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We derive explicit formulas for curvature and torsion of a line of the
field of n electric charges. These formulas show that in general the tor-
sion of a field line is not zero if n > 3. We also propose a geometric
interpretation of the derived formulas. In the second part of the paper
we present an outline of a new description of equipotential surfaces of two
and three electric charges. In this description the golden section appears
in a natural way when two electric charges are equal. This approach also
relates an equipotential surface of three charges to the classic cubic surface
containing twenty seven straight lines.

PACS numbers: 03.50.De, 41.20.-q

1. Introductory remarks

This paper consists of two parts. In the first part (Section 2) we follow
(1] in deriving explicit formulas for curvature and torsion of a line of the field
of n electric charges. In particular, these formulas imply that for two charges
the torsion is always zero, ad in general, is not zero when n > 3. Section 3
gives a geometric interpretation of the formulas derived in Section 2.

The second part (Sections 4 and 5) contains an outline of a new de-
scription of equipotential surfaces of two and three electric charges. This
description is based on the notion od an auxiliary line L, and an auxiliary
surface L3. The auxiliary objects L, and L3 give a geometric insight into a
natural parametrization of equipotential surfaces of two and three electric
charges. In Section 4 we derive formulas which show that the famous golden
section, [2], appears when two charges are equal. In Section 5, making use
of the finite Fourier transform F(3), [3], we relate the auxiliary surface L3
to the classic cubic surface containing twenty seven straight lines, [4-6].
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2. Curvature and torsion of a field line of n electric charges

We use the following notation:

¢ (1=1,2,...,n) — i-th electric charge,

7(z,y, z) — position vector of the point (z,y, z),

7; = (2, ¥i, 2zi) — position vector of g¢;,

R; = |R;| = |F — 7i] — distance between (z,y, z) and g;.
Then the potential  and the electric field E of g1,42, ..., ¢n are given by
the classic formulas

¢ = iqiR;ly (21)
=1
E = —grad®. (2.2)
Let
7(t) = (2(t), y(), 2(¢)) (2.3)

be aline para.metrized by t. It is well known that the line 7'(t) is by definition
a line of the field E if E(7(t)) is tangent to the line #(t) for any value of
the parameter t:

7'(t) = E(7(1)), (2.4)
where dF
7(t) = »JT{. (2.5)

The curvature (first curvature) ky and torsion (second curvature) k2 of
a line 7(t) are given by the well known formulas (see, for example, [7, 8]):

|7 x
ky = iFllS ! (2'6)
[,’;’I’FN’,,‘“IN‘
ko = =S (27)
where [/, 7",7"""] denotes the mixed product of 7', 7" and "'
[F"F” MII’] ( ~0H —-»IN i (2.8)

From the above formulas it follows that the curvature k; and torsion
k2 can be written in the form

ky = — “z’ F’F} , (2.10)
|E x F|?
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where
n
F = ZbiRis (2.11)
i=1
k1)
G = Zciﬁi, (2.12)
1=1
a; = ¢;R;?, (2.13)
b; = a} = ~3R %a;4A;, (2.14)
ci=a! = 3R %a;[(-5R;*A; + A)A; + B; + E?], (2.15)
A; = RE, (2.16)
B; = R;F, (2.17)
n
A=) a. (2.18)
i—1

It is easy to verify that the vector E x F and the mixed product [E, F, G)
can be written in the form

ExF = Z p,ijgij, (2.19)
i,1=1
(i<j)
n
[E,F,G] = Z ik Vije (2.20)
1,7,k=1
(i<i<k)
where
a; aj|
Hij = b: b; 3 (221)
la; aj ag
gk =|bi b; bil|, (2.22)
Ci €5 Cp
Si; = Ri x R (2.23)

Vije = |Ri, Bj, By (2.24)
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3. A geometric interpretation of the formulas
(2.9)—(2.10) as (2.19)—(2.20)

We introduce the following terminology:
ailii — the first scaling of fi’,’z s

biﬁi — the second scaling of ﬁi ,

¢;R; — the third scaling of Ei s

n 3
E = Z aiﬁi
=1
mn
= 3 Resulting vectors of the first, second
F = b;R;
1; ‘ and third scaling of R1, ey Rn.
G = Z Ciﬁi
g=1 Y
P(A,B ) — parallelogram spanned on the vectors A and B,
(fi’, B, C) — parallelipiped spanned on the vectors A, B and C,
A x B — surface vector of P(4, B),
[4, B, C] — volume of P(4, B, (),
lgij[ = |R; x ﬁ]| — elementary surface,

—p

Vije = [Ri,ﬁj, R,] — elementary volume,

mjg,;j — surface scaling of §ij,

0;ikVijr — volume scaling of V;;y,

NES(n) = (72‘) — number of elementary surfaces,
NEV(n) = (3) — number of elementary volumes,

Making use of this terminology we obtain the following geometric in-
terpretation of the formulas (2.9)-(2.10) and (2.19)-(2.20):

(i) The curvature k; is equal to the ratio of the surface |E x F| to the third
power of the length of E.
(i1) The torsion k; is equal to minus the ratio of the volume [E, F, é] to
the square of the surface |E x F|.
(iii) The volume [ﬁ, F, é] consists of (g) scaled elementary volumes oiikVijk-
(i) The surface vector E x F consists of (3) scaled elementary surface
vectors fi;; §ij-
-2 if n=23,4
(v) NEV(n)««NES(n)*—*{O if n=5
>0 if n>5
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(vi) f n = 1 (one electric charge ¢1), then k; = k2 = 0 because the vectors

_¢

E G are then colinear:
E = a1R1 )
F = b1R1 ,
G = ClRl

(vii) If n = 2 (two electric charges q; and ¢3), then in general k1 # 0, but
k2 = 0 because the vectors E, ﬁ, G are then linear combinations of ﬁl
and R,, and so are linearly dependent.

4. The golden section and an equipotential surface
of two electric charges

In this Section we consider the surface of a fixed potential A (the A-
potential surface) of two electric charges ¢; and ¢2. Then the formula (2.1)
takes the form

AR 1Rz = q1 Ry + 2Ry . (4.1)

We choose the position vectors 7y and 77 in the following way

(B

Then the A-potential surface is invariant under any rotation round the
z-axis, and so we can restrict ourselves, for example, to the plane z = 0.
For this choice

il

‘31 ‘ix

f

Ry = s = (w? - 2az + a?)1/2,
By=w= (s + )2, (4.3)

and the equation (4.1) can be rewritten in the form

uv = Dyv+ Dau, (4.4)

where R w
u= -, v= —, (4.5)

a a
D; = &q’ZX (i=1,2). (4.6)

Introducing new variables

utv), (4.7)

_v)’

oy
f
Bt D | b

—
S
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and notation ]
E; = 5(D1 + D,),

4.8
E; = 3(Dy — Dy), (4:8)

we obtain from (4.4) the following equation of hyperbola
(€= E1)’ = (n - E2)* = D1D; . (4.9)

We call this hyperbola the auxiliary line Ly of the A-equipotential surface
of ¢y and ¢;. Let

2 _ J DiD: if  qig2 >0,
P = { —D1D2 if gi1q2 < 0. (4'10)

Then the equation (4.9) can be rewritten in the following two forms

(E-E)?:-(m-E)=P if qg>0, (4.11)
(n—E3): ~ (6~ E1)? =P if qug2<0. (4.12)

Here we restrict ourselves to the first case (qig2 > 0). The other case
(g192 < 0) is discussed in [9]. Let us note that if ¢;¢2 > 0, then Dy and D>
are always positive. Indeed, by the formula (4.1)

g >0, ¢2>0 = A>0, (4.13)
g1 <0, ¢g<0 = A<O, (4.14)

and so, by (4.6), D; > 0 (i = 1,2).
The formula (4.11) implies that the auxiliary line L; can be parametrized
in terms of hyperbolic functions coshv and sinh+y:

£~ E; = Pcoshr,
{ n — E; = Psinhy, (4.15)
P = (D1Dy)'/2.
Taking into account the formulas (4.7), (4.8) and (4.15) we can write the
old variables « and v in the form

{ A (4.16)

v=Dy+ Pe 7.
The formula (4.16) and the geometric meaning of » and v imply that

11 <7 <72,
{D1+Dz+2P21. (4.17)
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The lowest value v; and the highest value 72 of ¥ can be determined from
the following two conditions

uy + 1 = vy, (418)

Uz = v2 + 1, (419)
where }

Ui = Uly=qy,

Vi = Vly=ry,, (4.20)

1= 1,2.

Then v;, u; and v; (¢ = 1,2) are given by the formulas

e'Yl

H

1 .
E{Dz - D] -1+ [(Dz - D] — 1)2 +4P2}1/2},

e?

1
5p{Dz = D1+ 1+((D2— Dy + 1) +4P?)1/%}, (421)

up = YDy + Dy =14 [(Dz - Dy - 1)? + 4P*)}/?}
v1 = 1Dy + Dy + 1+ [(Dy - Dy - 1) +4P*/?},
ug = 1{Dy + Dz + 1+ [(D2 - Dy +1)? +4P?]}/%},
vy = 3{D1 + Dz = 1 + (D2 - D1 + 1)* + 4P?]/?}. (4.22)

Let us denote that au; is the minimal value s,;, of 5, and av; is the minimal
value wpyin of w.

Let Dy = Dy = 1. Then the formula (4.22) implies the following
proportions of the golden section, [2]:

Smi Wi
__n;m = _':'_" = 1(1+v5). (4.23)

5. Twenty seven straight lines and the auxiliary surface L3
of three electric charges

Let C(3) denote the following cubic surface (in affine coordinates 7,

N2, 173 ):
m+my+ms+ f=0. (5.1)
The surface C(3) has remarkable properties. In particular C(3) contains
27 straight lines, [4-6]. The configuration of the 27 straight lines of C(3) is
invariant with respect to the group G which is isomorphic to the Weyl group
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of the exceptional Lie algebra Fg, i.e. G has 51840 elements and contains a
simple group of order 25920, [10].

According to the formula (2.1), the A-potential surface (equipotential
surface of a fixed potential A) of three electric charges g1, ¢ and ¢3 is given
by the equation

AR\R;R3 = q1R2R3 + g2 R1R3 + g3 R1R2 . (5.2)

The auxiliary surface L3 is by definition the surface obtained from (5.2) by
its complexification (R;, R; and Rj3 are then complex variables). In [9] we
show that

(1) L3 gives a geometric insight into a natural parametrization of the real
A-surface of ¢y, ¢; and g¢3.
(11) L3 can be related to C(3) via the following change of variables

R] - d] dl 0 0 T

3

(Rz—dg) :-—-——\/-—“T(O d2€3 0 )F(3) (1’)2), (53)
R3 - d3 (d1d2d3)3 0 0 d35§ 3

where

L (111
F(3):-———(1 €3 52), (5.4)

V3 1 g2 &3
4= (=123), (5.5)
£3 = e2™/3 (5.6)

(it1) L3, written in the new variables 7y, 72, 173 (defined by (5.3)) intersects
C(3) along a hyperbolic helix.
(iv) The 27 straight lines of C(3) intersect L3 forming an “acupuncture” of
L.
(v) There is no invertible inhomogeneous linear transformation which trans-
forms L3 onto C(3).

Finally, let us note that the matrix F(3), given by (5.4), is the so called
finite Fourier transform which has remarkable properties collected in [3].
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