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1. Toward biderivations of Hopf algebras

Throughout this paper k is an associative unital commutative ring and
R is an associative unital k-algebra. Let a natural transformation B €
Nat(®, ®°PP) be a braiding in a strict monoidal category of R-bimodules.

A principal aim of this paper is to introduce B-dependent k-derivations
(Bdery) of R-modules and of R-algebras. This is a modest part of long-term
project to study biderivations (i.e. derivations which are coderivations) of
braided graded biassociative Hopf R-algebras. A braided Hopf algebras (=
braided groups) has been introduced by Majid {1991-1993]. Here we con-
struct two examples of braided graded biassociative Hopf algebras as braid
dependent deformations of bifree (i.e. free and cofree) Hopf algebras: one
deformation is free Hopf algebra (product is not deformed), another defor-
mation is cofree Hopf algebra (coproduct is not deformed). Then we consider
a Hopf algebra homomorphism W between these deformed Hopf algebras
(as braid dependent deformation of the identity map) and we are showing
that this homomorphism of deformed Hopf algebras coincide with braid de-
pendent ‘symmetrizer/alternator’ introduced by Woronowicz in 1989. The
present paper is the first step to develop theory of biderivations of braided
biassociative graded Hopf algebras. We belive that theory of biderivations
will allows elegant construction of a braided differential geometry initiated
by Woronowicz [1989]. A braided differential geometry shall include the
classical differential geometry as a particular case if a braiding B is propor-
tional to the switch s, see (3.5). An example of derivations is considered for
a simple model of a braiding B.

Rota, Sagan and Stein [1980] introduced cyclic derivations (of grade
—1) as alternative definition of derivations of noncommutative algebra. Our
derivations for B = s coincide with the Hausdorff derivations and not with
cyclic derivations as defined by Rota, Sagan and Stein.

Another aim of the present paper is an application of derivations of zero
grade for the Dirac theory related to the Krélikowski model [1993]. Let R-
space (R-bimodule) § be a Clifford (left) module (a spinor space) and T'S
be a tensor algebra. We consider a k-space of k-derivations dery TS and
point out that zero grade derivations considered by Krélikowski does not
factors to derivations of an exterior algebra der; 5.

Appendix A contains short summary of some recent research by Pro-
fessor Jan Rzewuski. Other appendices contain side remarks loosly related
to the main text.
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2. Notations

is an associative unital commutative ring;
is an associative unital k-algebra with
a multiplication:

=i

R R

\r/m € liny(R ®x R, R);

R

R-bimod a category of R-bimodules;
R-alg a category of associative unital R-algebras;
T : R-bimod — R-alg the tensor algebra functor
(not additive on morphisms});

F: R-alg — R-bimod the forgetful functor;

® and ®°PP bifunctors of tensor products:
R-bimod x R-bimod — R-bimod.
® means @ (if not otherwise stated);
lin = ling, End = Endg are both sided R-linear bifunctors;
M € ob R-bimod, is an R-bimodule with
my € ling (R ®, M, M), m, € lin(M ®, R, M);
M® = FTM a graded R-bimodule of M-words;
f*rTM = @, M®, a filtration of a graded
R-bimodule;
id®n = (idps)®™ = id pren-

By definition functors T and F are adjoint [Kan 1958]: bifunctors
ling(., F-) and algg(T-,-) are naturally equivalent. This means that ex-
Ists a natural bijection

VM x A€ R-bimod x R-alg,
ling(M,FA) 3 £ — { € algg(TM,A), {M=¢(. (2.1)

3. Braided monoidal category, tangles and braids groups

Monoidal categories were introduced by Mac Lane in 1963 under the
hame categories with monoidal multiplication [Mac Lane 1971]. A category
R-bimod of R-bimodules with bifunctors of tensor products ® and ®°PP is
an example of a monoidal category.

A monoidal category is said to be strict if a natural associativity from

Nat[® o (id x ®), ® o (® x id)] is choosen to be trivial,
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| L.| | = a~idehn(X®Y)®2Z,X®(Y ®2)).

We consider strict monoidal categories only. Yetter introduced (la-
belled) tangles [Freyd and Yetter 1992] and in this section an interpretation
of tangle drawings is recalled for the sake of completeness. Labelled dia-
grams, as above with no crossing, form a strict monoidal category. Labelled
tangles, as below allowing crossing, form a braided strict monoidal cate-
gory. A natural transformation B € Nat(®, ®°PP) consists of a family of
morphisms B = {B. .},

X Y
s :
/ = Bxy €lin(X®Y,Y ® X),

such that for all morphisms f € hom(X,Y) and g € hom(Z, W) the natu-

rality condition holds
X /Z
_ ) ? (3.1)
SR
w v

Then morphisms f and ¢ are said to be ‘over’ and ‘under’ B-morphisms
respectively. In particular By w is a B-morphism which means that a pair
of tetragons holds (naturality of B),



Derivations in Braided Geometry 1257

Definition 3.1 (Prebraiding) A natural transformation B € Nat(®, ®°PP)
is said to be a prebraiding if a pair of the Mac Lane hexagons holds (z.e. if
bifunctor ® is a B-morphism),

A monoidal category is prebraided if it is equipped with a prebraiding.
The hexagons (3.3) express the Mac Lane coherence of a prebraiding B
with the associativity a € Nat[® o (id x ®), ® o (® xid)]. In a strict monoidal
category, a ~ id, the Mac Lane hexagons are reduced to trigons, a strict
hexagon is equivalent to a trigon. By the Mac Lane hexagons and by of
naturality of a prebraiding B (tetragons (3.2)) the prebraid hexagon holds

A braided monoidal category is a monoidal category with a pair of braidings
B € Nat(®,®°P?) and B! ¢ Nat(®°PP,®)
such that Bo B~} = idgorr, B 'oB = idg, (B[Jy[/')_l = (B_l)w|U,

A braiding B is said to be involutive if B~! = B. This condition is not natu-
ral. A braided monoidal category with an involutive braiding was introduced
by Mac Lane in 1971 under the name symmetric monoidal category.

The switch. An involutive braiding s = {s..} € Nat(®, ®°PP), which
sends vQw e VR W tow® v, is said to be the switch,

sywvQw = w Q@ v. (35)
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Braid groups. A presentation for the braid group B, on a n strings can

be given by generating set {b;, i =1,...,n — 1} and relations
bibiy1b; = by 1bibiyy fori=1,...,n-2,
bib; = b;b; for |1 — j| > 2. (3.6)

Definition 3.2 (Braid operator) A R-bimodule endomorphism
B € Endr(M®?) is said to be a braid operator if B extends to group map,

p € group(Bn, End(M®™)),
Bn 3 b; +% idye(-1) ® B®idyen-i-1) € End(M®™), Vn. (3.7)

It follows that B € End(M®?) is a braid operator iff B is an invert-
ible solution of the braid equation which is a particular case of (3.4) in
End(M®3). The braid equation means that a braiding B is a B-morphism.

4, Braided derivation

Let L and N be R-bimodules and let {R, L, N} be generating objects
of a free monoidal category with a ring R as two-sided identity with re-
spect to the temsor multiplication bifunctor ® . Let B be a braiding in
this category such that Br . = B. gr = s. This braiding is generated by
8,Br.1,Br n,BN,L and BN N.

Let m € ling(L®?,L) be a multiplication on L, A = {L,m} be R-
algebra and {N,m;, m,} be (A, A)-module with

m; € ling(L ® N,N), m, € ling(N® L,N),

L N

N

Definition 4.1 (Braided derivation). A B-dependent k-derivation of
R-algebra A = {L,m} to (A, A)-module {N,m;, m,} is k-linear map D €
HIIk(L, N),

L

]

$ D cling(L,N),

2

that satisfies the Leibniz rule,
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~ /
" D D{
b = + (4.1)

A right k-module of B-dependent k-derivations of R-algebra A to (A4, A)-
module N is denoted by Bdery(A, N).

A B-dependent k-derivations of R-bimodules are defined in a similar
way by Leibniz rules

R R /R
m, ——I De D<
De ) m, ' 5
m,
RL_ R R |
my _ . +
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Lemma 4.2 Let the following B-morphisms conditions hold,
L L and N

Q[ﬁ mf

Then R-derivation (4.1) D € Bderp(A,N) of an associative R-algebra
A = {L,m} to A-bimodule {N,m;, m,} is consistent with the associativity
of an algebra A.

Omitted proof can be done using diagrammatic notation.

Define

(4.2)

dery (A, N) = sder (A, N). (4.3)

A k-subspace [der) (A4, N)] () [Bdery(A4, N)] consists of k-derivations which
are under B-morphisms,

/
D{\ = &) = D € [derx(A, N)] () [Bdery(4, N)]. (4.4)

5. Derivations of a tensor algebra

More notations:

M is an R-bimodule;
¢ € alg(TM, R) is an augmentation epimorphism (= counit);
kere<TM is the augmentation ideal, M € kere¢;

d € dery (R, FTM) is a k-derivation;
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TM FTM FTM T™M R M
'h{ my m, }.__‘ d + z +
FTM FTM FTM kere
R R
¥ T -
m = m, + my
d
B is a braiding in a category generated by {R, M},
By i = Bprek amels
Brp(M®?) C Endgp(M®?) is a subset of braid operators;
B

= B|M®2 =By ¢ Brp(M®?) is a braid operator;
a € EndpM, Ta € alggTM, a, = (Ta)|]M®

" € ling(FTM, M®T), denote R-module epimorphism:

. . r T @3 __ id ifr=3s )
idprm = ZW o mIIMET = {0 otherwise .
Definition 5.1 (Derivation of R-bimodule) A B-dependent k-deriva-
tion of R-bimodule M to R-bimodule FTM is d-dependent k-linear map
z € ling(M, FTM) that satisfies the Leibniz rules (d = 0 if |z] = -1),

R M
z d
T - +
®g or my
M R

M R
———J a
z p
+

®r or m,
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A set of k-derivations of R-bimodule M to R-bimodule FT M is denoted by
Bdery (M, FTM); dery (R, FTM) x Bder,(M,FTM) is a k-space.

Definition 5.2 (Linear injection). Given a braiding B and a € EndgM
(see notations) we define a linear injections

o Bder,(M®P2) FTM) 3z v D,(B) € liny(®;>,M®, FTM),

H } n—
Dn(B) = D, (B)|M®"2r21 = § " { z<>T“ }. (6.1
AN

o ling(M®P21 f(p-1)FTM) 54, D. ¢ EndgpFTM,
by D, fP~"VTM =0 and by (5.1).

o der (R, FTM) x Bdery(M.Fkere) 3 (d,z)— Dy, € Endy FTM,
by Dy |R=4d and by (5.1) for p = 1.

Let Dn(B) = D.(B)|M®™". For z € Bder,(M,FTM):

D2(B) =z @idm + Z (B"')14paol(x'"Poz)®alo Bia.

pz—1
Let FT M be T M-bimodule with
m=m, =@ and m; = ®o(Ta x idrap)- (5.2)

Inserting (5.2) into B-morphisms conditions (4.2) we get that a € EndM is
a B-morphism.
Theorem 5.3. Let for a braiding B, a € Endg M be B-morphism. Then

Vz € Bdery(M,FTM) =5 D.(B)e¢ Bder,(TM,FTM).

Proof. We must show that Leibniz rule (4.1) holds for TM-module FTM
(5.2). Let z € ling (M®P2!, FTM). Then

n—p p n—p
SEPID
=0 0 i=k 1

—

J

ke — k
3 k

+

-P
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Let n = k + I. Consider four strings in diagrammatic notation
n=1{k, I} ={k,i—k, p,n—p-1i}.

We need to use that a is a B-morphism and the coherence conditions for a
braiding (3.4). This gives

Sk,l = Dk+l — D ®id; - B lo (Dl ® ak) o Bk,l
k—1
= Y [B'o(z®ai)oB;,|®id®" P, (53)
i=k+1-—p

The last sum in (5.3) violate the Leibniz rule (4.1). This sum is nonzero iff
z € ling (M®P22 FTM). a

6. Graded derivations

We will show that braided derivations include as a particular case
graded derivations. Let A € k \ {0} and z € Bdery (M, FTM). Then
Diyi(r-B) =
Dip(A-B)®idi+ ¥ A7 (B71) 0 [Diy(X- B) ® a) 0 By .

r>—1

Let f,g € Endg M, Tf,Tg € algTM. Consider a model of a braid
Operator

Bian=B=(f®g)os=50(9g®f), fog=gof,
By = [(TFIM®) ® (Tg'|M®*)] 0 si,
B ' o[D;®idg}o By = idp ® (Tf ¥ o Do Tf¥),
D(1fyoz foa(B)oTf =TfoDyogaop(B);
D,(B)is a B-morphism iff Tfoz =z o f.

Letzof=MA-Tfoz and a = idps. Then

DyoTf=A-TfoD,,
B~ 'o[D,®idy]o By = A*-id, ® D;.
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7. Special derivations

Let z € ling(M,FTM) and a € EndgM. A derivation (5.1) for p
is given by the data {d, z, a, B}. In this section we put for simplicity d -
and B = s. We wish to study derivations with the property

=1
=0
Dy 4 € derg(TM,FTM) => (D;.4)* € derp(TM,FTM)

for T M-bimodules FTM with m; = ® o (T'a x id7ps) and m; = ® o (Ta? x
idpps) respectively. A sufficient condition is

%(Ta)o:v =—zoa. } (7.1)

Let p,v, A = +1 and define

[]a:lin(M,FTM) ® lin(M, FTM) — lin(M, FTM),
[z,y]AEDz,aoyw,\-Dy‘aom;
Ly(a) = {z € ling(M,FTM), (Ta)oz = A-zoa}. (7.2)

For TM-bimodule FTM (5.3) if ¢ € L)(a) then a derivation D;, €
der(TM, FT M) is said to be special. We have

[LuaLu] C L;Lus
forze Ly, (Ta)oeDpqa=A-Dyqo0(Ta),

and the following (anti)-commutative diagram holds,

M—= o TM 2= M

1 ‘
la JTa jTa
M2y =P Ty
For involutive braid § = A -s we have an isomorphism of algebras: the

A-commutator of special derivations is a special derivation, for z,y € Lj,

DgayDyol=DgaoDye—A-DyaoDgq (7.3)

= Dy yj a2 (7.4)

Example 7.1. Let S be R-bimodule, a € EndgS, L_1(a) C Endg$ and
vy € ling(M,L_1(a)), t.e.forve M, {ys,a}=0.

If 2,y € EndgM then {z,y} = [z,y]a=_1 = 2oy +yoz. For zero grade
z and a # idp, Do does not factors to exterior and symmetric factor
algebras.
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For A = —1 and v, w € M we put

=Yy, Y= Yw, Lv =Dy a,
PI$®% = y@ids +a®vy: M — End(§%?).
Then we recover the case related to works by Kahler [1960] and by Krélikow-
ski [1993] (a = 7s)
{I‘v, rw} = D{‘Ym‘Yw}sﬂz .

Example 7.2. Let z € lin(M, M®?). One can solve the special condition
(7.1)

(Ta)ozx = —zoa
for minimal polynomials a™ = (—1)" -idys. Let a* = idpg, 1,7, k € speca =
{-1,+1} and
2% = [(idps + @) ® (idas + ja)] o z o (idpg + ka) .
Then the special condition (7.1) is reduced to the system
(1+ijlc)-2:§cj =0, no sums.
This is the condition for Z/2Z-graded cogebra z,

im{z|(idps + @)} C im{(idps — a) ® (idpr + @) ® (idps + a) ® (idps — @)},
im{z|(idps — a)} C im{(idps + a) ® (idps + a) ® (idps — a) ® (idps — a)}.

Note that a-dependent coassociator is (D, )?|M = (¢®idp +a®=z)oz. This
allows to consider a-coassociative (and a-associative) (graded associative)
Z/2Z-graded cogebras and algebras with Hochschild-like cohomology. Such

algebras are non associative in the usual sense if a # —1.

8. Braided free or cofree Hopf algebras

Hopf algebras in a braided monoidal category {= a braided Hopf alge-
bras) has been introduced by Majid [1991-1993]. In this section we construct
two important examples: (pre)braided free Hopf algebra and (pre)braided
cofree Hopf algebra as the deformation of bifree Hopf algebra.

Let TM = {M®,®} be a tensor algebra free on R-bimodule M. Let a
prebraiding K be generated by a prebraid operator K1,; = K € Endg(M®?)
and be such that

K(]’O = K1R®R =s,
Kl,g = K{M@RE S,

Kop=KIRQM =s.
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Denote briefly by KM an associative unital R-algebra with R-bimodule
FKM = M®%®@® M®, with a K-dependent multiplication

(®)®(®)] o (id® K ®id)

and with unit 1®1. For each algebramap C(K) € alg(TM,KM),C1 = 1®1,
a pair {TM,C(K)} is a free bialgebra. We noted in section 2 (see (2.1)),
that every R-linear map C; € lingp(M, FK M) determine unique algebra
map C(K) € alg(TM, K M) such that C(K)|M = Cy. We put

Ci=1Qidpy +idpys ® 1.

Then due to braid equation (3.4) this comultiplication C(K) is coassociative.
An algebra map ¢ € algp(T M, R) such that M € kere, is a counit for a co-
multiplication C(K). Therefore {TM,C(K),¢e} is a free biunital (i.e. unital
and counital) and biassociative (i.e. an associative and coassociative) bialge-
bra. Due to braid equation (3.4) a comultiplication C(K) is a K-morphism.
Moreover the unit and the counit are K-morphisms and therefore a free bial-
gebra {TM,C(K),e}is K-braided. This free R-bialgebra possess K-braided
antipod S(K) and we have a free K-braided Hopf algebra

FTHM(K) = {TM,C(K),e,S(K)}.
In this example we get
S(K)IR=id, S(K)IM = —id, S§(K)M®? =K.

Theorem 8.1 (Majid 1993). Let a biunital and biassociative Hopf alge-
bra be K -braided, i.e. all involved maps be K -morphisms. Then K -braided
antipod S(K) must be an algebra map,

S(K) € alg(®,®0 K),
5(K)o® = (®0 K)o [S(K)® S(K)].

Note that C(K)|M®" = $°  CH™~i(K) and the operators CP4(K) €
ling[M®(P+9) M® @ M®) for p = 1 or ¢ = 1 are the same as braided
integers introduced by Majid in a paper on free braided differential calculus
[1993],

{1 ;p;’c} = CPYK),  [1+p;K] = CIP(K).

Cofree tensor (coassociative) R-cogebra C' M cogenerated on R-bimodule
M is algebraic dual of a tensor algebra TM* = {M*®,®}p of a dual R-
bimodule M*. Therefore CM = {M®, A = ®*}. A computation shows
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that A = ®* = C(0) and that A is a shuffle (free) comultiplication. The
construction of cofree cogebras was considered by Fox [1993]. Therefore
coassociative counital cogebra {M®,C(K),e} is K-deformation of cofree
(shuffle) cogebra {M®, A\, e} and a free Hopf algebra

fHM(K) = {TM,C(K),e, S(K)},

is K-deformation of bifree (i.e. free and cofree) Hopf algebra fHM(0) =
{TM, N, e,5(0)}.
Note that exists an associative K-deformation of a tensor product ® —

Q(K), Q(0) = ®, such that

Q(K) = [C(KT)]T,
E(K)=®0C(K)=Q(K)o A € Endr(M®),
E(0)|M®™ = (n +1)-id.

Denote briefly by M K an coassociative counital R-cogebra with R-bimodule
FMK = M® ® M®, with a K-dependent comultiplication

(id® K ®id) o [A ® A]

and with counit ¢ ® €. Then one can show that Q(K) € cog(MK,CM).
Therefore we get K-braided cofree Hopf algebra

cHM(K) = {CM,Q(K),u,S5(K)}

as nonequivalent K-deformation of bifree Hopf algebra.

Theorem 8.2. FExzxists unique homomorphism W(K) of K-deformed free
Hopf algebra into K-deformed cofree Hopf algebra,

W(K) € hopf{ fHM(K), cHM(K)},

such that W(K)|R® M = id. Omitted proof use the prebraid equation
(3.4). The operator W(K) commutes with antipod $(K) and moreover we
have W(0) = id. Therefore W(K) is K-deformation of identity. One can
show also that W(K) coincide with symmetrizer/alternator introduced by
Woronowicz [1989, pp. 153-155].

Corollary 8.3. The subspace ker W(K) is a two-sided biideal in a free
tensor Hopf R-algebra f H M(K) and imW(K) is a sub-Hopf algebra of cofree
Hopf R-algebra cHM(K).

Definition 8.4. A factor Hopf algebra Mp = fHM(K)/ ket W(K) is said
to be the exterior Hopf algebra of R-bimodule M.
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9. Factor braiding

Let A be an algebra and <A be a two-sided ideal. A braid B €
End(A®?) factors to the braid on the factor algebra A/I iff

BIRQA+AQICI®RA+ARI. (9.1)

Corollary 9.1. Let 7 € alg( A, A/I) be algebra epimorphism and let a braid
B on A factors to a braid B on A/I, B o(r @ 7) = (r® 7)o B. Then a
factor multiplication A = m/I, Ao (7 ® 7) = 7 o m, is a B"-morphism,

If I = ker W then a sufficient condition that a braid operator B factors
(9.1) is the existence of a map B such that

(W@W)oB=Bo(WgW). (9.2)

Lemma 9.2. Let K and B € End(M®?2) be braid operators. The following
assertions are equivalent

(i) A braid K is a B-morphism for By ; = B.
(ii) The Hopf algebra map W(K) is a B-morphism.
Proof. A braid operator K is a B-morphism if

/4 KN /B ) rc"
/\x . /\/” /<// . B///>

P X

For K = B (9.3) is just (3.2). The Hopf algebra map W(K) is a B-
-morphism if (see (3.1))

We must show an implication

K is a B-morphism => W(K)is a B-morphism.
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Proof of this implication goes by induction on grades using braid hexagon
(3.4). Most easily proof goes in diagrammatic notation. O

Every braid operator is a s-morphism, however the switch s (3.5) needs not
to be a B-morphism for general braid operator B € Brp(M®?2).

Lemma 9.3 Let K € Brg(M®?) C End(M®?) be a braid operator and let
ker W(K)<TM be bitdeal as in Corollary 8.3. A sufficient condition that a
braiding B on M®, By ; = B € End(M®?), factors to a braiding BN(K) €
End(Mg ® Mp) is that K is a B-morphism i.e. (9.3) holds.

Proof. Proof is by induction. a

Therefore if a braid operator K is a B-morphism then in (9.2) B = B and
exists a factor braiding B (K) € End(Mp ® Mg).
Let B1; = (f®g)os. Then a braid K € Brg(M®?) is a B-morphismm

TfoK=KoTf and TgoK = Kolyg.

Appendix A
The Rzewusk: model of internal manifold

Professor Jan Rzewuski (1916-1994) invented a spinorial model of in-
ternal manifold of elementary particle based on direct product of two (or
more) Lie groups. One of these group is a group E of external (space-time)
symmetries and the second one is a group I of internal symmetries. Exam-
ples of external symmetries include conformal group SU; 2 and the covering
group of the Poincaré group P C SU. ;. Examples of internal groups are
SU,., SU3 x SU; x U;.

In this appendix we shall describe the Rzewuski model [Kocik and
Rzewuski 1986-1995; Rzewuski 1989-1994 and references therein].

Let C-space S be an irreducible left E-module (a spinor space) and
C-space V be an irreducible left [-module. Then dual C-space V™ =
Homg(V,C) is a right I-module. Therefore § ® V* ~ Homg(V,5) is
E-I-bimodule (or equivalently a left E x I°PP-module) and V ®@¢ §* =~
Homg (S, V) is I- E-bimodule. These bimodules are referred in Rzewuski’s
papers as ‘matrix manifolds of multi-spinors’ [e.g. Rzewuski 1989, 1993].

Rzewuski was considering also Z,-graded generalization of matrix ma-
nifolds [Rzewuski 1991], where C-spaces S or/and V are Z;-graded and
Lie groups E or I or both E and I are a supergroups correspondingly [see
e.g.Berezin 1983).

Rzewuski (also jointly with Kocik {1986 and 1995]) gave classification
of (E x I')-homogeneous submanifolds ( E x I-orbits) in (E x I')-bimodules.
The aim of this classification was determination of E x I-orbits foliated
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over E-orbit. An E-orbit M is said to be an external space, e.g. a complex
Minkowski space. Let W C § ® V* be E x I-homogeneous submanifold.
A foliation given by projection 7 : W — M is said to be consistent if =
intertwine the transitive action of £ x I with the transitive action of an
external group E,

| 4 = — W
i !
|

! ™ i s
i 4

M —— M

The following definition is a heart of the Rzewuski model.

Definition A.1 (Internal manifold of particle). Let p € M. A typical
fiber 7~ 1p C W of consistent fibration 7 : W — M is said to be an internal
manifold of particle.

This definition rises the problem: to determine all possible internal

manifolds. Rzewuski proved the following amazing theorem (see also [Kocik
and Rzewuski 1995]).
Theorem A.2 (Rzewuski 1993). Let E = SUz 2 or E = P. Let V be
(left) SU,,-module, m = dim V and let S be left E-module, dimg § = 4.
Then ezists unique (E x SUp,)-orbit W in a space of m-spinors Hom(V, S)
with consistent fibration over compact Minkowsk: C-space M.

For the Poincaré group an internal manifold determined by Rzewuski
has a form,

5031 x SUp,
502 X S[/rm_.g ’

Determination of submanifolds of Hom(S,V) of fixed rank leads to
generalization of the Penrose transform [Rzewuski 1985-1993], [Kocik and
Rzewuski 1986-1995|. The case considered by Penrose is dim¢ § = 4 and
dimpV = 2.

Rzewuski determined invariant metric tensors, measures and differential
operators on homogeneous spaces (e.g. Laplace-Beltrami operator) together
with their spectral analysis. The aim was study of invariant differential
operators on internal manifold of particle in the Rzewuski model (A.1) and
dynamics for invariant Lagrangians.

(A.1)

Appendix B
Identities for wnvolutive braid

Let Brp(M®?%) C Endg(M®?) denote a set of pre-braid operators. Let
M be R-bimodule, B ¢ Brg(M®?) and let ‘braided commutator’ C(B) €



Derivations in Braided Geomeiry 1271

Endp FT M be defined by recurrent relation

C(B)|(R® M) = id,
C.(B) = C(B)|M®2?
= (idy — B1,r-1) 0 [idp ® Cr—1(B)] € Endp(M®"),

Jr(B) = Cr(B)o { Z (Bl,r—l)i} »

0<i<r-1
C3(B) = (1d3 — Bl,Z) e} (ld3 — ldM ® B1,1)7
J3(B) = C3(B)O[id3+Bl‘2 —}-(31‘2)2}. (Bl)

Lemma B.1 (Jacobi identity). Let § = S~ € Brg(M®?) be an involu-
tive braid. Then J2(S) =0 and J3(5) = 0.

Proof. An identity J3(S5) = 0 will be shown in two ways.

J3(8) = (ids — S ®@idas) o [ids — (S1,2)°]
+(S ®idps — idps ® S)ofids + S1,2 + (51,2)2] =0 by §=5""1.

Let W(B) be the homomorphism of Hopf algebras as defined in Section 8.
For involutive braid § = §~! we have

Ws(S) = [ids + Sq.2 0 (idps ® §)] 0 [ids + S1,2 + (51,2)?]
= [idy ® S + S12]0fids + 812 + (S1.2)%].  (B.2)

Therefore J3(S5) = W3(S) — W3(S) = 0. O

Appendix C
Braid-dependent determinant
Let z € M* and ¢, = z ® idpps be contraction.
c € lin(M*, FEnd FTM), ée€ alg(TM*,EndFTM), {M™=c.

The homomorphism of Hopf algebras (see Section 8) W(K) determine the
pairing of exterior Hopf algebras,

TM*®TM 3(®@X+— W((K)X € R

§
Tk QT {i
-

M”EA®M’/C\ deLK‘—) R
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(Tc€)(m X) = dety(mx€ @ 7 X)
(R e e

m€omx = ¢ o W(K) = CWT(K)E -
Let s be the switch (3.5). Then

det _; = determinant,

det , — permanent .

A honest bosonic (symmetric) algebra is paired by permanent. A honest
fermionic (exterior) algebra is paired by determinant.
For § € TM™*, X c TM, |£| = | X},

Re det(r€@nX)=¢éW(-s)X,
Rec per(ré®@nX)=cW(+s)X,

det

per

(f‘/\...Af")(xlA.../\zm):6,’,‘1-{ }{Ei-’b‘j}.
A pairing (C.1) with W(K) generalize the determinant/permanent for an
arbitrary braid operator K.
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