P =0xp + % 0,"(Ayoa AP + S 0P10," (Mo pud) + 0,"(Ayxo A

(4.6)
From (3.3) and (4.2) follows that
v 0L _ 142 11 1A43yg. v
0," = +5(14+A- 3B+ 347+ 3C - JAB + ¢ A%)g,
aT,>
— L(T — T? + AT + T® — AT? — }BT + ; A’T),” . (4.7)

The trace can be found from (4.2), viz.

dL u gL
0.t = —4L + N AL = ST
To evaluate it further notice that
oL oL o1." .o OL oL
av = _“‘“/\a - 0" A a/\a = WTLV )
e * " BT, O i 5,7 (1079°) aT,"
as well as
0L _, o .o OL e oL
= Mu)adl? = —==1T,7
a,\, c‘x dT 0'( ) « T“U o
It will be shown in the next section that % )\— = 0. This relation together
with both formulae above implies
oL Ao = IL oy (4.8)

Oy A
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Thus,
6, = —4L. (4.9)

This relation can not be immediately checked by inserting formula (4.7) on
the Lh.s. of (4.9) and formula (3.3) on the r.h.s. of it since there are some
identities which have to be taken into account and which will be considered
in Section 7. After these identities are exploited we get

0, =+%(4+34- B+ 347+ 3C).
For a free field A\’ we get from (4.7) by taking the limit a — 0

v . v v .70 [ 0 v
0?& = lim(6," - fign ) = =X 7,042 g, + {(A 7,0"X%).

a—0

Because of the free field equation of motion

¥, 0FA° = 0 (4.11)
this reduces to o
0% = +i(X 7,0"A%) = (89)*. (4.12)
Moreover, because of (4.11)
0% =0. (4.13)

The symmetrized energy momentum tensor for the free field reads

- ,_0 . __,0
(0" = +3 (N 7u0,2%) + 3 (A 1,0,2%) .

We except that in the classical as well as quantal theory we should get

formally

/dsmOON(m) ~ Py, (4.14)

where P, is the energy-momentum vector. We expect also that in quantal
case

[Py, Aa(z)] = =i, a(z). (4.15)

To show (4.15) in general case is not possible as long as we do not know the
proper commutation relations for the field. Therefore we shall try in our fu-
ture work to use (4.15) as an assumption to extract the proper commutation
rules for the interacting field A. '

For a free field A? which satisfies the quantal equal time anticommuta-
tion relations
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{’\a(z)s A;3’(:‘/)}30:3,10 = 6(5 - ?,T)'Saﬁ 3

1231

(4.16a)

{80Aa(2), Aﬁ(y)}x():yo = [(7jaj - im)'}’ﬂ}aﬁ‘s(f -9, (4.16b)

and 6°,, as defined by (4.12) this is really so.

5. Supercurrent

There is another locally conserved current. This current is a Rarita-

Schwinger spinor. It reads?

oL

Jpo = 1532:‘,1 = —a’0,"(Mp)a - (5.1)
To show that (5.1) is locally conserved notice that on one hand
0T o = —a?8,P(8*X1p)a = —a*8,° (1070 N
..0L . 2 u . OL OT,* . 0L
— _ S = —i—— (5.2
’aT,,“( 17 (107,0" N)a = ~i5r w3 T o, (5:2)
on the other — using the equations of motion (4.4) —
-+ . oL . 0L
O*J po = 10, (6)\;") = (5.3)
By comparing (5.2) and (5.3) we get
M pa =0 (5.4)
as well as the surprising result
oL
— =0. 5
a0 (5-5)
2
oL dL Ty~ . , AL -

TONE T Lot ' BT, ”

O )a = =220, A1 )a
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The current _
J#-a == (JM'YO)Q = a20up(7pA)a (56)

is, of course, also conserved.

The supercurrent (5.1) or (5.6) should be a good candidate to reproduce
the supersymmetry transformation (3.5). This can not be seen immediately
when a # 0; in case a — 0, however, this is an easy task. Relations (5.1)

and (3.9) yield (see (1.1))
70 _; 6L’ _
oxg”

= (7“/\0)0! . (5‘8)
The same result one gets by taking the limit

“(XO'Yu)as (5°7)

) - 0
}1_%[—020,"’()\7,,)“] = —9u"(A ¥p)a

Let us regard the current and the field as quantized quantities. We have
then perfectly well defined and Poincaré covariant expressions

Ecv{ch ’\OB(?/)} = Et:\r(')’O)onf/‘ds‘E {’\:(z)”\a(y)}ro:yo = €8, (5-9)

where we used the quantum equal time commutation relations (4.16) and €,
are anticommuting constants. From (5.9) one gets also immediately (1.3).

We see from (5.9) and (1.3) that the free field supersymmetric current
(5.7) and (5.8) is spontaneously broken and A, is the Goldstone field. We
may expect that also the current (5.1) or (5.6) is spontaneously broken.
This is, however, only a guess as we are not able, without quantizing the
model, to show explicitly that this is really so. The breaking of the current
(5.6) comes from the term

z
ta = :‘(7“‘14&)& = %{‘eup('Y“?’pA)a' (5.10)
To justify our choice of the supercurrent (5.1) let us evaluate the Noether
current. Let us examine

BL
AAL i

— 9%( Ao) = 0, (5.11)

where 8, is given by (3.5). It can be shown that

oL oL oL ., v\ .
61\’ “6A (W - 3)\' “A, ) ( ‘7,,/\). (5.12)
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This expression does not vanish and causes a change in the Lagrangean by
a divergence. The same effect as the variation (3.5) has the variation of the
variables z, viz.

bz, = —ia(Ey,A). (5.13)

Thus
8L = —ia(€éy,A)0* L — ia(€y,0"A)L

the last term coming from the change of the Jacobian. This expression can
be written in the form

6L = —iad"[(€y,A)L]

L
= —iad" K oL + 9 5 6A"’) (ey A)} . (5.14)
Ol
where we used the relation (4.1). Let us insert (5.11) and (5.13) in (5.10);
we get
. oL A
“21(16“ (6Tv"' (707,} )a) = 0,
or

7,“, = +2iab, "Or ) ;

up to the factor (—24) this coincides with (5.1).

To show that after quantization the charge induced by (5.6) yields the
transformation (3.5) is a forbidding task; it will be the subject of our further
investigation.

6. Equation of motion

The formal equations of motion are the Euler-Lagrange equations given
by (4.4)
o 9L _ 9L
ALY Oa

Notice, however, that in addition we have (5.5). Hence the equations of
motion reduce to

oL
5’.7’7(70%3“)«1 =0,
or
()V“(R,J’)a =0 (6.1)
with

(Ruu)a = (707uay/\)a . (6.2)
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Let us replace 6,* in (6.1) by (4.7). We get
(1+A-1B+ 142+ 1C - JAB + 1A% (R H)a
—Tr [(T - T* + AT + T® — AT? - %BT + %AZT)RC,] =0. (6.3)

As we shall see this expression can be considerably simplified. To execute
this simplification, however, we have to do some manipulations performed
exactly on (6.3).

7. Some useful identities

The considerations of this and next sections are based on purely classical
considerations, as in quantum field theory the components of the field do
not in general commutate with each other and a product of fields at one
point is not a well defined quantity. Nevertheless, we hope that this classical
considerations will still be of some use in finding a suitable starting point
for attacking the problem of quantization of the model.

The identities found here will simplify considerably the expressions of
the equations of motion, of the energy momentum tensor as well as of the
supercurrent.

Notice that A, B, C, D given by (3.4) involve one, two, three, four com-
ponents of the field A at the same point z resp. Since these components
anticommute with each other every monomial of degree higher than four
in components of A at the same Minkowski point must vanish. For the
derivatives of A this is also true but for monomials of degree higher than
sixteen.

Let us multiply (6.3) by P4 # 0 a polynomial in A,(z) of 4-th order.
Then we get

Py(z)(Ru*)a(z) = P4Tr (Ry) = 0. (7.1)
Multiplying (6.3) by P; we get
PyTr Ry = P3Tr (TR,) (7.2)
as
PsAR,* =0

according to (7.1). Multiplying (6.3) by P, we get
Py(1+ A)(R,")a = P;Tr (T -~ T? + AT)R.). (7.3)
According to (7.2)

PyA(R,*)a = P2ATr (TRy) = PoTr (ATR,).
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Consequently (7.3) yields
P,Tr Ry = PTr [(T — T*)R,]- (7.4)
Multiplying (6.3) by P; and making use of (7.1), (7.2) and (7.4) we get

1 1
P](l + A4 - EB + §A2)(R,L“)cx

=Py Tr (T — T? + AT + T® - AT? - %BT + %A2T)Ra]. (7.5)
Since
PyA(R, M) = PyTr [(AT — AT?)R,]
~3PiB(R,*)o = —3P1Tr (BTR,)
1P A2 (R,*)o = 1Py Tr (A?TR,)
some of the term in (7.5) cancel and we get
Pi(Tr Ry) = PyTx [(T — T + T*)R,] . (7.6)
We may comprise formulae (7.1), (7.2), (7.4) and (7.6) in one formula
PiTr[(1-T+T?*+T*Ry]=0 j=1,23,4. (7.7)
From (7.6) follows when we there replace P; by )\, that
A-B+C-D=0 (7.8)

Il

as
Aa(RuF)a = Ay, 0PA = A etc.
There are further identities implied by (7.8). We have

24(A-B+C - D)=24> -24B +24C =0 (7.9)
as well as
(A-B+C - D)? = A* + B> - 24B + 24AC = 0. (7.10)
Subtracting (7.9) from (7.10) we get
A? = B%. (7.11)

The relation
B(A-B+C-D)=BA-B*=¢

together with (7.11) yields

A* = B* = AB. (7.12)
Let us insert (7.12) in (7.10); we get
AC = 0. (7.13)
Multiplying (7.12) by A we get
A =0. (7.14)

and
A*B=0. (7.15)
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8. Simplified expressions for the equations of motions,
energy-momentum tensor and the supercurrent

The first step in simplifying (6.3) is to use (7.12) and (7.14). We get
Tr{(1+A-~3B+31C~-T+T% - AT - T% + AT? + {BT)R,] =0 (8.1)

since

3A?Tr (TR)o = $B*Tr (TR)o = 0.
Formula (8.1) can be rewritten as follows
Tr{{(1-T+T*-T°)+AQ1-T+T?)-3B(1-T)+ 3C]Ra} =0
or using (7.7)
Tr{{(1-T+T? - T%) + AT* + }BT? + 1CT|R} = 0. (8.2)
Now from AD = 0 follows

%ﬁp - g;—Du(Ru”)a = Tr [(D + 4AT*)R,] = 4Tr (AT°Ra) = 0, (8.3)
a »

and from BC =0

dBC
O

= Tr [(2CT + 3BT*)R,] = 0. (8.4)

The justification of the formulae (8.3) and (8.4) is given in Appendix D. In
view of (8.3) and (8.4) relation (8.2) reduces to

Te[(1-T+T?-T%R, =0. (8.5)

Equations (8.5) are just the simplified equations of motion. From Tr (T7) =
0 for 7 > 5 follows that

OTr (T7)

Y = jTr (T 'Ra) = 0. (8.6)

By virtue of (8.6), equations (8.5) can be also written formally

Tr (—1——%-1—,120) ~ 0. (8.7)

For a — 0 we get the free field equation (4.11).
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As far as the energy momentum tensor is concerned the simplification
amounts to

0, =+ H(1+A-3B+30)g,”

~ LT - T+ T + AT -T?) - 3BT],." . (8.8)

Relation (8.7) can be used in finding the formal expression e.g. for the
incoming field. We have

N"(2) = X&)~ [ 0z - 1)S(e ~ u)1*0,A(0) dy,

where
S(z) = —7,0*A(z)

with A(z) denoting the Pauli-Jordan distribution. From (8.7) we get -
PO =Tr (T - T? + T3 —T*YR)o = Ta -

Consequently
An(z) = A~ [0z = 9)S(a - 9)Te (T =T 4 T° = T*voRla(o)dy-

To get a simplified expression for the supercurrent (5.1) we have to
make use of (8.8); after inserting it in (5.1) we obtain

+ [T - T 4+ T + A(T - -Tg) - %BT]MV(X'Yv)a .
Let us denote
1+4A4-1B+31C—3D=V = (1+Tr[In(1+T)]).

Then '
Tpa= V(A -T+T*-T*+7%),"On)a (8.9)

or formally

) :(w/\)a. (8.10)

According to our remarks in Section 2 (see also (5.9)) only

1* e = ta (8.11)
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contributes on the mass shell and therefore taking for granted that (8.10)
is in some sense valid in quantum theory

1/ V v
_ Py A ) o 8.12
ta 4<1+T)y(77 ) (8.12)

is responsible for the appearance of the Goldstone particle.

Appendix A

L= ——a}z— det W
W) =g, —ia®(My,0"2) = g," + T,)"
det W = roMA2rapy, 0w, 1w, 2w, 3
= oMAra (g, O 4 Ty Ogat + Tog N ax,” + T )9, + Thy®)

(a) = 14 123, 04 Oz 1y a3y 2 122ar 3
(b) + M3y, O, 14 Aoldadp, O 2y
(3)=6 choices
(<) n E'\")“’\’sTAOOTAIlTAzz + 6/\0A12>\3T>‘00T/\11TA334+__.
(3)=4 choices
(d) + e}\g)\lAzAaTAOOT)‘llTA22T)\33
ad (a) BT, 0. =T,k =24

ad (b) EAOAIstAOOTAll + 6)\0])\23T>‘00T)‘22 4.

= Z(TMMTVV - TV,LT#V) = Z (T“’LT,,U - TVMTMV)

p<v uw<v

=31 Y (T4 - TAT.Y) = §(47 - B)
[ 214
ad (C) 6)\0A1)\23TA00TA11T)\22 n E>\0>\12>\3T)\00T/\11T>\33 4oenn

= Y (DT + TATHTYY + TATAHT,Y
A<y
—~ TAT, AT\ — TTAT,Y — TN T AT,Y)

Y )=%1 X ( )=HA+2C-34B)

A<p<v Apv
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ad (d) €A0A1A2>\3T)‘00T>\1lTA22TA33

— _1_ AOA1A2>\3 KO K1 K9 K3
= 23¢€ €xoKy '€2'°2'°3T)‘0 TM T>\2 T,

9o 0 Gro™ Gro™? Gmo’? |
1 gnle : K K K K
T g e L Too 0T "M T0, 2T
K2
!inc3’\° 3
1
= 57(~6D +8AC + 3B* — 64%B - A%).
Appendix B
JOdet W 15detW
Vdet W = ———-W.,."; h det W = — ———— W,
gu” de WF ence de 1 OW."
(each term in quadratic in W, *).
ddet W OdetW  JdetW
v = Yy = e v
gu” det W = aTP — (9" + T&") a7t are T,
aL oL
v . v
oL =gp ¥ orE
Notice that
aL ., ., 8L 8T.> . iz OL , v  OL
Il v 0L ALY = T (Fe)ay’ = o TV
AL oT,.> OALY BT # OT "
Thus

8L 8L .
gu"L = 8TV“ AN, T E N -

Appendix C
Hermiticity: The expression
(X704 2) " = —i(8*A)g(70Tw)apra = iAYLO A
is hermitean but

9(3,0*)

[QQ%%@“)“] = [~i(10740*N)al " = i(707,0 N)a = R e
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is antihermitean. Also _
O(Ay,0H )
'I.T—”

is anitihermitean.

Differentiation: The rule

oL oL

8”13 = E—X-;Aa,“ + mka,uu

is correct. To see this let us examine a simple example. For
A= 2gA0%Xs,

we have

0A
3o = MaAy0Xs + AgAL0725 + AsAy07 X5

where \' = g%. Now

-(%4- = 60 Ay0°XY — Agbar0PAs
9A y
v AgVrgp" bas -

Thus
A

0o

oA ,, _ 04

’ m———
AOz + a/\a,'/ o,V 8’(1, *

Appendix D
(i) From Tr (T®) = 0 (This vanishes as A appears here 5 times) follows

OTr (T3 v ; '
a,\(,, D oM (TR =0 (By)a = i (107,9*Na. (D)
(it) For AD =0

8AD OAD T, . ,0AD 0AD ,
= = o Y a= R
(9/\a aT“u (9Aa t+1a BTM" (707/AB ) BTMV ( I3 )a

= (g, *D+4A(T*),")(R," )a=Tr (R)oD+4ATr (I°R)q = 0. (D.2)
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(iti) From BC =0

0BC
9o

= 2Tr (TR)oC + 3BTr (T?R) = 0. (D.3)

For better understanding of (i), (ii), (i17) we make the procedure plain
on the following example.

Consider the case of (T7%),° in a s + 1 = d = 2-dimensional space. We
have

(T*),° = AaRaAgR5A,R" = 0, (D.4)
where
Ro = (Ru")a = (10740" Ao s
R, = (R,)a,
R, = (Rp%)a
as A\, appears in (D.4) three times. To check that

o

AT3),”

— 2
CIV Ri(T%)y

- T, R\T,” - (T%),"RY (D.5)
vanishes let us write it out in extension
R](AIR'I + AzR’z)(/\]R'; + /\2Rg) -+ Rll(/\lRl -+ /\zRg)(/\jR’l’ + /\2R'2')
+ RY(MR1 + A2R2)( 01 Ry 4+ A2RY)

:R1A1R;A2R'2' + R, AzR’zx\lR'{ + RS/\]R] /\zRg + R’ll\zRgA]R'l'
+ RUAMRiIAR, + RYARyMER) = 0.

In particular
OTr (T3) 2
el T T_[' = .
% 3Tr (R1T*) =0
Further
az(Ts)ﬂa ! 1 ! " [ n
Ty =~ BRR] - RIMRLR] - Ry R R
1

— R'A2RaR" — RYR1 MR, — R\ARyR, = 0.

I thank Drs. D. Buchholz, W. Karwowski and J. Lukierski for fruitful
discussions. I am indebted to Dr. J. Lukierski for calling my attention to
the problem treated in this note.
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